Properties

Label 189.2.ba.a.38.1
Level $189$
Weight $2$
Character 189.38
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 38.1
Character \(\chi\) \(=\) 189.38
Dual form 189.2.ba.a.5.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.51634 - 0.443699i) q^{2} +(-1.35749 - 1.07574i) q^{3} +(4.25573 + 1.54896i) q^{4} +(-0.181827 - 1.03119i) q^{5} +(2.93860 + 3.30926i) q^{6} +(2.00134 + 1.73050i) q^{7} +(-5.59594 - 3.23082i) q^{8} +(0.685547 + 2.92062i) q^{9} +O(q^{10})\) \(q+(-2.51634 - 0.443699i) q^{2} +(-1.35749 - 1.07574i) q^{3} +(4.25573 + 1.54896i) q^{4} +(-0.181827 - 1.03119i) q^{5} +(2.93860 + 3.30926i) q^{6} +(2.00134 + 1.73050i) q^{7} +(-5.59594 - 3.23082i) q^{8} +(0.685547 + 2.92062i) q^{9} +2.67551i q^{10} +(4.05020 + 0.714160i) q^{11} +(-4.11082 - 6.68077i) q^{12} +(-2.92808 - 3.48955i) q^{13} +(-4.26824 - 5.24253i) q^{14} +(-0.862472 + 1.59543i) q^{15} +(5.70919 + 4.79058i) q^{16} +3.48283 q^{17} +(-0.429194 - 7.65346i) q^{18} -5.54678i q^{19} +(0.823468 - 4.67012i) q^{20} +(-0.855222 - 4.50207i) q^{21} +(-9.87483 - 3.59414i) q^{22} +(-3.90274 - 4.65110i) q^{23} +(4.12089 + 10.4056i) q^{24} +(3.66817 - 1.33510i) q^{25} +(5.81974 + 10.0801i) q^{26} +(2.21122 - 4.70218i) q^{27} +(5.83670 + 10.4645i) q^{28} +(-1.57154 + 1.87289i) q^{29} +(2.87817 - 3.63197i) q^{30} +(0.362555 - 0.996113i) q^{31} +(-3.93378 - 4.68810i) q^{32} +(-4.72985 - 5.32645i) q^{33} +(-8.76399 - 1.54533i) q^{34} +(1.42058 - 2.37842i) q^{35} +(-1.60642 + 13.4913i) q^{36} +(-1.64217 + 2.84431i) q^{37} +(-2.46110 + 13.9576i) q^{38} +(0.220968 + 7.88689i) q^{39} +(-2.31410 + 6.35794i) q^{40} +(-0.164894 + 0.138363i) q^{41} +(0.154470 + 11.7082i) q^{42} +(9.06382 - 3.29896i) q^{43} +(16.1304 + 9.31287i) q^{44} +(2.88707 - 1.23798i) q^{45} +(7.75694 + 13.4354i) q^{46} +(-0.827325 + 0.301122i) q^{47} +(-2.59671 - 12.6448i) q^{48} +(1.01074 + 6.92664i) q^{49} +(-9.82275 + 1.73202i) q^{50} +(-4.72790 - 3.74663i) q^{51} +(-7.05595 - 19.3861i) q^{52} +(-0.554487 - 0.320133i) q^{53} +(-7.65055 + 10.8512i) q^{54} -4.30639i q^{55} +(-5.60846 - 16.1497i) q^{56} +(-5.96692 + 7.52969i) q^{57} +(4.78554 - 4.01555i) q^{58} +(8.17327 - 6.85819i) q^{59} +(-6.14171 + 5.45379i) q^{60} +(-0.694890 - 1.90919i) q^{61} +(-1.35429 + 2.34570i) q^{62} +(-3.68212 + 7.03150i) q^{63} +(0.365832 + 0.633640i) q^{64} +(-3.06599 + 3.65391i) q^{65} +(9.53858 + 15.5018i) q^{66} +(-1.96092 - 11.1210i) q^{67} +(14.8220 + 5.39476i) q^{68} +(0.294521 + 10.5122i) q^{69} +(-4.62997 + 5.35461i) q^{70} +(9.48338 - 5.47523i) q^{71} +(5.59971 - 18.5585i) q^{72} +(-9.95399 + 5.74694i) q^{73} +(5.39427 - 6.42864i) q^{74} +(-6.41572 - 2.13362i) q^{75} +(8.59174 - 23.6056i) q^{76} +(6.86999 + 8.43815i) q^{77} +(2.94337 - 19.9442i) q^{78} +(-0.940970 + 5.33651i) q^{79} +(3.90192 - 6.75833i) q^{80} +(-8.06005 + 4.00444i) q^{81} +(0.476322 - 0.275005i) q^{82} +(7.87254 + 6.60584i) q^{83} +(3.33392 - 20.4843i) q^{84} +(-0.633272 - 3.59147i) q^{85} +(-24.2714 + 4.27971i) q^{86} +(4.14810 - 0.851849i) q^{87} +(-20.3574 - 17.0819i) q^{88} +4.37049 q^{89} +(-7.81415 + 1.83419i) q^{90} +(0.178574 - 12.0508i) q^{91} +(-9.40464 - 25.8390i) q^{92} +(-1.56373 + 0.962194i) q^{93} +(2.21544 - 0.390642i) q^{94} +(-5.71980 + 1.00856i) q^{95} +(0.296864 + 10.5958i) q^{96} +(3.53959 + 9.72494i) q^{97} +(0.529971 - 17.8783i) q^{98} +(0.690812 + 12.3187i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.51634 0.443699i −1.77932 0.313743i −0.815197 0.579184i \(-0.803371\pi\)
−0.964127 + 0.265441i \(0.914482\pi\)
\(3\) −1.35749 1.07574i −0.783746 0.621081i
\(4\) 4.25573 + 1.54896i 2.12787 + 0.774480i
\(5\) −0.181827 1.03119i −0.0813155 0.461163i −0.998091 0.0617604i \(-0.980329\pi\)
0.916775 0.399403i \(-0.130783\pi\)
\(6\) 2.93860 + 3.30926i 1.19968 + 1.35100i
\(7\) 2.00134 + 1.73050i 0.756436 + 0.654067i
\(8\) −5.59594 3.23082i −1.97846 1.14227i
\(9\) 0.685547 + 2.92062i 0.228516 + 0.973540i
\(10\) 2.67551i 0.846071i
\(11\) 4.05020 + 0.714160i 1.22118 + 0.215327i 0.746834 0.665010i \(-0.231573\pi\)
0.474348 + 0.880337i \(0.342684\pi\)
\(12\) −4.11082 6.68077i −1.18669 1.92857i
\(13\) −2.92808 3.48955i −0.812103 0.967827i 0.187793 0.982209i \(-0.439866\pi\)
−0.999897 + 0.0143818i \(0.995422\pi\)
\(14\) −4.26824 5.24253i −1.14074 1.40112i
\(15\) −0.862472 + 1.59543i −0.222689 + 0.411938i
\(16\) 5.70919 + 4.79058i 1.42730 + 1.19764i
\(17\) 3.48283 0.844710 0.422355 0.906431i \(-0.361204\pi\)
0.422355 + 0.906431i \(0.361204\pi\)
\(18\) −0.429194 7.65346i −0.101162 1.80394i
\(19\) 5.54678i 1.27252i −0.771475 0.636260i \(-0.780481\pi\)
0.771475 0.636260i \(-0.219519\pi\)
\(20\) 0.823468 4.67012i 0.184133 1.04427i
\(21\) −0.855222 4.50207i −0.186625 0.982431i
\(22\) −9.87483 3.59414i −2.10532 0.766274i
\(23\) −3.90274 4.65110i −0.813777 0.969822i 0.186142 0.982523i \(-0.440401\pi\)
−0.999919 + 0.0127010i \(0.995957\pi\)
\(24\) 4.12089 + 10.4056i 0.841172 + 2.12403i
\(25\) 3.66817 1.33510i 0.733633 0.267021i
\(26\) 5.81974 + 10.0801i 1.14135 + 1.97687i
\(27\) 2.21122 4.70218i 0.425550 0.904935i
\(28\) 5.83670 + 10.4645i 1.10303 + 1.97761i
\(29\) −1.57154 + 1.87289i −0.291828 + 0.347787i −0.891960 0.452114i \(-0.850670\pi\)
0.600132 + 0.799901i \(0.295115\pi\)
\(30\) 2.87817 3.63197i 0.525479 0.663105i
\(31\) 0.362555 0.996113i 0.0651169 0.178907i −0.902867 0.429920i \(-0.858542\pi\)
0.967984 + 0.251013i \(0.0807638\pi\)
\(32\) −3.93378 4.68810i −0.695401 0.828747i
\(33\) −4.72985 5.32645i −0.823361 0.927216i
\(34\) −8.76399 1.54533i −1.50301 0.265022i
\(35\) 1.42058 2.37842i 0.240122 0.402027i
\(36\) −1.60642 + 13.4913i −0.267737 + 2.24854i
\(37\) −1.64217 + 2.84431i −0.269970 + 0.467602i −0.968854 0.247633i \(-0.920347\pi\)
0.698884 + 0.715235i \(0.253681\pi\)
\(38\) −2.46110 + 13.9576i −0.399244 + 2.26422i
\(39\) 0.220968 + 7.88689i 0.0353832 + 1.26291i
\(40\) −2.31410 + 6.35794i −0.365892 + 1.00528i
\(41\) −0.164894 + 0.138363i −0.0257522 + 0.0216086i −0.655573 0.755132i \(-0.727573\pi\)
0.629821 + 0.776741i \(0.283128\pi\)
\(42\) 0.154470 + 11.7082i 0.0238352 + 1.80662i
