Properties

Label 189.2.ba.a.38.11
Level $189$
Weight $2$
Character 189.38
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 38.11
Character \(\chi\) \(=\) 189.38
Dual form 189.2.ba.a.5.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.220121 + 0.0388132i) q^{2} +(-0.104309 + 1.72891i) q^{3} +(-1.83244 - 0.666953i) q^{4} +(0.595276 + 3.37598i) q^{5} +(-0.0900651 + 0.376520i) q^{6} +(-2.47857 - 0.925586i) q^{7} +(-0.764613 - 0.441450i) q^{8} +(-2.97824 - 0.360682i) q^{9} +O(q^{10})\) \(q+(0.220121 + 0.0388132i) q^{2} +(-0.104309 + 1.72891i) q^{3} +(-1.83244 - 0.666953i) q^{4} +(0.595276 + 3.37598i) q^{5} +(-0.0900651 + 0.376520i) q^{6} +(-2.47857 - 0.925586i) q^{7} +(-0.764613 - 0.441450i) q^{8} +(-2.97824 - 0.360682i) q^{9} +0.766227i q^{10} +(-0.563881 - 0.0994274i) q^{11} +(1.34424 - 3.09855i) q^{12} +(0.663083 + 0.790231i) q^{13} +(-0.509659 - 0.299942i) q^{14} +(-5.89884 + 0.677031i) q^{15} +(2.83646 + 2.38007i) q^{16} +3.70384 q^{17} +(-0.641573 - 0.194989i) q^{18} +8.40493i q^{19} +(1.16081 - 6.58329i) q^{20} +(1.85879 - 4.18866i) q^{21} +(-0.120263 - 0.0437721i) q^{22} +(2.38732 + 2.84510i) q^{23} +(0.842981 - 1.27590i) q^{24} +(-6.34441 + 2.30918i) q^{25} +(0.115287 + 0.199683i) q^{26} +(0.934243 - 5.11148i) q^{27} +(3.92450 + 3.34917i) q^{28} +(2.81038 - 3.34928i) q^{29} +(-1.32474 - 0.0799245i) q^{30} +(0.645801 - 1.77433i) q^{31} +(1.66702 + 1.98668i) q^{32} +(0.230719 - 0.964526i) q^{33} +(0.815291 + 0.143758i) q^{34} +(1.64933 - 8.91856i) q^{35} +(5.21688 + 2.64727i) q^{36} +(2.08746 - 3.61558i) q^{37} +(-0.326222 + 1.85010i) q^{38} +(-1.43540 + 1.06398i) q^{39} +(1.03517 - 2.84410i) q^{40} +(0.371534 - 0.311754i) q^{41} +(0.571734 - 0.849866i) q^{42} +(-5.66998 + 2.06370i) q^{43} +(0.966963 + 0.558277i) q^{44} +(-0.555221 - 10.2692i) q^{45} +(0.415071 + 0.718925i) q^{46} +(-5.96744 + 2.17197i) q^{47} +(-4.41080 + 4.65572i) q^{48} +(5.28658 + 4.58825i) q^{49} +(-1.48616 + 0.262050i) q^{50} +(-0.386344 + 6.40359i) q^{51} +(-0.688011 - 1.89029i) q^{52} +(10.8697 + 6.27561i) q^{53} +(0.404039 - 1.08888i) q^{54} -1.96284i q^{55} +(1.48654 + 1.80188i) q^{56} +(-14.5313 - 0.876711i) q^{57} +(0.748619 - 0.628166i) q^{58} +(6.04312 - 5.07078i) q^{59} +(11.2608 + 2.69363i) q^{60} +(-1.51419 - 4.16020i) q^{61} +(0.211022 - 0.365500i) q^{62} +(7.04792 + 3.65059i) q^{63} +(-3.41290 - 5.91132i) q^{64} +(-2.27308 + 2.70896i) q^{65} +(0.0882223 - 0.203357i) q^{66} +(-1.67428 - 9.49530i) q^{67} +(-6.78705 - 2.47029i) q^{68} +(-5.16793 + 3.83069i) q^{69} +(0.709209 - 1.89915i) q^{70} +(-0.452673 + 0.261351i) q^{71} +(2.11798 + 1.59052i) q^{72} +(-6.85309 + 3.95663i) q^{73} +(0.599825 - 0.714844i) q^{74} +(-3.33057 - 11.2098i) q^{75} +(5.60569 - 15.4015i) q^{76} +(1.30559 + 0.768357i) q^{77} +(-0.357258 + 0.178491i) q^{78} +(-1.65313 + 9.37537i) q^{79} +(-6.34660 + 10.9926i) q^{80} +(8.73982 + 2.14839i) q^{81} +(0.0938826 - 0.0542032i) q^{82} +(-12.7845 - 10.7275i) q^{83} +(-6.19976 + 6.43574i) q^{84} +(2.20481 + 12.5041i) q^{85} +(-1.32818 + 0.234194i) q^{86} +(5.49744 + 5.20824i) q^{87} +(0.387258 + 0.324948i) q^{88} +11.8925 q^{89} +(0.276364 - 2.28201i) q^{90} +(-0.912067 - 2.57238i) q^{91} +(-2.47707 - 6.80570i) q^{92} +(3.00028 + 1.30161i) q^{93} +(-1.39786 + 0.246480i) q^{94} +(-28.3748 + 5.00325i) q^{95} +(-3.60866 + 2.67489i) q^{96} +(3.46606 + 9.52293i) q^{97} +(0.985601 + 1.21516i) q^{98} +(1.64351 + 0.499500i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.220121 + 0.0388132i 0.155649 + 0.0274451i 0.250930 0.968005i \(-0.419264\pi\)
−0.0952807 + 0.995450i \(0.530375\pi\)
\(3\) −0.104309 + 1.72891i −0.0602229 + 0.998185i
\(4\) −1.83244 0.666953i −0.916219 0.333477i
\(5\) 0.595276 + 3.37598i 0.266215 + 1.50978i 0.765552 + 0.643375i \(0.222466\pi\)
−0.499336 + 0.866408i \(0.666423\pi\)
\(6\) −0.0900651 + 0.376520i −0.0367689 + 0.153714i
\(7\) −2.47857 0.925586i −0.936810 0.349839i
\(8\) −0.764613 0.441450i −0.270332 0.156076i
\(9\) −2.97824 0.360682i −0.992746 0.120227i
\(10\) 0.766227i 0.242302i
\(11\) −0.563881 0.0994274i −0.170016 0.0299785i 0.0879918 0.996121i \(-0.471955\pi\)
−0.258008 + 0.966143i \(0.583066\pi\)
\(12\) 1.34424 3.09855i 0.388049 0.894473i
\(13\) 0.663083 + 0.790231i 0.183906 + 0.219171i 0.850119 0.526591i \(-0.176530\pi\)
−0.666213 + 0.745762i \(0.732086\pi\)
\(14\) −0.509659 0.299942i −0.136212 0.0801628i
\(15\) −5.89884 + 0.677031i −1.52307 + 0.174809i
\(16\) 2.83646 + 2.38007i 0.709116 + 0.595019i
\(17\) 3.70384 0.898312 0.449156 0.893453i \(-0.351725\pi\)
0.449156 + 0.893453i \(0.351725\pi\)
\(18\) −0.641573 0.194989i −0.151220 0.0459593i
\(19\) 8.40493i 1.92822i 0.265498 + 0.964111i \(0.414464\pi\)
−0.265498 + 0.964111i \(0.585536\pi\)
\(20\) 1.16081 6.58329i 0.259565 1.47207i
\(21\) 1.85879 4.18866i 0.405621 0.914041i
\(22\) −0.120263 0.0437721i −0.0256401 0.00933224i
\(23\) 2.38732 + 2.84510i 0.497791 + 0.593244i 0.955181 0.296022i \(-0.0956602\pi\)
−0.457390 + 0.889266i \(0.651216\pi\)
\(24\) 0.842981 1.27590i 0.172073 0.260442i
\(25\) −6.34441 + 2.30918i −1.26888 + 0.461835i
\(26\) 0.115287 + 0.199683i 0.0226096 + 0.0391610i
\(27\) 0.934243 5.11148i 0.179795 0.983704i
\(28\) 3.92450 + 3.34917i 0.741660 + 0.632933i
\(29\) 2.81038 3.34928i 0.521874 0.621945i −0.439149 0.898414i \(-0.644720\pi\)
0.961023 + 0.276469i \(0.0891643\pi\)
\(30\) −1.32474 0.0799245i −0.241863 0.0145922i
\(31\) 0.645801 1.77433i 0.115989 0.318678i −0.868090 0.496406i \(-0.834653\pi\)
0.984080 + 0.177728i \(0.0568748\pi\)
\(32\) 1.66702 + 1.98668i 0.294690 + 0.351198i
\(33\) 0.230719 0.964526i 0.0401630 0.167902i
\(34\) 0.815291 + 0.143758i 0.139821 + 0.0246543i
\(35\) 1.64933 8.91856i 0.278787 1.50751i
\(36\) 5.21688 + 2.64727i 0.869480 + 0.441212i
\(37\) 2.08746 3.61558i 0.343176 0.594398i −0.641845 0.766835i \(-0.721831\pi\)
0.985021 + 0.172437i \(0.0551640\pi\)
\(38\) −0.326222 + 1.85010i −0.0529203 + 0.300126i
\(39\) −1.43540 + 1.06398i −0.229848 + 0.170373i
\(40\) 1.03517 2.84410i 0.163674 0.449692i
\(41\) 0.371534 0.311754i 0.0580239 0.0486879i −0.613315 0.789839i \(-0.710164\pi\)
0.671338 + 0.741151i \(0.265720\pi\)
\(42\) 0.571734 0.849866i 0.0882204 0.131137i