\(43\) 9.06382 3.29896i 1.38222 0.503087i 0.459369 0.888246i \(-0.348076\pi\)
0.922850 + 0.385159i \(0.125853\pi\)
\(44\) 16.1304 + 9.31287i 2.43175 + 1.40397i
\(45\) 2.88707 1.23798i 0.430379 0.184547i
\(46\) 7.75694 + 13.4354i 1.14370 + 1.98094i
\(47\) −0.827325 + 0.301122i −0.120678 + 0.0439231i −0.401653 0.915792i \(-0.631564\pi\)
0.280975 + 0.959715i \(0.409342\pi\)
\(48\) −2.59671 12.6448i −0.374803 1.82512i
\(49\) 1.01074 + 6.92664i 0.144392 + 0.989521i
\(50\) −9.82275 + 1.73202i −1.38915 + 0.244944i
\(51\) −4.72790 3.74663i −0.662038 0.524634i
\(52\) −7.05595 19.3861i −0.978484 2.68836i
\(53\) −0.554487 0.320133i −0.0761647 0.0439737i 0.461434 0.887175i \(-0.347335\pi\)
−0.537599 + 0.843201i \(0.680668\pi\)
\(54\) −7.65055 + 10.8512i −1.04111 + 1.47666i
\(55\) 4.30639i 0.580674i
\(56\) −5.60846 16.1497i −0.749462 2.15810i
\(57\) −5.96692 + 7.52969i −0.790338 + 0.997332i
\(58\) 4.78554 4.01555i 0.628373 0.527267i
\(59\) 8.17327 6.85819i 1.06407 0.892860i 0.0695667 0.997577i \(-0.477838\pi\)
0.994502 + 0.104718i \(0.0333939\pi\)
\(60\) −6.14171 + 5.45379i −0.792891 + 0.704081i
\(61\) −0.694890 1.90919i −0.0889715 0.244447i 0.887224 0.461338i \(-0.152631\pi\)
−0.976196 + 0.216891i \(0.930408\pi\)
\(62\) −1.35429 + 2.34570i −0.171995 + 0.297904i
\(63\) −3.68212 + 7.03150i −0.463903 + 0.885886i
\(64\) 0.365832 + 0.633640i 0.0457290 + 0.0792050i
\(65\) −3.06599 + 3.65391i −0.380290 + 0.453212i
\(66\) 9.53858 + 15.5018i 1.17412 + 1.90814i
\(67\) −1.96092 11.1210i −0.239565 1.35864i −0.832783 0.553599i \(-0.813254\pi\)
0.593218 0.805042i \(-0.297857\pi\)
\(68\) 14.8220 + 5.39476i 1.79743 + 0.654211i
\(69\) 0.294521 + 10.5122i 0.0354562 + 1.26552i
\(70\) −4.62997 + 5.35461i −0.553387 + 0.639999i
\(71\) 9.48338 5.47523i 1.12547 0.649791i 0.182679 0.983173i \(-0.441523\pi\)
0.942792 + 0.333382i \(0.108190\pi\)
\(72\) 5.59971 18.5585i 0.659933 2.18714i
\(73\) −9.95399 + 5.74694i −1.16503 + 0.672628i −0.952504 0.304528i \(-0.901501\pi\)
−0.212523 + 0.977156i \(0.568168\pi\)
\(74\) 5.39427 6.42864i 0.627071 0.747315i
\(75\) −6.41572 2.13362i −0.740824 0.246370i
\(76\) 8.59174 23.6056i 0.985541 2.70775i
\(77\) 6.86999 + 8.43815i 0.782908 + 0.961617i
\(78\) 2.94337 19.9442i 0.333271 2.25823i
\(79\) −0.940970 + 5.33651i −0.105867 + 0.600404i 0.885003 + 0.465585i \(0.154156\pi\)
−0.990870 + 0.134818i \(0.956955\pi\)
\(80\) 3.90192 6.75833i 0.436248 0.755604i
\(81\) −8.06005 + 4.00444i −0.895561 + 0.444938i
\(82\) 0.476322 0.275005i 0.0526010 0.0303692i
\(83\) 7.87254 + 6.60584i 0.864123 + 0.725085i 0.962852 0.270029i \(-0.0870333\pi\)
−0.0987291 + 0.995114i \(0.531478\pi\)
\(84\) 3.33392 20.4843i 0.363761 2.23502i
\(85\) −0.633272 3.59147i −0.0686880 0.389549i
\(86\) −24.2714 + 4.27971i −2.61725 + 0.461493i
\(87\) 4.14810 0.851849i 0.444723 0.0913278i
\(88\) −20.3574 17.0819i −2.17010 1.82093i
\(89\) 4.37049 0.463272 0.231636 0.972803i \(-0.425592\pi\)
0.231636 + 0.972803i \(0.425592\pi\)
\(90\) −7.81415 + 1.83419i −0.823684 + 0.193340i
\(91\) 0.178574 12.0508i 0.0187196 1.26327i
\(92\) −9.40464 25.8390i −0.980501 2.69390i
\(93\) −1.56373 + 0.962194i −0.162151 + 0.0997749i
\(94\) 2.21544 0.390642i 0.228505 0.0402917i
\(95\) −5.71980 + 1.00856i −0.586839 + 0.103476i
\(96\) 0.296864 + 10.5958i 0.0302986 + 1.08143i
\(97\) 3.53959 + 9.72494i 0.359391 + 0.987418i 0.979241 + 0.202698i \(0.0649710\pi\)
−0.619851 + 0.784720i \(0.712807\pi\)
\(98\) 0.529971 17.8783i 0.0535351 1.80598i
\(99\) 0.690812 + 12.3187i 0.0694293 + 1.23808i
\(100\) 17.6787 1.76787
\(101\) −8.40824 7.05535i −0.836651 0.702034i 0.120157 0.992755i \(-0.461660\pi\)
−0.956808 + 0.290721i \(0.906105\pi\)
\(102\) 10.2346 + 11.5256i 1.01338 + 1.14120i
\(103\) 10.9954 1.93879i 1.08341 0.191035i 0.396689 0.917953i \(-0.370159\pi\)
0.686724 + 0.726918i \(0.259048\pi\)
\(104\) 5.11126 + 28.9874i 0.501200 + 2.84245i
\(105\) −4.48699 + 1.70050i −0.437886 + 0.165951i
\(106\) 1.25324 + 1.05159i 0.121725 + 0.102140i
\(107\) 1.14302 0.659921i 0.110500 0.0637970i −0.443732 0.896160i \(-0.646346\pi\)
0.554231 + 0.832363i \(0.313012\pi\)
\(108\) 16.6938 16.5861i 1.60637 1.59600i
\(109\) −6.88550 + 11.9260i −0.659511 + 1.14231i 0.321231 + 0.947001i \(0.395903\pi\)
−0.980742 + 0.195306i \(0.937430\pi\)
\(110\) −1.91074 + 10.8364i −0.182182 + 1.03321i
\(111\) 5.28898 2.09457i 0.502007 0.198808i
\(112\) 3.13595 + 19.4673i 0.296319 + 1.83949i
\(113\) −2.09848 + 5.76552i −0.197408 + 0.542374i −0.998415 0.0562808i \(-0.982076\pi\)
0.801007 + 0.598655i \(0.204298\pi\)
\(114\) 18.3557 16.2998i 1.71917 1.52661i
\(115\) −4.08656 + 4.87017i −0.381074 + 0.454146i
\(116\) −9.58910 + 5.53627i −0.890325 + 0.514030i
\(117\) 8.18431 10.9441i 0.756640 1.01178i
\(118\) −23.6097 + 13.6311i −2.17345 + 1.25484i
\(119\) 6.97033 + 6.02703i 0.638969 + 0.552497i
\(120\) 9.98089 6.14145i 0.911126 0.560635i
\(121\) 5.55750 + 2.02277i 0.505228 + 0.183888i
\(122\) 0.901473 + 5.11251i 0.0816156 + 0.462865i
\(123\) 0.372685 0.0104416i 0.0336039 0.000941485i
\(124\) 3.08588 3.67760i 0.277120 0.330259i
\(125\) −4.66147 8.07391i −0.416935 0.722152i
\(126\) 12.3853 16.0599i 1.10337 1.43073i
\(127\) −9.17375 + 15.8894i −0.814039 + 1.40996i 0.0959776 + 0.995383i \(0.469402\pi\)
−0.910016 + 0.414573i \(0.863931\pi\)
\(128\) 3.54683 + 9.74484i 0.313499 + 0.861330i
\(129\) −15.8529 5.27205i −1.39577 0.464179i
\(130\) 9.33633 7.83411i 0.818850 0.687097i
\(131\) −9.50327 + 7.97419i −0.830305 + 0.696708i −0.955361 0.295441i \(-0.904533\pi\)
0.125056 + 0.992150i \(0.460089\pi\)
\(132\) −11.8785 29.9943i −1.03389 2.61067i
\(133\) 9.59871 11.1010i 0.832313 0.962580i
\(134\) 28.8542i 2.49262i
\(135\) −5.25091 1.42521i −0.451927 0.122663i
\(136\) −19.4897 11.2524i −1.67123 0.964883i
\(137\) 1.10009 + 3.02247i 0.0939871 + 0.258227i 0.977774 0.209663i \(-0.0672366\pi\)
−0.883787 + 0.467890i \(0.845014\pi\)
\(138\) 3.92312 26.5829i 0.333958 2.26289i
\(139\) −7.01041 + 1.23613i −0.594616 + 0.104847i −0.462854 0.886435i \(-0.653175\pi\)
−0.131762 + 0.991281i \(0.542063\pi\)
\(140\) 9.72968 7.92150i 0.822308 0.669489i
\(141\) 1.44701 + 0.481222i 0.121861 + 0.0405262i
\(142\) −26.2928 + 9.56980i −2.20644 + 0.803080i
\(143\) −9.36722 16.2245i −0.783326 1.35676i
\(144\) −10.0775 + 19.9585i −0.839795 + 1.66321i
\(145\) 2.21706 + 1.28002i 0.184117 + 0.106300i
\(146\) 27.5976 10.0447i 2.28399 0.831305i
\(147\) 6.07923 10.4901i 0.501406 0.865212i
\(148\) −11.3943 + 9.56099i −0.936609 + 0.785908i
\(149\) 0.953534 2.61981i 0.0781166 0.214624i −0.894487 0.447094i \(-0.852459\pi\)
0.972603 + 0.232471i \(0.0746810\pi\)
\(150\) 15.1975 + 8.21558i 1.24087 + 0.670799i
\(151\) −0.472509 + 2.67973i −0.0384522 + 0.218073i −0.997979 0.0635439i \(-0.979760\pi\)
0.959527 + 0.281617i \(0.0908708\pi\)
\(152\) −17.9206 + 31.0395i −1.45356 + 2.51763i
\(153\) 2.38764 + 10.1720i 0.193029 + 0.822359i
\(154\) −13.5433 24.2815i −1.09135 1.95666i
\(155\) −1.09311 0.192744i −0.0878004 0.0154816i
\(156\) −11.2761 + 33.9067i −0.902809 + 2.71471i
\(157\) 9.91328 + 11.8142i 0.791166 + 0.942875i 0.999380 0.0352085i \(-0.0112095\pi\)
−0.208214 + 0.978083i \(0.566765\pi\)
\(158\) 4.73561 13.0110i 0.376745 1.03510i
\(159\) 0.408328 + 1.03106i 0.0323825 + 0.0817687i
\(160\) −4.11907 + 4.90891i −0.325641 + 0.388084i
\(161\) 0.238015 16.0621i 0.0187582 1.26587i
\(162\) 22.0586 6.50032i 1.73309 0.510713i
\(163\) −0.0485493 0.0840899i −0.00380267 0.00658643i 0.864118 0.503290i \(-0.167877\pi\)
−0.867920 + 0.496703i \(0.834544\pi\)
\(164\) −0.916064 + 0.333420i −0.0715326 + 0.0260357i
\(165\) −4.63258 + 5.84588i −0.360646 + 0.455101i
\(166\) −16.8790 20.1156i −1.31006 1.56127i
\(167\) −7.08005 2.57693i −0.547871 0.199409i 0.0532293 0.998582i \(-0.483049\pi\)
−0.601100 + 0.799174i \(0.705271\pi\)
\(168\) −9.75958 + 27.9564i −0.752968 + 2.15688i
\(169\) −1.34588 + 7.63285i −0.103529 + 0.587142i
\(170\) 9.31834i 0.714684i
\(171\) 16.2001 3.80258i 1.23885 0.290790i
\(172\) 43.6831 3.33081
\(173\) −10.8488 9.10324i −0.824820 0.692106i 0.129275 0.991609i \(-0.458735\pi\)
−0.954096 + 0.299502i \(0.903179\pi\)
\(174\) −10.8160 + 0.303034i −0.819960 + 0.0229730i
\(175\) 9.65165 + 3.67576i 0.729596 + 0.277861i
\(176\) 19.7021 + 23.4801i 1.48510 + 1.76988i
\(177\) −18.4728 + 0.517555i −1.38850 + 0.0389018i
\(178\) −10.9977 1.93919i −0.824310 0.145348i
\(179\) 14.8299i 1.10844i 0.832371 + 0.554218i \(0.186983\pi\)
−0.832371 + 0.554218i \(0.813017\pi\)
\(180\) 14.2042 0.796547i 1.05872 0.0593711i
\(181\) 7.99205 + 4.61421i 0.594045 + 0.342972i 0.766695 0.642011i \(-0.221900\pi\)
−0.172651 + 0.984983i \(0.555233\pi\)
\(182\) −5.79629 + 30.2448i −0.429650 + 2.24189i
\(183\) −1.11050 + 3.33923i −0.0820906 + 0.246843i
\(184\) 6.81262 + 38.6363i 0.502233 + 2.84831i
\(185\) 3.23163 + 1.17622i 0.237594 + 0.0864771i
\(186\) 4.36180 1.72739i 0.319823 0.126658i
\(187\) 14.1062 + 2.48730i 1.03154 + 0.181889i
\(188\) −3.98730 −0.290804
\(189\) 12.5625 5.58416i 0.913790 0.406188i
\(190\) 14.8405 1.07664
\(191\) −20.3062 3.58053i −1.46930 0.259078i −0.619009 0.785384i \(-0.712466\pi\)
−0.850295 + 0.526306i \(0.823577\pi\)
\(192\) 0.185022 1.25370i 0.0133528 0.0904780i
\(193\) 7.54731 + 2.74699i 0.543267 + 0.197733i 0.599052 0.800710i \(-0.295544\pi\)
−0.0557855 + 0.998443i \(0.517766\pi\)
\(194\) −4.59187 26.0418i −0.329677 1.86969i
\(195\) 8.09272 1.66191i 0.579532 0.119012i
\(196\) −6.42764 + 31.0435i −0.459117 + 2.21740i
\(197\) 18.9779 + 10.9569i 1.35212 + 0.780646i 0.988546 0.150920i \(-0.0482237\pi\)
0.363572 + 0.931566i \(0.381557\pi\)
\(198\) 3.72748 31.3046i 0.264900 2.22472i
\(199\) 17.1908i 1.21862i −0.792931 0.609312i \(-0.791446\pi\)
0.792931 0.609312i \(-0.208554\pi\)
\(200\) −24.8403 4.38002i −1.75647 0.309714i
\(201\) −9.30138 + 17.2060i −0.656068 + 1.21362i
\(202\) 18.0276 + 21.4844i 1.26842 + 1.51164i
\(203\) −6.38623 + 1.02874i −0.448226 + 0.0722037i
\(204\) −14.3173 23.2680i −1.00241 1.62908i
\(205\) 0.172661 + 0.144880i 0.0120592 + 0.0101188i
\(206\) −28.5285 −1.98768
\(207\) 10.9086 14.5870i 0.758200 1.01386i
\(208\) 33.9497i 2.35399i
\(209\) 3.96129 22.4656i 0.274008 1.55398i
\(210\) 12.0453 2.28816i 0.831207 0.157898i
\(211\) −14.7618 5.37287i −1.01625 0.369884i −0.220418 0.975405i \(-0.570742\pi\)
−0.795829 + 0.605522i \(0.792964\pi\)
\(212\) −1.86387 2.22128i −0.128011 0.152558i
\(213\) −18.7635 2.76914i −1.28566 0.189738i
\(214\) −3.16903 + 1.15343i −0.216630 + 0.0788470i
\(215\) −5.04991 8.74670i −0.344401 0.596520i
\(216\) −27.5657 + 19.1691i −1.87561 + 1.30429i
\(217\) 2.44937 1.36616i 0.166274 0.0927410i
\(218\) 22.6179 26.9549i 1.53187 1.82562i
\(219\) 19.6947 + 2.90655i 1.33084 + 0.196407i
\(220\) 6.67043 18.3269i 0.449720 1.23560i
\(221\) −10.1980 12.1535i −0.685991 0.817533i
\(222\) −14.2382 + 2.92395i −0.955608 + 0.196242i
\(223\) −1.32691 0.233969i −0.0888562 0.0156678i 0.129043 0.991639i \(-0.458809\pi\)
−0.217900 + 0.975971i \(0.569921\pi\)
\(224\) 0.239908 16.1899i 0.0160295 1.08173i
\(225\) 6.41403 + 9.79805i 0.427602 + 0.653203i
\(226\) 7.83865 13.5769i 0.521419 0.903124i
\(227\) −3.44386 + 19.5311i −0.228577 + 1.29633i 0.627150 + 0.778899i \(0.284221\pi\)
−0.855727 + 0.517427i \(0.826890\pi\)
\(228\) −37.0568 + 22.8018i −2.45415 + 1.51009i
\(229\) 0.284068 0.780471i 0.0187718 0.0515750i −0.929953 0.367679i \(-0.880153\pi\)
0.948725 + 0.316104i \(0.102375\pi\)
\(230\) 12.4441 10.4418i 0.820538 0.688513i
\(231\) −0.248629 18.8450i −0.0163586 1.23991i
\(232\) 14.8452 5.40322i 0.974637 0.354739i
\(233\) −3.42928 1.97990i −0.224660 0.129707i 0.383446 0.923563i \(-0.374737\pi\)
−0.608106 + 0.793856i \(0.708070\pi\)
\(234\) −25.4504 + 23.9076i −1.66375 + 1.56289i
\(235\) 0.460945 + 0.798380i 0.0300687 + 0.0520805i
\(236\) 45.4063 16.5265i 2.95570 1.07579i
\(237\) 7.01807 6.23200i 0.455873 0.404812i
\(238\) −14.8656 18.2588i −0.963591 1.18354i
\(239\) 23.0139 4.05798i 1.48865 0.262489i 0.630620 0.776092i \(-0.282801\pi\)
0.858028 + 0.513603i \(0.171690\pi\)
\(240\) −12.5670 + 4.97688i −0.811199 + 0.321256i
\(241\) 1.40279 + 3.85413i 0.0903616 + 0.248266i 0.976638 0.214890i \(-0.0689392\pi\)
−0.886277 + 0.463156i \(0.846717\pi\)
\(242\) −13.0871 7.55584i −0.841270 0.485708i