\(43\) −5.66998 + 2.06370i −0.864664 + 0.314712i −0.736004 0.676977i \(-0.763290\pi\)
−0.128660 + 0.991689i \(0.541067\pi\)
\(44\) 0.966963 + 0.558277i 0.145775 + 0.0841634i
\(45\) −0.555221 10.2692i −0.0827674 1.53084i
\(46\) 0.415071 + 0.718925i 0.0611989 + 0.106000i
\(47\) −5.96744 + 2.17197i −0.870441 + 0.316815i −0.738346 0.674422i \(-0.764393\pi\)
−0.132095 + 0.991237i \(0.542170\pi\)
\(48\) −4.41080 + 4.65572i −0.636644 + 0.671995i
\(49\) 5.28658 + 4.58825i 0.755226 + 0.655465i
\(50\) −1.48616 + 0.262050i −0.210175 + 0.0370595i
\(51\) −0.386344 + 6.40359i −0.0540990 + 0.896682i
\(52\) −0.688011 1.89029i −0.0954100 0.262137i
\(53\) 10.8697 + 6.27561i 1.49306 + 0.862021i 0.999968 0.00795364i \(-0.00253175\pi\)
0.493096 + 0.869975i \(0.335865\pi\)
\(54\) 0.404039 1.08888i 0.0549828 0.148178i
\(55\) 1.96284i 0.264669i
\(56\) 1.48654 + 1.80188i 0.198648 + 0.240786i
\(57\) −14.5313 0.876711i −1.92472 0.116123i
\(58\) 0.748619 0.628166i 0.0982985 0.0824822i
\(59\) 6.04312 5.07078i 0.786747 0.660159i −0.158191 0.987409i \(-0.550566\pi\)
0.944938 + 0.327249i \(0.106122\pi\)
\(60\) 11.2608 + 2.69363i 1.45377 + 0.347747i
\(61\) −1.51419 4.16020i −0.193872 0.532659i 0.804225 0.594325i \(-0.202581\pi\)
−0.998097 + 0.0616663i \(0.980359\pi\)
\(62\) 0.211022 0.365500i 0.0267998 0.0464186i
\(63\) 7.04792 + 3.65059i 0.887955 + 0.459931i
\(64\) −3.41290 5.91132i −0.426613 0.738915i
\(65\) −2.27308 + 2.70896i −0.281941 + 0.336005i
\(66\) 0.0882223 0.203357i 0.0108594 0.0250316i
\(67\) −1.67428 9.49530i −0.204546 1.16004i −0.898153 0.439683i \(-0.855091\pi\)
0.693607 0.720353i \(-0.256020\pi\)
\(68\) −6.78705 2.47029i −0.823051 0.299566i
\(69\) −5.16793 + 3.83069i −0.622146 + 0.461160i
\(70\) 0.709209 1.89915i 0.0847667 0.226991i
\(71\) −0.452673 + 0.261351i −0.0537224 + 0.0310167i −0.526621 0.850100i \(-0.676541\pi\)
0.472898 + 0.881117i \(0.343208\pi\)
\(72\) 2.11798 + 1.59052i 0.249606 + 0.187445i
\(73\) −6.85309 + 3.95663i −0.802094 + 0.463089i −0.844203 0.536024i \(-0.819926\pi\)
0.0421090 + 0.999113i \(0.486592\pi\)
\(74\) 0.599825 0.714844i 0.0697282 0.0830989i
\(75\) −3.33057 11.2098i −0.384581 1.29439i
\(76\) 5.60569 15.4015i 0.643017 1.76668i
\(77\) 1.30559 + 0.768357i 0.148785 + 0.0875625i
\(78\) −0.357258 + 0.178491i −0.0404515 + 0.0202102i
\(79\) −1.65313 + 9.37537i −0.185992 + 1.05481i 0.738683 + 0.674053i \(0.235448\pi\)
−0.924675 + 0.380758i \(0.875663\pi\)
\(80\) −6.34660 + 10.9926i −0.709571 + 1.22901i
\(81\) 8.73982 + 2.14839i 0.971091 + 0.238710i
\(82\) 0.0938826 0.0542032i 0.0103676 0.00598574i
\(83\) −12.7845 10.7275i −1.40328 1.17749i −0.959621 0.281297i \(-0.909235\pi\)
−0.443660 0.896195i \(-0.646320\pi\)
\(84\) −6.19976 + 6.43574i −0.676449 + 0.702197i
\(85\) 2.20481 + 12.5041i 0.239145 + 1.35626i
\(86\) −1.32818 + 0.234194i −0.143221 + 0.0252538i
\(87\) 5.49744 + 5.20824i 0.589388 + 0.558382i
\(88\) 0.387258 + 0.324948i 0.0412819 + 0.0346396i
\(89\) 11.8925 1.26060 0.630302 0.776350i \(-0.282931\pi\)
0.630302 + 0.776350i \(0.282931\pi\)
\(90\) 0.276364 2.28201i 0.0291313 0.240545i
\(91\) −0.912067 2.57238i −0.0956106 0.269659i
\(92\) −2.47707 6.80570i −0.258253 0.709543i
\(93\) 3.00028 + 1.30161i 0.311115 + 0.134971i
\(94\) −1.39786 + 0.246480i −0.144178 + 0.0254225i
\(95\) −28.3748 + 5.00325i −2.91120 + 0.513323i
\(96\) −3.60866 + 2.67489i −0.368308 + 0.273005i
\(97\) 3.46606 + 9.52293i 0.351926 + 0.966907i 0.981751 + 0.190171i \(0.0609042\pi\)
−0.629826 + 0.776737i \(0.716874\pi\)
\(98\) 0.985601 + 1.21516i 0.0995608 + 0.122750i
\(99\) 1.64351 + 0.499500i 0.165179 + 0.0502016i
\(100\) 13.1658 1.31658
\(101\) 12.0960 + 10.1498i 1.20360 + 1.00994i 0.999520 + 0.0309832i \(0.00986382\pi\)
0.204077 + 0.978955i \(0.434581\pi\)
\(102\) −0.333586 + 1.39457i −0.0330300 + 0.138083i
\(103\) −4.08844 + 0.720902i −0.402846 + 0.0710326i −0.371400 0.928473i \(-0.621122\pi\)
−0.0314457 + 0.999505i \(0.510011\pi\)
\(104\) −0.158154 0.896938i −0.0155083 0.0879520i
\(105\) 15.2473 + 3.78182i 1.48799 + 0.369068i
\(106\) 2.14906 + 1.80328i 0.208736 + 0.175150i
\(107\) −2.22494 + 1.28457i −0.215093 + 0.124184i −0.603676 0.797230i \(-0.706298\pi\)
0.388583 + 0.921414i \(0.372965\pi\)
\(108\) −5.12106 + 8.74337i −0.492774 + 0.841331i
\(109\) 0.237244 0.410919i 0.0227239 0.0393589i −0.854440 0.519550i \(-0.826099\pi\)
0.877164 + 0.480191i \(0.159433\pi\)
\(110\) 0.0761840 0.432061i 0.00726386 0.0411954i
\(111\) 6.03326 + 3.98616i 0.572652 + 0.378349i
\(112\) −4.82740 8.52456i −0.456146 0.805495i
\(113\) −5.70443 + 15.6728i −0.536628 + 1.47437i 0.314420 + 0.949284i \(0.398190\pi\)
−0.851047 + 0.525089i \(0.824032\pi\)
\(114\) −3.16462 0.756991i −0.296394 0.0708987i
\(115\) −8.18387 + 9.75316i −0.763150 + 0.909487i
\(116\) −7.38366 + 4.26296i −0.685555 + 0.395806i
\(117\) −1.68980 2.59266i −0.156222 0.239691i
\(118\) 1.52703 0.881631i 0.140574 0.0811607i
\(119\) −9.18021 3.42822i −0.841548 0.314264i
\(120\) 4.80921 + 2.08638i 0.439019 + 0.190459i
\(121\) −10.0285 3.65009i −0.911686 0.331826i
\(122\) −0.171834 0.974517i −0.0155571 0.0882286i
\(123\) 0.500240 + 0.674867i 0.0451051 + 0.0608507i
\(124\) −2.36678 + 2.82062i −0.212543 + 0.253299i
\(125\) −3.00225 5.20005i −0.268530 0.465107i
\(126\) 1.40970 + 1.07712i 0.125586 + 0.0959578i
\(127\) 2.88122 4.99042i 0.255667 0.442828i −0.709410 0.704796i \(-0.751038\pi\)
0.965076 + 0.261969i \(0.0843717\pi\)
\(128\) −2.29582 6.30771i −0.202924 0.557528i
\(129\) −2.97652 10.0181i −0.262068 0.882047i
\(130\) −0.605497 + 0.508072i −0.0531056 + 0.0445609i
\(131\) 11.3834 9.55180i 0.994572 0.834545i 0.00834879 0.999965i \(-0.497342\pi\)
0.986223 + 0.165420i \(0.0528980\pi\)
\(132\) −1.06607 + 1.61356i −0.0927896 + 0.140442i
\(133\) 7.77948 20.8322i 0.674567 1.80638i
\(134\) 2.15510i 0.186172i
\(135\) 17.8124 + 0.111244i 1.53304 + 0.00957439i
\(136\) −2.83200 1.63506i −0.242842 0.140205i
\(137\) −1.73524 4.76754i −0.148252 0.407319i 0.843232 0.537550i \(-0.180650\pi\)
−0.991484 + 0.130232i \(0.958428\pi\)
\(138\) −1.28625 + 0.642629i −0.109493 + 0.0547042i
\(139\) 9.50632 1.67622i 0.806315 0.142175i 0.244727 0.969592i \(-0.421302\pi\)
0.561588 + 0.827417i \(0.310191\pi\)