\(243\) 15.2492 + 3.23457i 0.978235 + 0.207498i
\(244\) 9.20137i 0.589057i
\(245\) 6.95892 2.30172i 0.444589 0.147052i
\(246\) −0.942436 0.139085i −0.0600875 0.00886776i
\(247\) −19.3558 + 16.2414i −1.23158 + 1.03342i
\(248\) −5.24710 + 4.40284i −0.333191 + 0.279580i
\(249\) −3.58067 17.4362i −0.226916 1.10497i
\(250\) 8.14748 + 22.3850i 0.515292 + 1.41575i
\(251\) 2.57441 4.45900i 0.162495 0.281450i −0.773268 0.634080i \(-0.781379\pi\)
0.935763 + 0.352630i \(0.114712\pi\)
\(252\) −26.5616 + 24.2207i −1.67322 + 1.52576i
\(253\) −12.4853 21.6251i −0.784941 1.35956i
\(254\) 30.1344 35.9128i 1.89080 2.25337i
\(255\) −3.00384 + 5.55661i −0.188108 + 0.347968i
\(256\) −4.85537 27.5362i −0.303461 1.72101i
\(257\) −22.4251 8.16206i −1.39884 0.509135i −0.471004 0.882131i \(-0.656108\pi\)
−0.927833 + 0.372996i \(0.878330\pi\)
\(258\) 37.5520 + 20.3002i 2.33789 + 1.26384i
\(259\) −8.20862 + 2.85068i −0.510059 + 0.177133i
\(260\) −18.7078 + 10.8010i −1.16021 + 0.669847i
\(261\) −6.54737 3.30593i −0.405272 0.204632i
\(262\) 27.4516 15.8492i 1.69597 0.979168i
\(263\) −10.9683 + 13.0715i −0.676334 + 0.806024i −0.989631 0.143631i \(-0.954122\pi\)
0.313297 + 0.949655i \(0.398566\pi\)
\(264\) 9.25916 + 45.0878i 0.569862 + 2.77496i
\(265\) −0.229298 + 0.629992i −0.0140857 + 0.0387001i
\(266\) −29.0792 + 23.6750i −1.78296 + 1.45161i
\(267\) −5.93289 4.70154i −0.363087 0.287729i
\(268\) 8.88074 50.3652i 0.542477 3.07654i
\(269\) −0.632582 + 1.09566i −0.0385692 + 0.0668038i −0.884666 0.466226i \(-0.845613\pi\)
0.846096 + 0.533030i \(0.178947\pi\)
\(270\) 12.5807 + 5.91615i 0.765639 + 0.360045i
\(271\) 0.441176 0.254713i 0.0267995 0.0154727i −0.486540 0.873658i \(-0.661741\pi\)
0.513340 + 0.858185i \(0.328408\pi\)
\(272\) 19.8841 + 16.6848i 1.20565 + 1.01166i
\(273\) −13.2060 + 16.1667i −0.799265 + 0.978456i
\(274\) −1.42714 8.09369i −0.0862164 0.488958i
\(275\) 15.8103 2.78778i 0.953397 0.168110i
\(276\) −15.0295 + 45.1931i −0.904670 + 2.72031i
\(277\) 5.43565 + 4.56105i 0.326597 + 0.274047i 0.791311 0.611413i \(-0.209399\pi\)
−0.464715 + 0.885460i \(0.653843\pi\)
\(278\) 18.1891 1.09091
\(279\) 3.15782 + 0.376005i 0.189054 + 0.0225108i
\(280\) −15.6337 + 8.71987i −0.934294 + 0.521112i
\(281\) 4.02711 + 11.0644i 0.240237 + 0.660046i 0.999952 + 0.00978955i \(0.00311616\pi\)
−0.759715 + 0.650256i \(0.774662\pi\)
\(282\) −3.42767 1.85296i −0.204115 0.110342i
\(283\) 7.61096 1.34202i 0.452425 0.0797747i 0.0572074 0.998362i \(-0.481780\pi\)
0.395217 + 0.918588i \(0.370669\pi\)
\(284\) 48.8396 8.61175i 2.89810 0.511013i
\(285\) 8.84951 + 4.78395i 0.524200 + 0.283376i
\(286\) 16.3723 + 44.9826i 0.968117 + 2.65988i
\(287\) −0.569446 0.00843827i −0.0336134 0.000498095i
\(288\) 10.9954 14.7030i 0.647909 0.866383i
\(289\) −4.86991 −0.286465
\(290\) −5.01094 4.20468i −0.294253 0.246907i
\(291\) 5.65660 17.0092i 0.331596 0.997096i
\(292\) −51.2633 + 9.03910i −2.99996 + 0.528973i
\(293\) 1.74277 + 9.88373i 0.101814 + 0.577414i 0.992445 + 0.122688i \(0.0391515\pi\)
−0.890632 + 0.454725i \(0.849737\pi\)
\(294\) −19.9519 + 23.6994i −1.16362 + 1.38218i
\(295\) −8.55823 7.18121i −0.498279 0.418106i
\(296\) 18.3789 10.6111i 1.06825 0.616756i
\(297\) 12.3140 17.4656i 0.714531 1.01346i
\(298\) −3.56183 + 6.16927i −0.206331 + 0.357376i
\(299\) −4.80272 + 27.2376i −0.277749 + 1.57519i
\(300\) −23.9987 19.0178i −1.38556 1.09799i
\(301\) 23.8486 + 9.08258i 1.37461 + 0.523511i
\(302\) 2.37799 6.53347i 0.136838 0.375959i
\(303\) 3.82433 + 18.6227i 0.219702 + 1.06984i
\(304\) 26.5723 31.6676i 1.52403 1.81626i
\(305\) −1.84240 + 1.06371i −0.105495 + 0.0609077i
\(306\) −1.49481 26.6557i −0.0854524 1.52380i
\(307\) −20.1755 + 11.6483i −1.15148 + 0.664805i −0.949246 0.314534i \(-0.898152\pi\)
−0.202229 + 0.979338i \(0.564819\pi\)
\(308\) 16.1665 + 46.5519i 0.921170 + 2.65254i
\(309\) −17.0118 9.19640i −0.967769 0.523165i
\(310\) 2.66511 + 0.970021i 0.151368 + 0.0550935i
\(311\) 1.66088 + 9.41930i 0.0941797 + 0.534120i 0.994996 + 0.0999185i \(0.0318582\pi\)
−0.900816 + 0.434201i \(0.857031\pi\)
\(312\) 24.2446 44.8484i 1.37258 2.53904i
\(313\) 4.29753 5.12160i 0.242911 0.289490i −0.630790 0.775954i \(-0.717269\pi\)
0.873701 + 0.486464i \(0.161713\pi\)
\(314\) −19.7033 34.1271i −1.11192 1.92590i
\(315\) 7.92034 + 2.51846i 0.446261 + 0.141899i
\(316\) −12.2705 + 21.2532i −0.690272 + 1.19559i
\(317\) −0.852464 2.34213i −0.0478792 0.131547i 0.913448 0.406955i \(-0.133409\pi\)
−0.961327 + 0.275408i \(0.911187\pi\)
\(318\) −0.570011 2.77569i −0.0319646 0.155653i
\(319\) −7.70261 + 6.46326i −0.431264 + 0.361873i
\(320\) 0.586886 0.492456i 0.0328079 0.0275291i
\(321\) −2.26154 0.333760i −0.126227 0.0186286i
\(322\) −7.72568 + 40.3122i −0.430536 + 2.24651i
\(323\) 19.3185i 1.07491i
\(324\) −40.5041 + 4.55714i −2.25023 + 0.253175i
\(325\) −15.3996 8.89096i −0.854216 0.493182i
\(326\) 0.0848561 + 0.233140i 0.00469975 + 0.0129124i
\(327\) 22.1764 8.78241i 1.22636 0.485668i
\(328\) 1.36976 0.241526i 0.0756325 0.0133360i
\(329\) −2.17685 0.829038i −0.120014 0.0457064i
\(330\) 14.2510 12.6548i 0.784490 0.696622i
\(331\) 28.8032 10.4835i 1.58317 0.576225i 0.607276 0.794491i \(-0.292262\pi\)
0.975889 + 0.218266i \(0.0700400\pi\)
\(332\) 23.2712 + 40.3069i 1.27717 + 2.21213i
\(333\) −9.43294 2.84623i −0.516922 0.155973i
\(334\) 16.6725 + 9.62585i 0.912277 + 0.526703i
\(335\) −11.1113 + 4.04418i −0.607075 + 0.220957i
\(336\) 16.6849 29.8001i 0.910234 1.62573i
\(337\) −9.52767 + 7.99467i −0.519005 + 0.435497i −0.864285 0.503003i \(-0.832229\pi\)
0.345279 + 0.938500i \(0.387784\pi\)
\(338\) 6.77338 18.6097i 0.368423 1.01223i
\(339\) 9.05088 5.56920i 0.491577 0.302477i
\(340\) 2.86800 16.2652i 0.155539 0.882106i
\(341\) 2.17981 3.77554i 0.118043 0.204457i
\(342\) −42.4521 + 2.38064i −2.29555 + 0.128730i
\(343\) −9.96371 + 15.6117i −0.537990 + 0.842951i
\(344\) −61.3789 10.8228i −3.30933 0.583524i
\(345\) 10.7865 2.21510i 0.580726 0.119257i
\(346\) 23.2603 + 27.7205i 1.25048 + 1.49026i
\(347\) 2.49594 6.85754i 0.133989 0.368132i −0.854494 0.519461i \(-0.826133\pi\)
0.988484 + 0.151328i \(0.0483551\pi\)
\(348\) 18.9727 + 2.80000i 1.01704 + 0.150096i
\(349\) −11.2139 + 13.3642i −0.600265 + 0.715368i −0.977544 0.210732i \(-0.932415\pi\)
0.377279 + 0.926100i \(0.376860\pi\)
\(350\) −22.6559 13.5319i −1.21101 0.723311i
\(351\) −22.8831 + 6.05219i −1.22141 + 0.323042i
\(352\) −12.5846 21.7971i −0.670760 1.16179i
\(353\) 20.4423 7.44040i 1.08803 0.396012i 0.265142 0.964209i \(-0.414581\pi\)
0.822893 + 0.568197i \(0.192359\pi\)
\(354\) 46.7135 + 6.89401i 2.48279 + 0.366412i
\(355\) −7.37036 8.78365i −0.391178 0.466188i
\(356\) 18.5997 + 6.76972i 0.985780 + 0.358794i
\(357\) −2.97859 15.6799i −0.157644 0.829869i
\(358\) 6.58000 37.3171i 0.347764 1.97227i
\(359\) 12.9911i 0.685641i 0.939401 + 0.342821i \(0.111382\pi\)
−0.939401 + 0.342821i \(0.888618\pi\)
\(360\) −20.1556 2.39995i −1.06229 0.126488i
\(361\) −11.7668 −0.619306
\(362\) −18.0634 15.1570i −0.949393 0.796635i
\(363\) −5.36826 8.72434i −0.281761 0.457909i
\(364\) 19.4262 51.0085i 1.01821 2.67357i
\(365\) 7.73611 + 9.21953i 0.404926 + 0.482572i
\(366\) 4.27602 7.90992i 0.223511 0.413458i
\(367\) 2.88580 + 0.508845i 0.150638 + 0.0265615i 0.248458 0.968643i \(-0.420076\pi\)
−0.0978207 + 0.995204i \(0.531187\pi\)
\(368\) 45.2504i 2.35884i
\(369\) −0.517148 0.386739i −0.0269216 0.0201329i
\(370\) −7.60999 4.39363i −0.395625 0.228414i
\(371\) −0.555728 1.60024i −0.0288520 0.0830801i
\(372\) −8.14520 + 1.67269i −0.422309 + 0.0867248i
\(373\) −0.643741 3.65084i −0.0333317 0.189033i 0.963596 0.267363i \(-0.0861523\pi\)
−0.996927 + 0.0783300i \(0.975041\pi\)
\(374\) −34.3923 12.5178i −1.77839 0.647279i
\(375\) −2.35757 + 15.9748i −0.121744 + 0.824934i
\(376\) 5.60253 + 0.987877i 0.288928 + 0.0509459i
\(377\) 11.1371 0.573592
\(378\) −34.0893 + 8.47767i −1.75337 + 0.436044i
\(379\) 33.6065 1.72625 0.863125 0.504990i \(-0.168504\pi\)
0.863125 + 0.504990i \(0.168504\pi\)
\(380\) −25.9042 4.56760i −1.32886 0.234313i
\(381\) 29.5462 11.7011i 1.51370 0.599463i
\(382\) 49.5087 + 18.0197i 2.53308 + 0.921967i
\(383\) 4.69408 + 26.6215i 0.239856 + 1.36029i 0.832141 + 0.554565i \(0.187115\pi\)
−0.592284 + 0.805729i \(0.701774\pi\)
\(384\) 5.66818 17.0440i 0.289253 0.869772i
\(385\) 7.45221 8.61857i 0.379800 0.439243i
\(386\) −17.7728 10.2611i −0.904610 0.522277i
\(387\) 15.8487 + 24.2104i 0.805634 + 1.23068i
\(388\) 46.8694i 2.37943i
\(389\) −36.9754 6.51976i −1.87473 0.330565i −0.884116 0.467268i \(-0.845238\pi\)
−0.990612 + 0.136703i \(0.956349\pi\)
\(390\) −21.1015 + 0.591203i −1.06851 + 0.0299367i
\(391\) −13.5926 16.1990i −0.687405 0.819218i
\(392\) 16.7227 42.0266i 0.844622 2.12266i
\(393\) 21.4788 0.601774i 1.08346 0.0303555i
\(394\) −42.8933 35.9918i −2.16093 1.81324i
\(395\) 5.67406 0.285493
\(396\) −16.1413 + 53.4951i −0.811128 + 2.68823i
\(397\) 31.4172i 1.57678i 0.615173 + 0.788392i \(0.289086\pi\)
−0.615173 + 0.788392i \(0.710914\pi\)
\(398\) −7.62755 + 43.2580i −0.382334 + 2.16833i
\(399\) −24.9720 + 4.74373i −1.25016 + 0.237484i
\(400\) 27.3382 + 9.95028i 1.36691 + 0.497514i
\(401\) −15.7369 18.7545i −0.785862 0.936554i 0.213320 0.976982i \(-0.431572\pi\)
−0.999182 + 0.0404284i \(0.987128\pi\)
\(402\) 31.0398 39.1692i 1.54812 1.95358i
\(403\) −4.53758 + 1.65154i −0.226033 + 0.0822692i
\(404\) −24.8548 43.0497i −1.23657 2.14180i
\(405\) 5.59489 + 7.58335i 0.278012 + 0.376820i
\(406\) 16.5264 + 0.244895i 0.820192 + 0.0121539i
\(407\) −8.68240 + 10.3473i −0.430371 + 0.512896i
\(408\) 14.3523 + 36.2409i 0.710546 + 1.79419i
\(409\) −4.74156 + 13.0273i −0.234455 + 0.644159i 0.765545 + 0.643383i \(0.222470\pi\)
−1.00000 0.000776893i \(0.999753\pi\)
\(410\) −0.370191 0.441176i −0.0182824 0.0217881i
\(411\) 1.75805 5.28639i 0.0867182 0.260758i
\(412\) 49.7967 + 8.78051i 2.45331 + 0.432585i
\(413\) 28.2256 + 0.418257i 1.38889 + 0.0205811i
\(414\) −33.9220 + 31.8657i −1.66718 + 1.56611i
\(415\) 5.38046 9.31922i 0.264116 0.457463i
\(416\) −4.84093 + 27.4543i −0.237346 + 1.34606i
\(417\) 10.8463 + 5.86339i 0.531146 + 0.287132i
\(418\) −19.9359 + 54.7736i −0.975099 + 2.67906i
\(419\) −17.2126 + 14.4431i −0.840893 + 0.705593i −0.957764 0.287554i \(-0.907158\pi\)
0.116872 + 0.993147i \(0.462713\pi\)
\(420\) −21.7294 + 0.286683i −1.06029 + 0.0139887i
\(421\) 9.17695 3.34014i 0.447257 0.162788i −0.108565 0.994089i \(-0.534626\pi\)
0.555822 + 0.831301i \(0.312403\pi\)
\(422\) 34.7619 + 20.0698i 1.69218 + 0.976983i
\(423\) −1.44663 2.20987i −0.0703377 0.107448i
\(424\) 2.06858 + 3.58289i 0.100459 + 0.174001i
\(425\) 12.7756 4.64993i 0.619707 0.225555i
\(426\) 45.9868 + 15.2935i 2.22807 + 0.740971i
\(427\) 1.91315 5.02346i 0.0925836 0.243102i
\(428\) 5.88657 1.03796i 0.284538 0.0501717i
\(429\) −4.73753 + 32.1013i −0.228730 + 1.54987i
\(430\) 8.82640 + 24.2503i 0.425647 + 1.16946i
\(431\) 14.5924 + 8.42491i 0.702890 + 0.405814i 0.808423 0.588602i \(-0.200321\pi\)
−0.105533 + 0.994416i \(0.533655\pi\)
\(432\) 35.1504 16.2526i 1.69118 0.781954i
\(433\) 18.8726i 0.906959i 0.891267 + 0.453480i \(0.149817\pi\)
−0.891267 + 0.453480i \(0.850183\pi\)
\(434\) −6.76962 + 2.35095i −0.324952 + 0.112849i
\(435\) −1.63266 4.12260i −0.0782800 0.197664i
\(436\) −47.7758 + 40.0886i −2.28804 + 1.91990i
\(437\) −25.7987 + 21.6476i −1.23412 + 1.03555i
\(438\) −48.2689 16.0524i −2.30638 0.767013i
\(439\) −5.37849 14.7773i −0.256701 0.705281i −0.999366 0.0356169i \(-0.988660\pi\)
0.742664 0.669664i \(-0.233562\pi\)
\(440\) −13.9132 + 24.0983i −0.663284 + 1.14884i
\(441\) −19.5372 + 7.70053i −0.930342 + 0.366692i
\(442\) 20.2692 + 35.1072i 0.964106 + 1.66988i
\(443\) 9.46041 11.2745i 0.449478 0.535666i −0.492959 0.870053i \(-0.664085\pi\)
0.942436 + 0.334386i \(0.108529\pi\)
\(444\) 25.7529 0.721522i 1.22218 0.0342419i
\(445\) −0.794674 4.50682i −0.0376712 0.213644i
\(446\) 3.23514 + 1.17750i 0.153188 + 0.0557560i
\(447\) −4.11266 + 2.53061i −0.194522 + 0.119694i
\(448\) −0.364358 + 1.90120i −0.0172143 + 0.0898234i
\(449\) 3.11418 1.79797i 0.146967 0.0848516i −0.424713 0.905328i \(-0.639625\pi\)
0.571680 + 0.820476i \(0.306292\pi\)
\(450\) −11.7925 27.5012i −0.555905 1.29642i