\(140\) −8.97055 + 15.2427i −0.758150 + 1.28824i
\(141\) −3.13268 10.5437i −0.263819 0.887941i
\(142\) −0.109787 + 0.0399591i −0.00921309 + 0.00335329i
\(143\) −0.295329 0.511525i −0.0246966 0.0427758i
\(144\) −7.58921 8.11149i −0.632434 0.675958i
\(145\) 12.9800 + 7.49403i 1.07793 + 0.622345i
\(146\) −1.66208 + 0.604947i −0.137555 + 0.0500658i
\(147\) −8.48410 + 8.66141i −0.699757 + 0.714381i
\(148\) −6.23656 + 5.23310i −0.512642 + 0.430158i
\(149\) 3.91052 10.7441i 0.320363 0.880189i −0.670083 0.742286i \(-0.733742\pi\)
0.990446 0.137903i \(-0.0440362\pi\)
\(150\) −0.298041 2.59677i −0.0243349 0.212025i
\(151\) 3.17852 18.0263i 0.258664 1.46696i −0.527825 0.849353i \(-0.676992\pi\)
0.786489 0.617604i \(-0.211897\pi\)
\(152\) 3.71035 6.42652i 0.300949 0.521259i
\(153\) −11.0309 1.33591i −0.891796 0.108002i
\(154\) 0.257564 + 0.219805i 0.0207551 + 0.0177124i
\(155\) 6.37451 + 1.12400i 0.512013 + 0.0902817i
\(156\) 3.33991 0.992332i 0.267407 0.0794501i
\(157\) −2.48225 2.95823i −0.198105 0.236093i 0.657842 0.753156i \(-0.271470\pi\)
−0.855947 + 0.517063i \(0.827025\pi\)
\(158\) −0.727776 + 1.99955i −0.0578988 + 0.159076i
\(159\) −11.9838 + 18.1381i −0.950373 + 1.43844i
\(160\) −5.71464 + 6.81044i −0.451782 + 0.538412i
\(161\) −3.28375 9.26143i −0.258796 0.729903i
\(162\) 1.84043 + 0.812126i 0.144598 + 0.0638067i
\(163\) −2.90913 5.03875i −0.227860 0.394666i 0.729313 0.684180i \(-0.239840\pi\)
−0.957174 + 0.289514i \(0.906506\pi\)
\(164\) −0.888739 + 0.323475i −0.0693989 + 0.0252591i
\(165\) 3.39356 + 0.204742i 0.264188 + 0.0159391i
\(166\) −2.39777 2.85755i −0.186103 0.221789i
\(167\) 15.0821 + 5.48942i 1.16709 + 0.424784i 0.851623 0.524154i \(-0.175618\pi\)
0.315462 + 0.948938i \(0.397841\pi\)
\(168\) −3.27034 + 2.38215i −0.252312 + 0.183786i
\(169\) 2.07264 11.7545i 0.159434 0.904194i
\(170\) 2.83798i 0.217663i
\(171\) 3.03150 25.0319i 0.231825 1.91424i
\(172\) 11.7663 0.897171
\(173\) 6.80689 + 5.71166i 0.517519 + 0.434250i 0.863766 0.503894i \(-0.168100\pi\)
−0.346247 + 0.938143i \(0.612544\pi\)
\(174\) 1.00795 + 1.35982i 0.0764127 + 0.103087i
\(175\) 17.8624 + 0.148850i 1.35027 + 0.0112520i
\(176\) −1.36278 1.62410i −0.102724 0.122421i
\(177\) 8.13656 + 10.9769i 0.611581 + 0.825076i
\(178\) 2.61779 + 0.461587i 0.196212 + 0.0345974i
\(179\) 18.2842i 1.36663i 0.730125 + 0.683313i \(0.239462\pi\)
−0.730125 + 0.683313i \(0.760538\pi\)
\(180\) −5.83165 + 19.1879i −0.434665 + 1.43018i
\(181\) 1.41108 + 0.814685i 0.104884 + 0.0605551i 0.551525 0.834159i \(-0.314046\pi\)
−0.446640 + 0.894714i \(0.647380\pi\)
\(182\) −0.100923 0.601634i −0.00748088 0.0445961i
\(183\) 7.35054 2.18394i 0.543368 0.161442i
\(184\) −0.569409 3.22928i −0.0419774 0.238066i
\(185\) 13.4487 + 4.89494i 0.988771 + 0.359883i
\(186\) 0.609904 + 0.402962i 0.0447204 + 0.0295466i
\(187\) −2.08852 0.368263i −0.152728 0.0269300i
\(188\) 12.3836 0.903165
\(189\) −7.04669 + 11.8044i −0.512572 + 0.858645i
\(190\) −6.44009 −0.467213
\(191\) 5.58893 + 0.985480i 0.404401 + 0.0713068i 0.372149 0.928173i \(-0.378621\pi\)
0.0322519 + 0.999480i \(0.489732\pi\)
\(192\) 10.5761 5.28399i 0.763266 0.381339i
\(193\) −6.66273 2.42504i −0.479594 0.174558i 0.0908994 0.995860i \(-0.471026\pi\)
−0.570494 + 0.821302i \(0.693248\pi\)
\(194\) 0.393337 + 2.23072i 0.0282399 + 0.160157i
\(195\) −4.44643 4.21252i −0.318416 0.301665i
\(196\) −6.62719 11.9336i −0.473370 0.852399i
\(197\) −3.44056 1.98641i −0.245130 0.141526i 0.372402 0.928071i \(-0.378534\pi\)
−0.617532 + 0.786546i \(0.711867\pi\)
\(198\) 0.342383 + 0.173740i 0.0243321 + 0.0123472i
\(199\) 19.0362i 1.34944i 0.738075 + 0.674719i \(0.235735\pi\)
−0.738075 + 0.674719i \(0.764265\pi\)
\(200\) 5.87040 + 1.03511i 0.415100 + 0.0731933i
\(201\) 16.5911 1.90422i 1.17025 0.134314i
\(202\) 2.26864 + 2.70366i 0.159621 + 0.190229i
\(203\) −10.0658 + 5.70016i −0.706477 + 0.400073i
\(204\) 4.97885 11.4765i 0.348589 0.803517i
\(205\) 1.27364 + 1.06871i 0.0889550 + 0.0746421i
\(206\) −0.927931 −0.0646520
\(207\) −6.08384 9.33444i −0.422856 0.648789i
\(208\) 3.81965i 0.264845i
\(209\) 0.835680 4.73938i 0.0578052 0.327830i
\(210\) 3.20947 + 1.42426i 0.221474 + 0.0982829i
\(211\) 2.90837 + 1.05856i 0.200221 + 0.0728743i 0.440184 0.897908i \(-0.354913\pi\)
−0.239963 + 0.970782i \(0.577135\pi\)
\(212\) −15.7325 18.7492i −1.08051 1.28770i
\(213\) −0.404634 0.809892i −0.0277250 0.0554929i
\(214\) −0.539615 + 0.196404i −0.0368873 + 0.0134259i
\(215\) −10.3422 17.9133i −0.705334 1.22167i
\(216\) −2.97079 + 3.49588i −0.202137 + 0.237865i
\(217\) −3.24295 + 3.80004i −0.220146 + 0.257963i
\(218\) 0.0681715 0.0812437i 0.00461716 0.00550252i
\(219\) −6.12581 12.2611i −0.413944 0.828527i
\(220\) −1.30912 + 3.59678i −0.0882608 + 0.242495i
\(221\) 2.45595 + 2.92689i 0.165205 + 0.196884i
\(222\) 1.17333 + 1.11161i 0.0787488 + 0.0746061i
\(223\) 15.3831 + 2.71245i 1.03013 + 0.181639i 0.663069 0.748558i \(-0.269254\pi\)
0.367059 + 0.930198i \(0.380365\pi\)
\(224\) −2.29298 6.46708i −0.153206 0.432100i
\(225\) 19.7280 4.58896i 1.31520 0.305931i
\(226\) −1.86398 + 3.22850i −0.123990 + 0.214757i
\(227\) 1.12879 6.40170i 0.0749206 0.424896i −0.924159 0.382007i \(-0.875233\pi\)
0.999080 0.0428884i \(-0.0136560\pi\)
\(228\) 26.0431 + 11.2982i 1.72474 + 0.748244i
\(229\) 2.66740 7.32862i 0.176267 0.484289i −0.819825 0.572614i \(-0.805929\pi\)
0.996092 + 0.0883255i \(0.0281516\pi\)
\(230\) −2.17999 + 1.82923i −0.143744 + 0.120616i
\(231\) −1.46460 + 2.17709i −0.0963638 + 0.143242i
\(232\) −3.62739 + 1.32026i −0.238150 + 0.0866794i
\(233\) −16.2549 9.38477i −1.06489 0.614817i −0.138112 0.990417i \(-0.544103\pi\)
−0.926782 + 0.375600i \(0.877437\pi\)
\(234\) −0.271330 0.636284i −0.0177374 0.0415952i
\(235\) −10.8848 18.8530i −0.710046 1.22984i
\(236\) −14.4556 + 5.26142i −0.940981 + 0.342489i
\(237\) −16.0367 3.83604i −1.04170 0.249178i
\(238\) −1.88769 1.11094i −0.122361 0.0720113i
\(239\) 19.0385 3.35699i 1.23150 0.217146i 0.480228 0.877144i \(-0.340554\pi\)
0.751268 + 0.659998i \(0.229443\pi\)
\(240\) −18.3432 12.1193i −1.18405 0.782298i
\(241\) −7.14845 19.6402i −0.460472 1.26514i −0.925131 0.379647i \(-0.876046\pi\)