\(451\) −0.766668 + 0.442636i −0.0361010 + 0.0208429i
\(452\) −17.8611 + 21.2860i −0.840116 + 1.00121i
\(453\) 3.52413 3.12940i 0.165578 0.147032i
\(454\) 17.3319 47.6190i 0.813426 2.23487i
\(455\) −12.4592 + 2.00702i −0.584096 + 0.0940906i
\(456\) 57.7176 22.8577i 2.70287 1.07041i
\(457\) 0.0783848 0.444543i 0.00366669 0.0207948i −0.982920 0.184036i \(-0.941084\pi\)
0.986586 + 0.163241i \(0.0521948\pi\)
\(458\) −1.06111 + 1.83789i −0.0495823 + 0.0858790i
\(459\) 7.70130 16.3769i 0.359466 0.764407i
\(460\) −24.9350 + 14.3962i −1.16260 + 0.671227i
\(461\) −18.3882 15.4295i −0.856422 0.718623i 0.104772 0.994496i \(-0.466589\pi\)
−0.961194 + 0.275873i \(0.911033\pi\)
\(462\) −7.73590 + 47.5309i −0.359907 + 2.21134i
\(463\) −4.16621 23.6278i −0.193620 1.09808i −0.914370 0.404880i \(-0.867313\pi\)
0.720750 0.693195i \(-0.243798\pi\)
\(464\) −17.9445 + 3.16409i −0.833051 + 0.146889i
\(465\) 1.27654 + 1.43755i 0.0591979 + 0.0666648i
\(466\) 7.75078 + 6.50367i 0.359048 + 0.301277i
\(467\) −39.6265 −1.83369 −0.916847 0.399238i \(-0.869275\pi\)
−0.916847 + 0.399238i \(0.869275\pi\)
\(468\) 51.7821 33.8978i 2.39363 1.56693i
\(469\) 15.3203 25.6502i 0.707427 1.18442i
\(470\) −0.805655 2.21352i −0.0371621 0.102102i
\(471\) −0.748108 26.7018i −0.0344710 1.23035i
\(472\) −67.8946 + 11.9717i −3.12510 + 0.551040i
\(473\) 39.0663 6.88844i 1.79627 0.316731i
\(474\) −20.4250 + 12.5679i −0.938152 + 0.577264i
\(475\) −7.40553 20.3465i −0.339789 0.933563i
\(476\) 20.3282 + 36.4462i 0.931743 + 1.67051i
\(477\) 0.554861 1.83891i 0.0254053 0.0841980i
\(478\) −59.7115 −2.73114
\(479\) −9.21036 7.72841i −0.420832 0.353120i 0.407647 0.913139i \(-0.366349\pi\)
−0.828480 + 0.560019i \(0.810794\pi\)
\(480\) 10.8723 2.23273i 0.496251 0.101909i
\(481\) 14.7338 2.59796i 0.671802 0.118457i
\(482\) −1.81982 10.3207i −0.0828907 0.470097i
\(483\) −17.6019 + 21.5481i −0.800912 + 0.980473i
\(484\) 20.5181 + 17.2167i 0.932639 + 0.782577i
\(485\) 9.38469 5.41825i 0.426137 0.246030i
\(486\) −36.9370 14.9054i −1.67550 0.676120i
\(487\) 19.9583 34.5688i 0.904397 1.56646i 0.0826731 0.996577i \(-0.473654\pi\)
0.821724 0.569885i \(-0.193012\pi\)
\(488\) −2.27969 + 12.9288i −0.103197 + 0.585259i
\(489\) −0.0245541 + 0.166378i −0.00111038 + 0.00752386i
\(490\) −18.5323 + 2.70425i −0.837205 + 0.122166i
\(491\) 6.49001 17.8311i 0.292890 0.804708i −0.702751 0.711436i \(-0.748045\pi\)
0.995641 0.0932723i \(-0.0297327\pi\)
\(492\) 1.60222 + 0.532837i 0.0722337 + 0.0240222i
\(493\) −5.47341 + 6.52296i −0.246510 + 0.293779i
\(494\) 55.9121 32.2809i 2.51560 1.45238i
\(495\) 12.5773 2.95223i 0.565309 0.132693i
\(496\) 6.84185 3.95014i 0.307208 0.177367i
\(497\) 28.4544 + 5.45317i 1.27635 + 0.244608i
\(498\) 1.27378 + 45.4642i 0.0570794 + 2.03730i
\(499\) 14.4925 + 5.27482i 0.648771 + 0.236133i 0.645381 0.763861i \(-0.276699\pi\)
0.00339023 + 0.999994i \(0.498921\pi\)
\(500\) −7.33182 41.5808i −0.327889 1.85955i
\(501\) 6.83897 + 11.1145i 0.305543 + 0.496558i
\(502\) −8.45655 + 10.0781i −0.377434 + 0.449809i
\(503\) −1.41541 2.45156i −0.0631098 0.109309i 0.832744 0.553658i \(-0.186769\pi\)
−0.895854 + 0.444349i \(0.853435\pi\)
\(504\) 43.3224 27.4516i 1.92973 1.22279i
\(505\) −5.74658 + 9.95337i −0.255719 + 0.442919i
\(506\) 21.8221 + 59.9559i 0.970113 + 2.66536i
\(507\) 10.0380 8.91368i 0.445804 0.395871i
\(508\) −63.6530 + 53.4112i −2.82415 + 2.36974i
\(509\) 11.1121 9.32414i 0.492534 0.413285i −0.362399 0.932023i \(-0.618042\pi\)
0.854933 + 0.518738i \(0.173598\pi\)
\(510\) 10.0242 12.6495i 0.443877 0.560131i
\(511\) −29.8664 5.72378i −1.32121 0.253205i
\(512\) 50.7044i 2.24084i
\(513\) −26.0820 12.2652i −1.15155 0.541520i
\(514\) 52.8077 + 30.4885i 2.32925 + 1.34479i
\(515\) −3.99854 10.9859i −0.176197 0.484096i
\(516\) −59.2993 46.9919i −2.61051 2.06870i
\(517\) −3.56588 + 0.628762i −0.156827 + 0.0276529i
\(518\) 21.9206 3.53113i 0.963134 0.155149i
\(519\) 4.93438 + 24.0281i 0.216595 + 1.05472i
\(520\) 28.9622 10.5414i 1.27008 0.462270i
\(521\) −6.53135 11.3126i −0.286144 0.495616i 0.686742 0.726901i \(-0.259040\pi\)
−0.972886 + 0.231285i \(0.925707\pi\)
\(522\) 15.0086 + 11.2239i 0.656909 + 0.491257i
\(523\) −3.43967 1.98589i −0.150406 0.0868370i 0.422908 0.906173i \(-0.361009\pi\)
−0.573314 + 0.819336i \(0.694343\pi\)
\(524\) −52.7951 + 19.2158i −2.30636 + 0.839448i
\(525\) −9.14782 15.3725i −0.399244 0.670912i
\(526\) 33.3998 28.0258i 1.45630 1.22198i
\(527\) 1.26272 3.46929i 0.0550049 0.151125i
\(528\) −1.48683 53.0684i −0.0647058 2.30951i
\(529\) −2.40748 + 13.6535i −0.104673 + 0.593630i
\(530\) 0.856520 1.48354i 0.0372049 0.0644407i
\(531\) 25.6333 + 19.1694i 1.11239 + 0.831881i
\(532\) 58.0445 32.3749i 2.51655 1.40363i
\(533\) 0.965647 + 0.170270i 0.0418268 + 0.00737519i
\(534\) 12.8431 + 14.4631i 0.555777 + 0.625880i
\(535\) −0.888337 1.05868i −0.0384062 0.0457707i
\(536\) −24.9565 + 68.5676i −1.07796 + 2.96167i
\(537\) 15.9532 20.1314i 0.688429 0.868733i
\(538\) 2.07794 2.47639i 0.0895863 0.106765i
\(539\) −0.853019 + 28.7762i −0.0367421 + 1.23948i
\(540\) −20.1389 14.1988i −0.866639 0.611018i
\(541\) −2.33907 4.05139i −0.100564 0.174183i 0.811353 0.584557i \(-0.198732\pi\)
−0.911917 + 0.410374i \(0.865398\pi\)
\(542\) −1.22317 + 0.445196i −0.0525395 + 0.0191228i
\(543\) −5.88540 14.8611i −0.252567 0.637753i
\(544\) −13.7007 16.3278i −0.587412 0.700051i
\(545\) 13.5500 + 4.93180i 0.580419 + 0.211255i
\(546\) 40.4041 34.8216i 1.72913 1.49023i
\(547\) 5.54303 31.4361i 0.237003 1.34411i −0.601352 0.798985i \(-0.705371\pi\)
0.838354 0.545126i \(-0.183518\pi\)
\(548\) 14.5668i 0.622264i
\(549\) 5.09965 3.33835i 0.217648 0.142477i
\(550\) −41.0211 −1.74914
\(551\) 10.3885 + 8.71701i 0.442566 + 0.371357i
\(552\) 32.3148 59.7770i 1.37541 2.54428i
\(553\) −11.1180 + 9.05183i −0.472786 + 0.384923i
\(554\) −11.6542 13.8890i −0.495141 0.590086i
\(555\) −3.12158 5.07310i −0.132504 0.215341i
\(556\) −31.7491 5.59823i −1.34646 0.237418i
\(557\) 6.65291i 0.281893i 0.990017 + 0.140947i \(0.0450146\pi\)
−0.990017 + 0.140947i \(0.954985\pi\)
\(558\) −7.77932 2.34728i −0.329325 0.0993682i