0.464660 0.885489i \(-0.346177\pi\)
\(242\) −2.06582 1.19270i −0.132796 0.0766697i
\(243\) −4.62602 + 14.8862i −0.296759 + 0.954952i
\(244\) 8.63320i 0.552684i
\(245\) −12.3429 + 20.5787i −0.788557 + 1.31472i
\(246\) 0.0839194 + 0.167968i 0.00535051 + 0.0107093i
\(247\) −6.64184 + 5.57316i −0.422610 + 0.354612i
\(248\) −1.27706 + 1.07158i −0.0810936 + 0.0680456i
\(249\) 19.8803 20.9842i 1.25986 1.32982i
\(250\) −0.459027 1.26117i −0.0290314 0.0797632i
\(251\) −8.90271 + 15.4199i −0.561934 + 0.973298i 0.435394 + 0.900240i \(0.356609\pi\)
−0.997328 + 0.0730578i \(0.976724\pi\)
\(252\) −10.4801 11.3901i −0.660185 0.717510i
\(253\) −1.06328 1.84166i −0.0668481 0.115784i
\(254\) 0.827910 0.986665i 0.0519477 0.0619089i
\(255\) −21.8484 + 2.50761i −1.36820 + 0.157033i
\(256\) 2.11004 + 11.9666i 0.131878 + 0.747915i
\(257\) 17.9820 + 6.54491i 1.12169 + 0.408260i 0.835267 0.549844i \(-0.185313\pi\)
0.286419 + 0.958105i \(0.407535\pi\)
\(258\) −0.266358 2.32073i −0.0165827 0.144482i
\(259\) −8.52043 + 7.02934i −0.529434 + 0.436782i
\(260\) 5.97204 3.44796i 0.370370 0.213833i
\(261\) −9.57800 + 8.96130i −0.592863 + 0.554691i
\(262\) 2.87646 1.66072i 0.177708 0.102600i
\(263\) −4.87984 + 5.81557i −0.300904 + 0.358604i −0.895217 0.445630i \(-0.852980\pi\)
0.594313 + 0.804234i \(0.297424\pi\)
\(264\) −0.602200 + 0.635639i −0.0370629 + 0.0391209i
\(265\) −14.7159 + 40.4315i −0.903988 + 2.48369i
\(266\) 2.52099 4.28365i 0.154572 0.262647i
\(267\) −1.24050 + 20.5610i −0.0759172 + 1.25832i
\(268\) −3.26491 + 18.5162i −0.199436 + 1.13106i
\(269\) 12.7935 22.1590i 0.780034 1.35106i −0.151888 0.988398i \(-0.548535\pi\)
0.931921 0.362660i \(-0.118131\pi\)
\(270\) 3.91655 + 0.715842i 0.238354 + 0.0435648i
\(271\) −10.6282 + 6.13617i −0.645615 + 0.372746i −0.786774 0.617241i \(-0.788250\pi\)
0.141159 + 0.989987i \(0.454917\pi\)
\(272\) 10.5058 + 8.81541i 0.637007 + 0.534513i
\(273\) 4.54254 1.30856i 0.274927 0.0791974i
\(274\) −0.196919 1.11679i −0.0118963 0.0674675i
\(275\) 3.80708 0.671292i 0.229576 0.0404804i
\(276\) 12.0248 3.57273i 0.723808 0.215053i
\(277\) 12.3425 + 10.3566i 0.741591 + 0.622269i 0.933264 0.359190i \(-0.116947\pi\)
−0.191673 + 0.981459i \(0.561391\pi\)
\(278\) 2.15760 0.129404
\(279\) −2.56332 + 5.05144i −0.153462 + 0.302422i
\(280\) −5.19819 + 6.09115i −0.310651 + 0.364016i
\(281\) 3.58019 + 9.83649i 0.213576 + 0.586796i 0.999503 0.0315239i \(-0.0100360\pi\)
−0.785927 + 0.618319i \(0.787814\pi\)
\(282\) −0.280332 2.44248i −0.0166935 0.145448i
\(283\) −3.79010 + 0.668296i −0.225298 + 0.0397261i −0.285157 0.958481i \(-0.592046\pi\)
0.0598595 + 0.998207i \(0.480935\pi\)
\(284\) 1.00381 0.176998i 0.0595649 0.0105029i
\(285\) −5.69040 49.5794i −0.337070 2.93683i
\(286\) −0.0451541 0.124060i −0.00267002 0.00733581i
\(287\) −1.20943 + 0.428817i −0.0713903 + 0.0253123i
\(288\) −4.24822 6.51806i −0.250329 0.384080i
\(289\) −3.28159 −0.193035
\(290\) 2.56631 + 2.15339i 0.150699 + 0.126451i
\(291\) −16.8258 + 4.99917i −0.986346 + 0.293057i
\(292\) 15.1968 2.67960i 0.889323 0.156812i
\(293\) −1.89493 10.7467i −0.110703 0.627828i −0.988788 0.149324i \(-0.952290\pi\)
0.878085 0.478504i \(-0.158821\pi\)
\(294\) −2.20370 + 1.57726i −0.128523 + 0.0919877i
\(295\) 20.7162 + 17.3829i 1.20614 + 1.01207i
\(296\) −3.19219 + 1.84301i −0.185542 + 0.107123i
\(297\) −1.03502 + 2.78937i −0.0600581 + 0.161856i
\(298\) 1.27780 2.21321i 0.0740209 0.128208i
\(299\) −0.665294 + 3.77307i −0.0384749 + 0.218202i
\(300\) −1.37332 + 22.7625i −0.0792886 + 1.31419i
\(301\) 15.9636 + 0.133027i 0.920124 + 0.00766756i
\(302\) 1.39932 3.84459i 0.0805216 0.221231i
\(303\) −18.8097 + 19.8542i −1.08059 + 1.14059i
\(304\) −20.0044 + 23.8403i −1.14733 + 1.36733i
\(305\) 13.1434 7.58833i 0.752588 0.434507i
\(306\) −2.37628 0.722206i −0.135843 0.0412858i
\(307\) −18.4024 + 10.6246i −1.05028 + 0.606378i −0.922727 0.385454i \(-0.874045\pi\)
−0.127551 + 0.991832i \(0.540712\pi\)
\(308\) −1.87995 2.27873i −0.107120 0.129843i
\(309\) −0.819911 7.14373i −0.0466431 0.406393i
\(310\) 1.35954 + 0.494831i 0.0772165 + 0.0281045i
\(311\) −3.47779 19.7235i −0.197207 1.11842i −0.909240 0.416273i \(-0.863336\pi\)
0.712032 0.702147i \(-0.247775\pi\)
\(312\) 1.56722 0.179875i 0.0887264 0.0101834i
\(313\) −13.8341 + 16.4868i −0.781949 + 0.931890i −0.999020 0.0442656i \(-0.985905\pi\)
0.217071 + 0.976156i \(0.430350\pi\)
\(314\) −0.431577 0.747513i −0.0243553 0.0421846i
\(315\) −8.12885 + 25.9667i −0.458009 + 1.46306i
\(316\) 9.28219 16.0772i 0.522164 0.904414i
\(317\) 3.18437 + 8.74899i 0.178852 + 0.491392i 0.996430 0.0844263i \(-0.0269058\pi\)
−0.817578 + 0.575818i \(0.804684\pi\)
\(318\) −3.34187 + 3.52743i −0.187403 + 0.197809i
\(319\) −1.91773 + 1.60917i −0.107372 + 0.0900959i
\(320\) 17.9249 15.0407i 1.00203 0.840803i
\(321\) −1.98882 3.98071i −0.111005 0.222182i
\(322\) −0.363355 2.16609i −0.0202490 0.120711i
\(323\) 31.1305i 1.73215i
\(324\) −14.5823 9.76585i −0.810128 0.542547i
\(325\) −6.03165 3.48237i −0.334576 0.193167i
\(326\) −0.444789 1.22205i −0.0246346 0.0676829i
\(327\) 0.685695 + 0.453036i 0.0379190 + 0.0250530i
\(328\) −0.421704 + 0.0743578i −0.0232847 + 0.00410572i
\(329\) 16.8011 + 0.140006i 0.926272 + 0.00771879i
\(330\) 0.739046 + 0.176783i 0.0406832 + 0.00973158i
\(331\) 13.1635 4.79114i 0.723534 0.263345i 0.0461086 0.998936i \(-0.485318\pi\)
0.677425 + 0.735592i \(0.263096\pi\)
\(332\) 16.2721 + 28.1841i 0.893047 + 1.54680i
\(333\) −7.52102 + 10.0152i −0.412149 + 0.548827i
\(334\) 3.10681 + 1.79372i 0.169997 + 0.0981480i
\(335\) 31.0593 11.3047i 1.69695 0.617639i
\(336\) 15.2417 7.45693i 0.831504 0.406809i
\(337\) −7.66325 + 6.43023i −0.417444 + 0.350277i −0.827190 0.561923i \(-0.810062\pi\)
0.409746 + 0.912200i \(0.365617\pi\)
\(338\) 0.912462 2.50697i 0.0496314 0.136361i
\(339\) −26.5018 11.4973i −1.43938 0.624445i
\(340\) 4.29946 24.3834i 0.233171 1.32238i
\(341\) −0.540572 + 0.936297i −0.0292736 + 0.0507033i
\(342\) 1.63887 5.39238i 0.0886197 0.291586i
\(343\) −8.85632 16.2655i −0.478196 0.878253i
\(344\) 5.24636 + 0.925075i 0.282865 + 0.0498767i
\(345\) −16.0087 15.1665i −0.861877 0.816537i
\(346\) 1.27665 + 1.52145i 0.0686332 + 0.0817938i