\(559\) −38.0515 21.9690i −1.60940 0.929190i
\(560\) 19.5044 6.77345i 0.824210 0.286231i
\(561\) −16.4732 18.5511i −0.695501 0.783228i
\(562\) −5.22432 29.6286i −0.220375 1.24981i
\(563\) 28.0865 + 10.2226i 1.18370 + 0.430833i 0.857508 0.514470i \(-0.172011\pi\)
0.326194 + 0.945303i \(0.394234\pi\)
\(564\) 5.41271 + 4.28932i 0.227916 + 0.180613i
\(565\) 6.32692 + 1.11561i 0.266176 + 0.0469339i
\(566\) −19.7473 −0.830039
\(567\) −23.0606 5.93365i −0.968455 0.249190i
\(568\) −70.7579 −2.96894
\(569\) 9.14289 + 1.61214i 0.383290 + 0.0675843i 0.361973 0.932188i \(-0.382103\pi\)
0.0213165 + 0.999773i \(0.493214\pi\)
\(570\) −20.1458 15.9646i −0.843814 0.668682i
\(571\) −16.6581 6.06304i −0.697118 0.253730i −0.0309380 0.999521i \(-0.509849\pi\)
−0.666180 + 0.745791i \(0.732072\pi\)
\(572\) −14.7333 83.5566i −0.616029 3.49368i
\(573\) 23.7137 + 26.7048i 0.990653 + 1.11561i
\(574\) 1.42918 + 0.273897i 0.0596528 + 0.0114322i
\(575\) −20.5256 11.8505i −0.855976 0.494198i
\(576\) −1.59983 + 1.50285i −0.0666594 + 0.0626186i
\(577\) 35.5246i 1.47891i −0.673207 0.739454i \(-0.735084\pi\)
0.673207 0.739454i \(-0.264916\pi\)
\(578\) 12.2544 + 2.16078i 0.509715 + 0.0898765i
\(579\) −7.29031 11.8480i −0.302975 0.492386i
\(580\) 7.45252 + 8.88156i 0.309449 + 0.368787i
\(581\) 4.32423 + 26.8440i 0.179399 + 1.11368i
\(582\) −21.7809 + 40.2911i −0.902848 + 1.67012i
\(583\) −2.01716 1.69260i −0.0835422 0.0701002i
\(584\) 74.2692 3.07328
\(585\) −12.7736 6.44968i −0.528122 0.266661i
\(586\) 25.6441i 1.05935i
\(587\) 4.89817 27.7789i 0.202169 1.14656i −0.699664 0.714472i \(-0.746667\pi\)
0.901833 0.432085i \(-0.142222\pi\)
\(588\) 42.1204 35.2267i 1.73701 1.45273i
\(589\) −5.52522 2.01102i −0.227663 0.0828625i
\(590\) 18.3492 + 21.8677i 0.755423 + 0.900278i
\(591\) −13.9754 35.2892i −0.574873 1.45160i
\(592\) −23.0013 + 8.37180i −0.945349 + 0.344079i
\(593\) 13.6717 + 23.6801i 0.561429 + 0.972424i 0.997372 + 0.0724497i \(0.0230817\pi\)
−0.435943 + 0.899974i \(0.643585\pi\)
\(594\) −38.7358 + 38.4858i −1.58935 + 1.57909i
\(595\) 4.94764 8.28363i 0.202833 0.339596i
\(596\) 8.11597 9.67224i 0.332443 0.396190i
\(597\) −18.4929 + 23.3363i −0.756865 + 0.955092i
\(598\) 24.1706 66.4082i 0.988409 2.71563i
\(599\) 16.1745 + 19.2761i 0.660874 + 0.787599i 0.987511 0.157551i \(-0.0503599\pi\)
−0.326637 + 0.945150i \(0.605915\pi\)
\(600\) 29.0086 + 32.6676i 1.18427 + 1.33365i
\(601\) −13.1380 2.31659i −0.535912 0.0944957i −0.100859 0.994901i \(-0.532159\pi\)
−0.435053 + 0.900405i \(0.643270\pi\)
\(602\) −55.9815 33.4365i −2.28163 1.36277i
\(603\) 31.1358 13.3510i 1.26795 0.543697i
\(604\) −6.16166 + 10.6723i −0.250714 + 0.434250i
\(605\) 1.07536 6.09865i 0.0437195 0.247945i
\(606\) −1.36046 48.5579i −0.0552647 1.97253i
\(607\) −8.30692 + 22.8231i −0.337167 + 0.926360i 0.649027 + 0.760766i \(0.275176\pi\)
−0.986194 + 0.165594i \(0.947046\pi\)
\(608\) −26.0039 + 21.8199i −1.05460 + 0.884912i
\(609\) 9.77590 + 5.47345i 0.396139 + 0.221795i
\(610\) 5.10807 1.85919i 0.206820 0.0752762i
\(611\) 3.47325 + 2.00528i 0.140513 + 0.0811251i
\(612\) −5.59489 + 46.9877i −0.226160 + 1.89937i
\(613\) −11.2206 19.4347i −0.453197 0.784961i 0.545385 0.838186i \(-0.316383\pi\)
−0.998583 + 0.0532247i \(0.983050\pi\)
\(614\) 55.9368 20.3593i 2.25743 0.821636i
\(615\) −0.0785315 0.382411i −0.00316669 0.0154203i
\(616\) −11.1819 69.4151i −0.450532 2.79681i
\(617\) −3.16928 + 0.558829i −0.127590 + 0.0224976i −0.237079 0.971490i \(-0.576190\pi\)
0.109488 + 0.993988i \(0.465079\pi\)
\(618\) 38.7272 + 30.6894i 1.55783 + 1.23451i
\(619\) 1.64887 + 4.53024i 0.0662738 + 0.182086i 0.968409 0.249368i \(-0.0802229\pi\)
−0.902135 + 0.431454i \(0.858001\pi\)
\(620\) −4.35341 2.51344i −0.174837 0.100942i
\(621\) −30.5001 + 8.06676i −1.22393 + 0.323708i
\(622\) 24.4391i 0.979920i
\(623\) 8.74686 + 7.56314i 0.350435 + 0.303011i
\(624\) −36.5212 + 46.0863i −1.46202 + 1.84493i
\(625\) 7.47341 6.27094i 0.298936 0.250838i
\(626\) −13.0865 + 10.9809i −0.523043 + 0.438885i
\(627\) −29.5447 + 26.2354i −1.17990 + 1.04774i
\(628\) 23.8886 + 65.6333i 0.953257 + 2.61905i
\(629\) −5.71938 + 9.90625i −0.228047 + 0.394988i
\(630\) −18.8129 9.85155i −0.749522 0.392495i
\(631\) 12.8825 + 22.3131i 0.512843 + 0.888271i 0.999889 + 0.0148943i \(0.00474119\pi\)
−0.487046 + 0.873377i \(0.661925\pi\)
\(632\) 22.5069 26.8227i 0.895276 1.06695i
\(633\) 14.2592 + 23.1736i 0.566751 + 0.921067i
\(634\) 1.10589 + 6.27183i 0.0439206 + 0.249086i
\(635\) 18.0531 + 6.57078i 0.716414 + 0.260753i
\(636\) 0.140658 + 5.02041i 0.00557744 + 0.199072i
\(637\) 21.2113 23.8088i 0.840423 0.943339i
\(638\) 22.2502 12.8461i 0.880892 0.508584i
\(639\) 22.4924 + 23.9438i 0.889785 + 0.947203i
\(640\) 9.40390 5.42934i 0.371722 0.214614i
\(641\) 11.2400 13.3953i 0.443951 0.529081i −0.496942 0.867784i \(-0.665544\pi\)
0.940893 + 0.338703i \(0.109988\pi\)
\(642\) 5.54272 + 1.84330i 0.218754 + 0.0727491i
\(643\) 1.98614 5.45689i 0.0783259 0.215199i −0.894349 0.447370i \(-0.852361\pi\)
0.972675 + 0.232171i \(0.0745830\pi\)
\(644\) 25.8925 67.9874i 1.02031 2.67908i
\(645\) −2.55403 + 17.3060i −0.100565 + 0.681421i
\(646\) −8.57160 + 48.6120i −0.337245 + 1.91261i
\(647\) −19.8634 + 34.4044i −0.780910 + 1.35258i 0.150503 + 0.988610i \(0.451911\pi\)
−0.931412 + 0.363966i \(0.881423\pi\)
\(648\) 58.0412 + 3.63193i 2.28007 + 0.142676i
\(649\) 38.0012 21.9400i 1.49168 0.861221i
\(650\) 34.8057 + 29.2055i 1.36519 + 1.14553i
\(651\) −4.79463 0.780350i −0.187916 0.0305843i
\(652\) −0.0763610 0.433065i −0.00299053 0.0169601i
\(653\) 4.39350 0.774693i 0.171931 0.0303161i −0.0870198 0.996207i \(-0.527734\pi\)
0.258951 + 0.965891i \(0.416623\pi\)
\(654\) −59.7001 + 12.2599i −2.33446 + 0.479401i
\(655\) 9.95088 + 8.34978i 0.388813 + 0.326253i
\(656\) −1.60425 −0.0626354
\(657\) −23.6086 25.1320i −0.921058 0.980494i
\(658\) 5.10986 + 3.05201i 0.199203 + 0.118980i
\(659\) 12.2037 + 33.5295i 0.475390 + 1.30612i 0.913367 + 0.407136i \(0.133473\pi\)
−0.437978 + 0.898986i \(0.644305\pi\)
\(660\) −28.7700 + 17.7028i −1.11987 + 0.689081i