\(347\) 3.40057 9.34298i 0.182552 0.501558i −0.814336 0.580394i \(-0.802898\pi\)
0.996888 + 0.0788368i \(0.0251206\pi\)
\(348\) −6.60007 13.2103i −0.353801 0.708148i
\(349\) 14.2950 17.0361i 0.765192 0.911920i −0.232973 0.972483i \(-0.574845\pi\)
0.998164 + 0.0605633i \(0.0192897\pi\)
\(350\) 3.92610 + 0.726061i 0.209859 + 0.0388096i
\(351\) 4.65873 2.65106i 0.248664 0.141503i
\(352\) −0.742470 1.28600i −0.0395738 0.0685438i
\(353\) −0.983396 + 0.357927i −0.0523409 + 0.0190505i −0.368058 0.929803i \(-0.619977\pi\)
0.315717 + 0.948853i \(0.397755\pi\)
\(354\) 1.36497 + 2.73205i 0.0725476 + 0.145207i
\(355\) −1.15178 1.37264i −0.0611302 0.0728521i
\(356\) −21.7923 7.93175i −1.15499 0.420382i
\(357\) 6.88465 15.5141i 0.364375 0.821095i
\(358\) −0.709670 + 4.02474i −0.0375072 + 0.212714i
\(359\) 0.361634i 0.0190863i −0.999954 0.00954315i \(-0.996962\pi\)
0.999954 0.00954315i \(-0.00303772\pi\)
\(360\) −4.10879 + 8.09705i −0.216552 + 0.426752i
\(361\) −51.6428 −2.71804
\(362\) 0.278987 + 0.234098i 0.0146632 + 0.0123039i
\(363\) 7.35674 16.9577i 0.386129 0.890047i
\(364\) −0.0443495 + 5.32203i −0.00232454 + 0.278950i
\(365\) −17.4370 20.7806i −0.912694 1.08771i
\(366\) 1.70277 0.195433i 0.0890054 0.0102155i
\(367\) 31.0458 + 5.47421i 1.62058 + 0.285751i 0.908981 0.416838i \(-0.136862\pi\)
0.711595 + 0.702590i \(0.247973\pi\)
\(368\) 13.7520i 0.716873i
\(369\) −1.21896 + 0.794473i −0.0634566 + 0.0413586i
\(370\) 2.77036 + 1.59947i 0.144024 + 0.0831523i
\(371\) −21.1326 25.6153i −1.09715 1.32988i
\(372\) −4.62972 4.38616i −0.240040 0.227412i
\(373\) −2.78601 15.8002i −0.144254 0.818106i −0.967963 0.251093i \(-0.919210\pi\)
0.823709 0.567013i \(-0.191901\pi\)
\(374\) −0.445434 0.162125i −0.0230328 0.00838326i
\(375\) 9.30357 4.64820i 0.480434 0.240032i
\(376\) 5.52160 + 0.973607i 0.284755 + 0.0502100i
\(377\) 4.51022 0.232288
\(378\) −2.00929 + 2.32489i −0.103347 + 0.119579i
\(379\) 19.2286 0.987705 0.493852 0.869546i \(-0.335588\pi\)
0.493852 + 0.869546i \(0.335588\pi\)
\(380\) 55.3321 + 9.75654i 2.83848 + 0.500500i
\(381\) 8.32743 + 5.50191i 0.426627 + 0.281871i
\(382\) 1.19199 + 0.433849i 0.0609875 + 0.0221976i
\(383\) 4.56911 + 25.9127i 0.233471 + 1.32408i 0.845810 + 0.533484i \(0.179118\pi\)
−0.612339 + 0.790595i \(0.709771\pi\)
\(384\) 11.1449 3.31130i 0.568737 0.168979i
\(385\) −1.81677 + 4.86502i −0.0925913 + 0.247944i
\(386\) −1.37248 0.792403i −0.0698575 0.0403323i
\(387\) 17.6309 4.10115i 0.896229 0.208473i
\(388\) 19.7619i 1.00326i
\(389\) −1.59220 0.280748i −0.0807278 0.0142345i 0.133138 0.991097i \(-0.457495\pi\)
−0.213866 + 0.976863i \(0.568606\pi\)
\(390\) −0.815250 1.09984i −0.0412818 0.0556928i
\(391\) 8.84225 + 10.5378i 0.447172 + 0.532918i
\(392\) −2.01671 5.84200i −0.101859 0.295065i
\(393\) 15.3268 + 20.6772i 0.773134 + 1.04303i
\(394\) −0.680240 0.570789i −0.0342700 0.0287559i
\(395\) −32.6351 −1.64205
\(396\) −2.67849 2.01145i −0.134599 0.101079i
\(397\) 2.97650i 0.149386i −0.997207 0.0746932i \(-0.976202\pi\)
0.997207 0.0746932i \(-0.0237978\pi\)
\(398\) −0.738855 + 4.19025i −0.0370354 + 0.210038i
\(399\) 35.2054 + 15.6230i 1.76248 + 0.782128i
\(400\) −23.4917 8.55027i −1.17458 0.427514i
\(401\) −4.05799 4.83612i −0.202646 0.241505i 0.655144 0.755504i \(-0.272608\pi\)
−0.857791 + 0.513999i \(0.828163\pi\)
\(402\) 3.72596 + 0.224796i 0.185834 + 0.0112118i
\(403\) 1.83035 0.666192i 0.0911760 0.0331854i
\(404\) −15.3958 26.6663i −0.765968 1.32670i
\(405\) −2.05032 + 30.7843i −0.101881 + 1.52968i
\(406\) −2.43692 + 0.864040i −0.120942 + 0.0428816i
\(407\) −1.53656 + 1.83121i −0.0761647 + 0.0907695i
\(408\) 3.12227 4.72572i 0.154575 0.233958i
\(409\) −4.42973 + 12.1706i −0.219036 + 0.601796i −0.999733 0.0231135i \(-0.992642\pi\)
0.780697 + 0.624910i \(0.214864\pi\)
\(410\) 0.238875 + 0.284680i 0.0117972 + 0.0140593i
\(411\) 8.42364 2.50278i 0.415507 0.123453i
\(412\) 7.97262 + 1.40579i 0.392783 + 0.0692582i
\(413\) −19.6717 + 6.97484i −0.967982 + 0.343209i
\(414\) −0.976879 2.29084i −0.0480110 0.112589i
\(415\) 28.6054 49.5460i 1.40418 2.43212i
\(416\) −0.464562 + 2.63466i −0.0227770 + 0.129175i
\(417\) 1.90643 + 16.6104i 0.0933584 + 0.813414i
\(418\) 0.367901 1.01080i 0.0179946 0.0494398i
\(419\) −9.08276 + 7.62134i −0.443722 + 0.372327i −0.837100 0.547050i \(-0.815751\pi\)
0.393378 + 0.919377i \(0.371306\pi\)
\(420\) −25.4175 17.0992i −1.24025 0.834356i
\(421\) 9.85568 3.58717i 0.480337 0.174828i −0.0904925 0.995897i \(-0.528844\pi\)
0.570829 + 0.821069i \(0.306622\pi\)
\(422\) 0.599107 + 0.345895i 0.0291641 + 0.0168379i
\(423\) 18.5559 4.31630i 0.902217 0.209866i
\(424\) −5.54073 9.59683i −0.269082 0.466063i
\(425\) −23.4986 + 8.55281i −1.13985 + 0.414872i
\(426\) −0.0576338 0.193979i −0.00279237 0.00939832i
\(427\) −0.0976052 + 11.7128i −0.00472345 + 0.566824i
\(428\) 4.93382 0.869966i 0.238485 0.0420514i
\(429\) 0.915184 0.457239i 0.0441855 0.0220757i
\(430\) −1.58127 4.34449i −0.0762554 0.209510i
\(431\) −10.8779 6.28037i −0.523971 0.302515i 0.214587 0.976705i \(-0.431159\pi\)
−0.738558 + 0.674190i \(0.764493\pi\)
\(432\) 14.8156 12.2749i 0.712818 0.590578i
\(433\) 2.84286i 0.136619i −0.997664 0.0683097i \(-0.978239\pi\)
0.997664 0.0683097i \(-0.0217606\pi\)
\(434\) −0.861333 + 0.710598i −0.0413453 + 0.0341098i
\(435\) −14.3104 + 21.6596i −0.686132 + 1.03850i
\(436\) −0.708800 + 0.594754i −0.0339454 + 0.0284835i
\(437\) −23.9128 + 20.0653i −1.14391 + 0.959852i
\(438\) −0.872527 2.93668i −0.0416909 0.140320i
\(439\) 0.0910994 + 0.250294i 0.00434794 + 0.0119459i 0.941848 0.336040i \(-0.109088\pi\)
−0.937500 + 0.347986i \(0.886866\pi\)
\(440\) −0.866493 + 1.50081i −0.0413084 + 0.0715483i
\(441\) −14.0898 15.5717i −0.670943 0.741509i
\(442\) 0.427004 + 0.739592i 0.0203105 + 0.0351788i
\(443\) −22.8541 + 27.2364i −1.08583 + 1.29404i −0.132809 + 0.991142i \(0.542400\pi\)
−0.953022 + 0.302901i \(0.902045\pi\)
\(444\) −8.39700 11.3283i −0.398504 0.537617i
\(445\) 7.07932 + 40.1488i 0.335592 + 1.90324i
\(446\) 3.28086 + 1.19414i 0.155353 + 0.0565439i
\(447\) 18.1676 + 7.88164i 0.859298 + 0.372789i
\(448\) 2.98767 + 17.8105i 0.141154 + 0.841469i
\(449\) 25.2684 14.5887i 1.19249 0.688483i 0.233618 0.972328i \(-0.424943\pi\)
0.958870 + 0.283845i \(0.0916101\pi\)
\(450\) 4.52066 0.244417i 0.213106 0.0115219i
\(451\) −0.240498 + 0.138852i −0.0113246 + 0.00653827i
\(452\) 20.9060 24.9149i 0.983338 1.17190i
\(453\) 30.8342 + 7.37567i 1.44872 + 0.346539i
\(454\) 0.496941 1.36533i 0.0233226 0.0640783i
\(455\) 8.14136 4.61039i 0.381673 0.216139i
\(456\) 10.7238 + 7.08520i 0.502189 + 0.331795i
\(457\) 0.498786 2.82876i 0.0233322 0.132324i −0.970917 0.239418i \(-0.923043\pi\)
0.994249 + 0.107094i \(0.0341546\pi\)
\(458\) 0.871597 1.50965i 0.0407271 0.0705413i
\(459\) 3.46028 18.9321i 0.161512 0.883674i
\(460\) 21.5013 12.4138i 1.00251 0.578797i
\(461\) −6.62406 5.55824i −0.308513 0.258873i 0.475364 0.879789i \(-0.342316\pi\)
−0.783877 + 0.620916i \(0.786761\pi\)
\(462\) −0.406890 + 0.422377i −0.0189302 + 0.0196508i
\(463\) −5.41640 30.7179i −0.251721 1.42758i −0.804350 0.594155i \(-0.797487\pi\)
0.552629 0.833427i \(-0.313625\pi\)
\(464\) 15.9431 2.81119i 0.740138 0.130506i
\(465\) −2.60821 + 10.9037i −0.120953 + 0.505647i
\(466\) −3.21379 2.69669i −0.148876 0.124922i
\(467\) −24.9065 −1.15253 −0.576267 0.817261i \(-0.695491\pi\)
−0.576267 + 0.817261i \(0.695491\pi\)
\(468\) 1.36727 + 5.87790i 0.0632019 + 0.271706i
\(469\) −4.63891 + 25.0844i −0.214205 + 1.15829i
\(470\) −1.66422 4.57242i −0.0767649 0.210910i
\(471\) 5.37343 3.98301i 0.247595 0.183528i
\(472\) −6.85914 + 1.20945i −0.315718 + 0.0556695i
\(473\) 3.40238 0.599932i 0.156442 0.0275849i
\(474\) −3.38112 1.46683i −0.155300 0.0673737i
\(475\) −19.4085 53.3243i −0.890521 2.44669i
\(476\) 14.5357 + 12.4048i 0.666243 + 0.568572i
\(477\) −30.1090 22.6108i −1.37860 1.03528i
\(478\) 4.32106 0.197641
\(479\) 17.9386 + 15.0523i 0.819635 + 0.687756i 0.952887 0.303327i \(-0.0980973\pi\)
−0.133251 + 0.991082i \(0.542542\pi\)
\(480\) −11.1785 10.5905i −0.510228 0.483386i
\(481\) 4.24130 0.747856i 0.193387 0.0340993i
\(482\) −0.811222 4.60067i −0.0369502 0.209555i
\(483\) 16.3547 4.71124i 0.744164 0.214369i
\(484\) 15.9422 + 13.3771i 0.724648 + 0.608052i
\(485\) −30.0859 + 17.3701i −1.36613 + 0.788737i
\(486\) −1.59606 + 3.09722i −0.0723990 + 0.140493i
\(487\) 7.63610 13.2261i 0.346025 0.599333i −0.639515 0.768779i \(-0.720865\pi\)
0.985539 + 0.169446i \(0.0541980\pi\)
\(488\) −0.678750 + 3.84938i −0.0307256 + 0.174253i
\(489\) 9.01498 4.50402i 0.407672 0.203679i
\(490\) −3.51564 + 4.05072i −0.158821 + 0.182993i
\(491\) 8.86288 24.3506i 0.399976 1.09893i −0.562320 0.826920i \(-0.690091\pi\)
0.962296 0.272005i \(-0.0876869\pi\)
\(492\) −0.466554 1.57029i −0.0210339 0.0707941i
\(493\) 10.4092 12.4052i 0.468806 0.558701i
\(494\) −1.67832 + 0.968977i −0.0755111 + 0.0435964i
\(495\) −0.707959 + 5.84579i −0.0318204 + 0.262749i
\(496\) 6.05482 3.49575i 0.271869 0.156964i
\(497\) 1.36388 0.228788i 0.0611786 0.0102625i
\(498\) 5.19054 3.84744i 0.232594 0.172408i
\(499\) −5.27779 1.92096i −0.236266 0.0859939i 0.221174 0.975234i \(-0.429011\pi\)
−0.457440 + 0.889241i \(0.651233\pi\)
\(500\) 2.03325 + 11.5311i 0.0909297 + 0.515688i
\(501\) −11.0639 + 25.5029i −0.494299 + 1.13939i
\(502\) −2.55817 + 3.04871i −0.114177 + 0.136070i
\(503\) −12.0053 20.7938i −0.535291 0.927151i −0.999149 0.0412418i \(-0.986869\pi\)
0.463858 0.885909i \(-0.346465\pi\)
\(504\) −3.77738 5.90259i −0.168258 0.262922i
\(505\) −27.0649 + 46.8777i −1.20437 + 2.08603i
\(506\) −0.162570 0.446657i −0.00722712 0.0198563i
\(507\) 20.1063 + 4.80951i 0.892951 + 0.213598i
\(508\) −8.60803 + 7.22300i −0.381920 + 0.320469i
\(509\) −0.229469 + 0.192548i −0.0101711 + 0.00853452i −0.647859 0.761760i \(-0.724335\pi\)
0.637688 + 0.770295i \(0.279891\pi\)
\(510\) −4.90661 0.296027i −0.217268 0.0131083i
\(511\) 20.6480 3.46365i 0.913416 0.153223i
\(512\) 16.1410i 0.713340i
\(513\) 42.9616 + 7.85225i 1.89680 + 0.346685i
\(514\) 3.70418 + 2.13861i 0.163384 + 0.0943300i
\(515\) −4.86750 13.3733i −0.214488 0.589300i
\(516\) −1.22733 + 20.3428i −0.0540303 + 0.895542i
\(517\) 3.58088 0.631406i 0.157487 0.0277692i
\(518\) −2.14836 + 1.21660i −0.0943933 + 0.0534542i
\(519\) −10.5850 + 11.1727i −0.464628 + 0.490427i
\(520\) 2.93390 1.06785i 0.128660 0.0468284i
\(521\) −8.16132 14.1358i −0.357554 0.619302i 0.629998 0.776597i \(-0.283056\pi\)
−0.987552 + 0.157295i \(0.949723\pi\)
\(522\) −2.45613 + 1.60081i −0.107502 + 0.0700658i
\(523\) 8.49648 + 4.90545i 0.371525 + 0.214500i 0.674125 0.738618i \(-0.264521\pi\)
−0.302599 + 0.953118i \(0.597854\pi\)
\(524\) −27.2300 + 9.91090i −1.18955 + 0.432960i
\(525\) −2.12056 + 30.8669i −0.0925487 + 1.34714i
\(526\) −1.29988 + 1.09073i −0.0566773 + 0.0475579i
\(527\) 2.39194 6.57181i 0.104195 0.286273i
\(528\) 2.95007 2.18671i 0.128385 0.0951645i
\(529\) 1.59863 9.06626i 0.0695055 0.394185i
\(530\) −4.80854 + 8.32864i −0.208870 + 0.361773i
\(531\) −19.8268 + 12.9224i −0.860410 + 0.560782i
\(532\) −28.1495 + 32.9851i −1.22044 + 1.43009i
\(533\) 0.492716 + 0.0868791i 0.0213419 + 0.00376315i
\(534\) −1.07110 + 4.47776i −0.0463510 + 0.193772i
\(535\) −5.66114 6.74668i −0.244752 0.291685i
\(536\) −2.91152 + 7.99934i −0.125759 + 0.345519i
\(537\) −31.6117 1.90721i −1.36415 0.0823023i
\(538\) 3.67618 4.38110i 0.158491 0.188883i
\(539\) −2.52480 3.11286i −0.108751 0.134080i
\(540\) −32.5659 12.0839i −1.40141 0.520006i
\(541\) 7.28065 + 12.6105i 0.313019 + 0.542166i 0.979015 0.203791i \(-0.0653262\pi\)
−0.665995 + 0.745956i \(0.731993\pi\)
\(542\) −2.57764 + 0.938186i −0.110719 + 0.0402985i
\(543\) −1.55570 + 2.35464i −0.0667616 + 0.101047i
\(544\) 6.17437 + 7.35832i 0.264724 + 0.315486i
\(545\) 1.52848 + 0.556322i 0.0654729 + 0.0238302i
\(546\) 1.05070 0.111730i 0.0449657 0.00478159i
\(547\) 4.82647 27.3723i 0.206365 1.17035i −0.688912 0.724845i \(-0.741912\pi\)
0.895277 0.445509i \(-0.146977\pi\)
\(548\) 9.89355i 0.422632i
\(549\) 3.00911 + 12.9362i 0.128426 + 0.552104i
\(550\) 0.864073 0.0368442
\(551\) 28.1504 + 23.6210i 1.19925 + 1.00629i
\(552\) 5.64252 0.647612i 0.240162 0.0275642i
\(553\) 12.7751 21.7074i 0.543252 0.923090i
\(554\) 2.31487 + 2.75876i 0.0983496 + 0.117208i
\(555\) −9.86572 + 22.7410i −0.418777 + 0.965303i
\(556\) −18.5377 3.26870i −0.786174 0.138624i