\(661\) −24.5462 + 4.32817i −0.954738 + 0.168346i −0.629253 0.777201i \(-0.716639\pi\)
−0.325486 + 0.945547i \(0.605528\pi\)
\(662\) −77.1302 + 13.6001i −2.99775 + 0.528584i
\(663\) 0.769594 + 27.4687i 0.0298886 + 1.06679i
\(664\) −22.7120 62.4006i −0.881395 2.42161i
\(665\) −13.1926 7.87965i −0.511587 0.305560i
\(666\) 22.4737 + 11.3475i 0.870836 + 0.439706i
\(667\) 14.8443 0.574775
\(668\) −26.1392 21.9334i −1.01136 0.848630i
\(669\) 1.54957 + 1.74502i 0.0599098 + 0.0674665i
\(670\) 29.7542 5.24647i 1.14951 0.202689i
\(671\) −1.45097 8.22888i −0.0560142 0.317673i
\(672\) −17.7419 + 21.7195i −0.684408 + 0.837849i
\(673\) −26.8068 22.4936i −1.03333 0.867064i −0.0420841 0.999114i \(-0.513400\pi\)
−0.991243 + 0.132050i \(0.957844\pi\)
\(674\) 27.5221 15.8899i 1.06011 0.612056i
\(675\) 1.83323 20.2006i 0.0705610 0.777521i
\(676\) −17.5507 + 30.3987i −0.675026 + 1.16918i
\(677\) −1.06833 + 6.05877i −0.0410591 + 0.232858i −0.998431 0.0560016i \(-0.982165\pi\)
0.957372 + 0.288859i \(0.0932759\pi\)
\(678\) −25.2462 + 9.99814i −0.969574 + 0.383976i
\(679\) −9.74507 + 25.5882i −0.373982 + 0.981985i
\(680\) −8.05962 + 22.1436i −0.309072 + 0.849169i
\(681\) 25.6855 22.8085i 0.984271 0.874025i
\(682\) −7.16035 + 8.53337i −0.274184 + 0.326760i
\(683\) −27.5909 + 15.9296i −1.05574 + 0.609529i −0.924250 0.381789i \(-0.875308\pi\)
−0.131486 + 0.991318i \(0.541975\pi\)
\(684\) 74.8331 + 8.91047i 2.86132 + 0.340700i
\(685\) 2.91673 1.68397i 0.111442 0.0643413i
\(686\) 31.9990 34.8635i 1.22173 1.33109i
\(687\) −1.22521 + 0.753895i −0.0467445 + 0.0287629i
\(688\) 67.5509 + 24.5865i 2.57536 + 0.937353i
\(689\) 0.506461 + 2.87229i 0.0192946 + 0.109425i
\(690\) −28.1254 + 0.787995i −1.07072 + 0.0299984i
\(691\) −27.8346 + 33.1720i −1.05888 + 1.26192i −0.0950304 + 0.995474i \(0.530295\pi\)
−0.963849 + 0.266449i \(0.914150\pi\)
\(692\) −32.0691 55.5453i −1.21908 2.11152i
\(693\) −19.9349 + 25.8494i −0.757266 + 0.981937i
\(694\) −9.32333 + 16.1485i −0.353909 + 0.612988i
\(695\) 2.54937 + 7.00433i 0.0967030 + 0.265689i
\(696\) −25.9647 8.63487i −0.984190 0.327304i
\(697\) −0.574298 + 0.481893i −0.0217531 + 0.0182530i
\(698\) 34.1476 28.6533i 1.29251 1.08454i
\(699\) 2.52535 + 6.37672i 0.0955174 + 0.241190i
\(700\) 35.3812 + 30.5931i 1.33728 + 1.15631i
\(701\) 3.02278i 0.114169i −0.998369 0.0570845i \(-0.981820\pi\)
0.998369 0.0570845i \(-0.0181804\pi\)
\(702\) 60.2671 5.07617i 2.27464 0.191588i
\(703\) 15.7768 + 9.10874i 0.595033 + 0.343543i
\(704\) 1.02917 + 2.82763i 0.0387885 + 0.106570i
\(705\) 0.233126 1.57965i 0.00878003 0.0594930i
\(706\) −54.7412 + 9.65235i −2.06021 + 0.363271i
\(707\) −4.61849 28.6706i −0.173696 1.07827i
\(708\) −79.4168 26.4110i −2.98467 0.992586i
\(709\) 31.3992 11.4284i 1.17922 0.429201i 0.323294 0.946299i \(-0.395210\pi\)
0.855926 + 0.517098i \(0.172988\pi\)
\(710\) 14.6490 + 25.3729i 0.549769 + 0.952228i
\(711\) −16.2310 + 0.910207i −0.608710 + 0.0341354i
\(712\) −24.4570 14.1203i −0.916566 0.529179i
\(713\) −6.04798 + 2.20128i −0.226499 + 0.0824388i
\(714\) 0.537993 + 40.7777i 0.0201339 + 1.52607i
\(715\) −15.0274 + 12.6095i −0.561992 + 0.471567i
\(716\) −22.9709 + 63.1119i −0.858462 + 2.35860i
\(717\) −35.6065 19.2485i −1.32975 0.718847i
\(718\) 5.76412 32.6899i 0.215115 1.21998i
\(719\) −15.5014 + 26.8493i −0.578106 + 1.00131i 0.417590 + 0.908635i \(0.362875\pi\)
−0.995697 + 0.0926740i \(0.970459\pi\)
\(720\) 22.4135 + 6.76289i 0.835300 + 0.252038i
\(721\) 25.3607 + 15.1474i 0.944483 + 0.564119i
\(722\) 29.6093 + 5.22093i 1.10195 + 0.194303i
\(723\) 2.24179 6.74098i 0.0833732 0.250700i
\(724\) 26.8648 + 32.0162i 0.998422 + 1.18987i
\(725\) −3.26418 + 8.96825i −0.121228 + 0.333072i
\(726\) 9.63742 + 24.3353i 0.357678 + 0.903169i
\(727\) 1.31648 1.56892i 0.0488256 0.0581881i −0.741079 0.671418i \(-0.765686\pi\)
0.789905 + 0.613230i \(0.210130\pi\)
\(728\) −39.9333 + 66.8587i −1.48003 + 2.47795i
\(729\) −17.2210 20.7951i −0.637815 0.770190i
\(730\) −15.3760 26.6320i −0.569091 0.985695i
\(731\) 31.5677 11.4897i 1.16757 0.424962i
\(732\) −9.89833 + 12.4907i −0.365853 + 0.461671i
\(733\) 13.7022 + 16.3297i 0.506103 + 0.603150i 0.957237 0.289306i \(-0.0934245\pi\)
−0.451133 + 0.892457i \(0.648980\pi\)
\(734\) −7.03590 2.56086i −0.259700 0.0945230i
\(735\) −11.9227 4.36147i −0.439776 0.160875i
\(736\) −6.45231 + 36.5929i −0.237835 + 1.34883i
\(737\) 46.4425i 1.71073i
\(738\) 1.12973 + 1.20263i 0.0415858 + 0.0442693i
\(739\) −19.7052 −0.724868 −0.362434 0.932010i \(-0.618054\pi\)
−0.362434 + 0.932010i \(0.618054\pi\)
\(740\) 11.9310 + 10.0113i 0.438593 + 0.368023i
\(741\) 43.7469 1.22566i 1.60708 0.0450259i
\(742\) 0.688379 + 4.27332i 0.0252712 + 0.156879i
\(743\) 6.53488 + 7.78797i 0.239741 + 0.285713i 0.872477 0.488655i \(-0.162512\pi\)
−0.632735 + 0.774368i \(0.718068\pi\)
\(744\) 11.8592 0.332261i 0.434779 0.0121813i
\(745\) −2.87491 0.506924i −0.105329 0.0185723i
\(746\) 9.47239i 0.346809i
\(747\) −13.8962 + 27.5213i −0.508434 + 1.00695i
\(748\) 56.1793 + 32.4351i 2.05412 + 1.18595i
\(749\) 3.42956 + 0.657262i 0.125313 + 0.0240158i
\(750\) 13.0205 39.1520i 0.475440 1.42963i
\(751\) 3.18168 + 18.0442i 0.116101 + 0.658442i 0.986199 + 0.165564i \(0.0529443\pi\)
−0.870098 + 0.492879i \(0.835945\pi\)
\(752\) −6.16590 2.24420i −0.224847 0.0818377i
\(753\) −8.29148 + 3.28364i −0.302158 + 0.119662i
\(754\) −28.0249 4.94155i −1.02061 0.179960i
\(755\) 2.84923 0.103694
\(756\) 62.1124 4.30581i 2.25901 0.156601i
\(757\) −11.2021 −0.407149 −0.203574 0.979059i \(-0.565256\pi\)
−0.203574 + 0.979059i \(0.565256\pi\)
\(758\) −84.5655 14.9112i −3.07156 0.541599i
\(759\) −6.31450 + 42.7867i −0.229202 + 1.55306i
\(760\) 35.2661 + 12.8358i 1.27924 + 0.465604i
\(761\) 1.79051 + 10.1545i 0.0649060 + 0.368100i 0.999909 + 0.0134614i \(0.00428502\pi\)
−0.935003 + 0.354639i \(0.884604\pi\)
\(762\) −79.5401 + 16.3343i −2.88143 + 0.591728i
\(763\) −34.4182 + 11.9527i −1.24602 + 0.432718i
\(764\) −80.8716 46.6912i −2.92583 1.68923i
\(765\) 10.0552 4.31167i 0.363546 0.155889i
\(766\) 69.0715i 2.49566i
\(767\) −47.8639 8.43971i −1.72827 0.304740i