\(557\) 1.80913i 0.0766554i −0.999265 0.0383277i \(-0.987797\pi\)
0.999265 0.0383277i \(-0.0122031\pi\)
\(558\) −0.760302 + 1.01244i −0.0321862 + 0.0428598i
\(559\) −5.39047 3.11219i −0.227993 0.131632i
\(560\) 25.9051 21.3716i 1.09469 0.903117i
\(561\) 0.854544 3.57245i 0.0360789 0.150829i
\(562\) 0.406288 + 2.30417i 0.0171382 + 0.0971957i
\(563\) −3.11242 1.13283i −0.131173 0.0477430i 0.275600 0.961273i \(-0.411124\pi\)
−0.406773 + 0.913529i \(0.633346\pi\)
\(564\) −1.29172 + 21.4101i −0.0543913 + 0.901526i
\(565\) −56.3067 9.92840i −2.36884 0.417691i
\(566\) −0.860218 −0.0361576
\(567\) −19.6737 13.4144i −0.826217 0.563351i
\(568\) 0.461493 0.0193638
\(569\) −10.6572 1.87916i −0.446774 0.0787784i −0.0542654 0.998527i \(-0.517282\pi\)
−0.392509 + 0.919748i \(0.628393\pi\)
\(570\) 0.671760 11.1343i 0.0281369 0.466365i
\(571\) 21.9958 + 8.00582i 0.920496 + 0.335033i 0.758436 0.651748i \(-0.225964\pi\)
0.162060 + 0.986781i \(0.448186\pi\)
\(572\) 0.200009 + 1.13431i 0.00836280 + 0.0474278i
\(573\) −2.28678 + 9.55995i −0.0955316 + 0.399373i
\(574\) −0.282864 + 0.0474497i −0.0118065 + 0.00198051i
\(575\) −21.7160 12.5377i −0.905618 0.522859i
\(576\) 8.03233 + 18.8363i 0.334681 + 0.784846i
\(577\) 39.9309i 1.66234i −0.556015 0.831172i \(-0.687670\pi\)
0.556015 0.831172i \(-0.312330\pi\)
\(578\) −0.722346 0.127369i −0.0300456 0.00529785i
\(579\) 4.88765 11.2663i 0.203124 0.468211i
\(580\) −18.7870 22.3894i −0.780086 0.929670i
\(581\) 21.7580 + 38.4219i 0.902675 + 1.59401i
\(582\) −3.89774 + 0.447358i −0.161567 + 0.0185436i
\(583\) −5.50523 4.61944i −0.228003 0.191318i
\(584\) 6.98662 0.289108
\(585\) 7.74686 7.24806i 0.320293 0.299670i
\(586\) 2.43912i 0.100759i
\(587\) −6.40324 + 36.3146i −0.264290 + 1.49886i 0.506760 + 0.862087i \(0.330843\pi\)
−0.771050 + 0.636775i \(0.780268\pi\)
\(588\) 21.3233 10.2130i 0.879360 0.421177i
\(589\) 14.9131 + 5.42792i 0.614483 + 0.223653i
\(590\) 3.88537 + 4.63040i 0.159958 + 0.190631i
\(591\) 3.79320 5.74121i 0.156031 0.236162i
\(592\) 14.5263 5.28716i 0.597029 0.217301i
\(593\) −5.87281 10.1720i −0.241167 0.417714i 0.719880 0.694099i \(-0.244197\pi\)
−0.961047 + 0.276385i \(0.910864\pi\)
\(594\) −0.336095 + 0.573827i −0.0137901 + 0.0235444i
\(595\) 6.10884 33.0329i 0.250438 1.35422i
\(596\) −14.3316 + 17.0797i −0.587045 + 0.699613i
\(597\) −32.9117 1.98565i −1.34699 0.0812671i
\(598\) −0.292890 + 0.804709i −0.0119772 + 0.0329070i
\(599\) −6.84754 8.16058i −0.279783 0.333432i 0.607792 0.794097i \(-0.292056\pi\)
−0.887574 + 0.460664i \(0.847611\pi\)
\(600\) −2.40195 + 10.0414i −0.0980590 + 0.409939i
\(601\) −22.3746 3.94524i −0.912678 0.160930i −0.302459 0.953162i \(-0.597808\pi\)
−0.610219 + 0.792233i \(0.708919\pi\)
\(602\) 3.50875 + 0.648879i 0.143006 + 0.0264463i
\(603\) 1.56162 + 28.8832i 0.0635940 + 1.17621i
\(604\) −17.8471 + 30.9121i −0.726189 + 1.25780i
\(605\) 6.35288 36.0289i 0.258281 1.46478i
\(606\) −4.91101 + 3.64025i −0.199496 + 0.147875i
\(607\) 7.42432 20.3981i 0.301344 0.827935i −0.692924 0.721011i \(-0.743678\pi\)
0.994267 0.106924i \(-0.0341001\pi\)
\(608\) −16.6979 + 14.0112i −0.677188 + 0.568228i
\(609\) −8.80510 17.9973i −0.356801 0.729289i
\(610\) 3.18766 1.16021i 0.129064 0.0469756i
\(611\) −5.67327 3.27546i −0.229516 0.132511i
\(612\) 19.3225 + 9.80507i 0.781065 + 0.396346i
\(613\) 3.87628 + 6.71392i 0.156562 + 0.271173i 0.933627 0.358248i \(-0.116626\pi\)
−0.777065 + 0.629420i \(0.783292\pi\)
\(614\) −4.46312 + 1.62444i −0.180117 + 0.0655571i
\(615\) −1.98056 + 2.09053i −0.0798637 + 0.0842983i
\(616\) −0.659078 1.16385i −0.0265550 0.0468927i
\(617\) −26.9142 + 4.74570i −1.08352 + 0.191055i −0.686773 0.726872i \(-0.740974\pi\)
−0.396751 + 0.917926i \(0.629862\pi\)
\(618\) 0.0967917 1.60431i 0.00389353 0.0645347i
\(619\) 7.51496 + 20.6472i 0.302052 + 0.829880i 0.994143 + 0.108070i \(0.0344672\pi\)
−0.692092 + 0.721810i \(0.743311\pi\)
\(620\) −10.9312 6.31116i −0.439009 0.253462i
\(621\) 16.7730 9.54472i 0.673077 0.383016i
\(622\) 4.47654i 0.179493i
\(623\) −29.4764 11.0075i −1.18095 0.441008i
\(624\) −6.60381 0.398424i −0.264364 0.0159497i
\(625\) −10.0919 + 8.46815i −0.403678 + 0.338726i
\(626\) −3.68508 + 3.09215i −0.147285 + 0.123587i
\(627\) 8.10677 + 1.93917i 0.323753 + 0.0774431i
\(628\) 2.57557 + 7.07633i 0.102777 + 0.282376i
\(629\) 7.73160 13.3915i 0.308279 0.533955i
\(630\) −2.79718 + 5.40031i −0.111442 + 0.215153i
\(631\) 1.06343 + 1.84192i 0.0423346 + 0.0733256i 0.886416 0.462889i \(-0.153187\pi\)
−0.844082 + 0.536215i \(0.819854\pi\)
\(632\) 5.40276 6.43875i 0.214910 0.256120i
\(633\) −2.13352 + 4.91789i −0.0847999 + 0.195468i
\(634\) 0.361370 + 2.04943i 0.0143518 + 0.0813932i
\(635\) 18.5627 + 6.75625i 0.736637 + 0.268114i
\(636\) 34.0567 25.2443i 1.35044 1.00100i
\(637\) −0.120340 + 7.22001i −0.00476803 + 0.286067i
\(638\) −0.484589 + 0.279777i −0.0191851 + 0.0110765i
\(639\) 1.44243 0.615095i 0.0570618 0.0243328i
\(640\) 19.9280 11.5055i 0.787725 0.454793i
\(641\) −12.7840 + 15.2354i −0.504938 + 0.601762i −0.956951 0.290250i \(-0.906262\pi\)
0.452013 + 0.892011i \(0.350706\pi\)
\(642\) −0.283277 0.953430i −0.0111800 0.0376289i
\(643\) 5.26568 14.4673i 0.207658 0.570536i −0.791517 0.611147i \(-0.790708\pi\)
0.999175 + 0.0406114i \(0.0129306\pi\)
\(644\) −0.159673 + 19.1611i −0.00629200 + 0.755054i
\(645\) 32.0491 16.0122i 1.26193 0.630481i
\(646\) −1.20827 + 6.85247i −0.0475389 + 0.269607i
\(647\) 4.32630 7.49338i 0.170084 0.294595i −0.768365 0.640012i \(-0.778929\pi\)
0.938449 + 0.345417i \(0.112263\pi\)
\(648\) −5.73417 5.50088i −0.225260 0.216095i
\(649\) −3.91177 + 2.25846i −0.153551 + 0.0886525i
\(650\) −1.19253 1.00065i −0.0467748 0.0392487i
\(651\) −6.23164 6.00314i −0.244237 0.235282i
\(652\) 1.97018 + 11.1735i 0.0771583 + 0.437586i
\(653\) −7.99326 + 1.40943i −0.312800 + 0.0551551i −0.327845 0.944732i \(-0.606322\pi\)
0.0150442 + 0.999887i \(0.495211\pi\)
\(654\) 0.133352 + 0.126337i 0.00521447 + 0.00494016i
\(655\) 39.0229 + 32.7441i 1.52475 + 1.27942i
\(656\) 1.79584 0.0701158
\(657\) 21.8372 9.31202i 0.851952 0.363296i
\(658\) 3.69283 + 0.682921i 0.143961 + 0.0266230i
\(659\) −9.97657 27.4104i −0.388632 1.06776i −0.967618 0.252420i \(-0.918774\pi\)
0.578986 0.815337i \(-0.303449\pi\)
\(660\) −6.08194 2.63852i −0.236739 0.102704i
\(661\) 19.2197 3.38895i 0.747559 0.131815i 0.213125 0.977025i \(-0.431636\pi\)
0.534434 + 0.845210i \(0.320525\pi\)
\(662\) 3.08353 0.543709i 0.119845 0.0211319i
\(663\) −5.31649 + 3.94081i −0.206476 + 0.153048i
\(664\) 5.03956 + 13.8461i 0.195573 + 0.537332i
\(665\) 74.9599 + 13.8625i 2.90682 + 0.537564i
\(666\) −2.04425 + 1.91263i −0.0792132 + 0.0741129i
\(667\) 16.2383 0.628749
\(668\) −23.9758 20.1181i −0.927650 0.778391i
\(669\) −6.29418 + 26.3130i −0.243347 + 1.01732i
\(670\) 7.27556 1.28288i 0.281079 0.0495619i
\(671\) 0.440184 + 2.49641i 0.0169931 + 0.0963728i
\(672\) 11.4202 3.28977i 0.440542 0.126906i
\(673\) −12.4902 10.4805i −0.481462 0.403995i 0.369492 0.929234i \(-0.379532\pi\)
−0.850955 + 0.525239i \(0.823976\pi\)
\(674\) −1.93642 + 1.11799i −0.0745881 + 0.0430634i
\(675\) 5.87608 + 34.5866i 0.226170 + 1.33124i
\(676\) −11.6377 + 20.1571i −0.447604 + 0.775273i
\(677\) 1.93545 10.9765i 0.0743854 0.421861i −0.924761 0.380549i \(-0.875735\pi\)
0.999146 0.0413120i \(-0.0131538\pi\)
\(678\) −5.38735 3.55940i −0.206900 0.136698i
\(679\) 0.223424 26.8114i 0.00857422 1.02893i
\(680\) 3.83409 10.5341i 0.147031 0.403964i
\(681\) 10.9502 + 2.61933i 0.419613 + 0.100373i
\(682\) −0.155332 + 0.185117i −0.00594796 + 0.00708850i
\(683\) 29.6313 17.1076i 1.13381 0.654606i 0.188920 0.981993i \(-0.439501\pi\)
0.944890 + 0.327387i \(0.106168\pi\)
\(684\) −22.2501 + 43.8475i −0.850755 + 1.67655i
\(685\) 15.0622 8.69614i 0.575496 0.332263i
\(686\) −1.31814 3.92411i −0.0503270 0.149823i
\(687\) 12.3923 + 5.37613i 0.472794 + 0.205112i
\(688\) −20.9945 7.64136i −0.800406 0.291324i
\(689\) 2.24831 + 12.7508i 0.0856538 + 0.485767i
\(690\) −2.93518 3.95981i −0.111740 0.150747i
\(691\) −22.4978 + 26.8118i −0.855856 + 1.01997i 0.143684 + 0.989624i \(0.454105\pi\)
−0.999539 + 0.0303456i \(0.990339\pi\)
\(692\) −8.66380 15.0062i −0.329348 0.570448i
\(693\) −3.61122 2.75925i −0.137179 0.104815i
\(694\) 1.11117 1.92460i 0.0421793 0.0730567i
\(695\) 11.3178 + 31.0953i 0.429307 + 1.17951i
\(696\) −1.90424 6.40913i −0.0721800 0.242938i
\(697\) 1.37610 1.15469i 0.0521236 0.0437369i
\(698\) 3.80784 3.19516i 0.144129 0.120939i
\(699\) 17.9209 27.1243i 0.677832 1.02593i
\(700\) −32.6324 12.1861i −1.23339 0.460592i
\(701\) 49.9356i 1.88604i 0.332736 + 0.943020i \(0.392028\pi\)
−0.332736 + 0.943020i \(0.607972\pi\)
\(702\) 1.12838 0.402734i 0.0425879 0.0152002i
\(703\) 30.3887 + 17.5449i 1.14613 + 0.661719i
\(704\) 1.33672 + 3.67262i 0.0503796 + 0.138417i
\(705\) 33.7305 16.8523i 1.27036 0.634693i
\(706\) −0.230358 + 0.0406184i −0.00866965 + 0.00152869i
\(707\) −20.5863 36.3527i −0.774227 1.36718i
\(708\) −7.58864 25.5412i −0.285199 0.959899i
\(709\) −32.4827 + 11.8227i −1.21991 + 0.444012i −0.870132 0.492819i \(-0.835966\pi\)
−0.349782 + 0.936831i \(0.613744\pi\)
\(710\) −0.200254 0.346851i −0.00751541 0.0130171i
\(711\) 8.30494 27.3258i 0.311460 1.02480i
\(712\) −9.09317 5.24994i −0.340781 0.196750i
\(713\) 6.58986 2.39851i 0.246792 0.0898251i
\(714\) 2.11761 3.14777i 0.0792495 0.117802i
\(715\) 1.55109 1.30152i 0.0580076 0.0486742i
\(716\) 12.1947 33.5047i 0.455738 1.25213i
\(717\) 3.81805 + 33.2659i 0.142588 + 1.24234i
\(718\) 0.0140362 0.0796031i 0.000523825 0.00297076i
\(719\) −3.18608 + 5.51846i −0.118821 + 0.205804i −0.919301 0.393556i \(-0.871245\pi\)
0.800480 + 0.599360i \(0.204578\pi\)
\(720\) 22.8665 30.4496i 0.852185 1.13479i
\(721\) 10.8007 + 1.99740i 0.402240 + 0.0743870i
\(722\) −11.3677 2.00442i −0.423060 0.0745970i
\(723\) 34.7017 10.3103i 1.29057 0.383446i
\(724\) −2.04235 2.43398i −0.0759035 0.0904583i
\(725\) −10.0961 + 27.7388i −0.374960 + 1.03019i
\(726\) 2.27755 3.44720i 0.0845279 0.127938i
\(727\) 1.07036 1.27560i 0.0396973 0.0473094i −0.745830 0.666136i \(-0.767947\pi\)
0.785528 + 0.618826i \(0.212392\pi\)
\(728\) −0.438197 + 2.36951i −0.0162407 + 0.0878198i
\(729\) −25.2544 9.55072i −0.935347 0.353730i
\(730\) −3.03168 5.25103i −0.112208 0.194349i
\(731\) −21.0007 + 7.64362i −0.776738 + 0.282710i
\(732\) −14.9260 0.900522i −0.551681 0.0332843i
\(733\) −18.5213 22.0728i −0.684098 0.815276i 0.306530 0.951861i \(-0.400832\pi\)
−0.990628 + 0.136584i \(0.956387\pi\)
\(734\) 6.62135 + 2.40997i 0.244398 + 0.0889537i
\(735\) −34.2911 23.4862i −1.26485 0.866302i
\(736\) −1.67258 + 9.48566i −0.0616521 + 0.349646i
\(737\) 5.52069i 0.203357i
\(738\) −0.299155 + 0.127568i −0.0110120 + 0.00469585i
\(739\) −6.33508 −0.233040 −0.116520 0.993188i \(-0.537174\pi\)
−0.116520 + 0.993188i \(0.537174\pi\)
\(740\) −21.3793 17.9393i −0.785918 0.659464i
\(741\) −8.94267 12.0644i −0.328517 0.443199i
\(742\) −3.65751 6.45869i −0.134271 0.237106i
\(743\) −29.0460 34.6157i −1.06560 1.26993i −0.961336 0.275377i \(-0.911197\pi\)
−0.104259 0.994550i \(-0.533247\pi\)
\(744\) −1.71946 2.31970i −0.0630384 0.0850443i
\(745\) 38.5996 + 6.80615i 1.41418 + 0.249358i
\(746\) 3.58610i 0.131296i
\(747\) 34.2061 + 36.5601i 1.25154 + 1.33766i
\(748\) 3.58148 + 2.06777i 0.130952 + 0.0756050i
\(749\) 6.70365 1.12452i 0.244946 0.0410890i
\(750\) 2.22832 0.662064i 0.0813668 0.0241752i
\(751\) −0.0285057 0.161664i −0.00104019 0.00589920i 0.984283 0.176597i \(-0.0565089\pi\)
−0.985323 + 0.170698i \(0.945398\pi\)
\(752\) −22.0959 8.04224i −0.805754 0.293270i
\(753\) −25.7310 17.0004i −0.937690 0.619529i
\(754\) 0.992792 + 0.175056i 0.0361554 + 0.00637517i
\(755\) 62.7484 2.28365
\(756\) 20.7856 16.9310i 0.755966 0.615776i
\(757\) −35.2242 −1.28025 −0.640123 0.768272i \(-0.721117\pi\)
−0.640123 + 0.768272i \(0.721117\pi\)
\(758\) 4.23260 + 0.746322i 0.153735 + 0.0271076i
\(759\) 3.29497 1.64622i 0.119600 0.0597539i
\(760\) 23.9045 + 8.70051i 0.867106 + 0.315601i
\(761\) 0.652342 + 3.69962i 0.0236474 + 0.134111i 0.994346 0.106190i \(-0.0338651\pi\)
−0.970699 + 0.240301i \(0.922754\pi\)
\(762\) 1.61949 + 1.53430i 0.0586681 + 0.0555818i
\(763\) −0.968367 + 0.798901i −0.0350573 + 0.0289222i
\(764\) −9.58411 5.53339i −0.346741 0.200191i
\(765\) −2.05645 38.0353i −0.0743510 1.37517i
\(766\) 5.88127i 0.212499i