Properties

Label 189.2.ba.a.131.9
Level $189$
Weight $2$
Character 189.131
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 131.9
Character \(\chi\) \(=\) 189.131
Dual form 189.2.ba.a.101.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.575801 - 0.686212i) q^{2} +(1.25894 - 1.18957i) q^{3} +(0.207955 - 1.17937i) q^{4} +(0.100696 + 0.0844942i) q^{5} +(-1.54119 - 0.178947i) q^{6} +(-1.70219 - 2.02548i) q^{7} +(-2.48059 + 1.43217i) q^{8} +(0.169862 - 2.99519i) q^{9} +O(q^{10})\) \(q+(-0.575801 - 0.686212i) q^{2} +(1.25894 - 1.18957i) q^{3} +(0.207955 - 1.17937i) q^{4} +(0.100696 + 0.0844942i) q^{5} +(-1.54119 - 0.178947i) q^{6} +(-1.70219 - 2.02548i) q^{7} +(-2.48059 + 1.43217i) q^{8} +(0.169862 - 2.99519i) q^{9} -0.117751i q^{10} +(2.57587 + 3.06980i) q^{11} +(-1.14114 - 1.73214i) q^{12} +(1.02604 + 2.81901i) q^{13} +(-0.409789 + 2.33433i) q^{14} +(0.227282 - 0.0134118i) q^{15} +(0.160408 + 0.0583836i) q^{16} -0.344621 q^{17} +(-2.15314 + 1.60807i) q^{18} -4.89841i q^{19} +(0.120590 - 0.101187i) q^{20} +(-4.55239 - 0.525094i) q^{21} +(0.623349 - 3.53519i) q^{22} +(2.18009 + 5.98976i) q^{23} +(-1.41925 + 4.75384i) q^{24} +(-0.865240 - 4.90702i) q^{25} +(1.34365 - 2.32726i) q^{26} +(-3.34913 - 3.97282i) q^{27} +(-2.74277 + 1.58630i) q^{28} +(2.29851 - 6.31510i) q^{29} +(-0.140072 - 0.148241i) q^{30} +(8.59607 + 1.51572i) q^{31} +(1.90702 + 5.23950i) q^{32} +(6.89460 + 0.800529i) q^{33} +(0.198433 + 0.236483i) q^{34} +(-0.000262488 - 0.347783i) q^{35} +(-3.49712 - 0.823195i) q^{36} +(3.64300 + 6.30985i) q^{37} +(-3.36135 + 2.82051i) q^{38} +(4.64512 + 2.32843i) q^{39} +(-0.370796 - 0.0653813i) q^{40} +(-9.04416 + 3.29180i) q^{41} +(2.26094 + 3.42626i) q^{42} +(0.350643 + 1.98860i) q^{43} +(4.15611 - 2.39953i) q^{44} +(0.270180 - 0.287252i) q^{45} +(2.85495 - 4.94491i) q^{46} +(0.771769 + 4.37692i) q^{47} +(0.271395 - 0.117314i) q^{48} +(-1.20513 + 6.89548i) q^{49} +(-2.86905 + 3.41920i) q^{50} +(-0.433857 + 0.409950i) q^{51} +(3.53803 - 0.623850i) q^{52} +(5.49931 - 3.17503i) q^{53} +(-0.797771 + 4.58577i) q^{54} +0.526764i q^{55} +(7.12325 + 2.58656i) q^{56} +(-5.82699 - 6.16681i) q^{57} +(-5.65698 + 2.05897i) q^{58} +(0.167214 - 0.0608610i) q^{59} +(0.0314470 - 0.270839i) q^{60} +(-4.60007 + 0.811116i) q^{61} +(-3.90952 - 6.77148i) q^{62} +(-6.35583 + 4.75431i) q^{63} +(2.66805 - 4.62120i) q^{64} +(-0.134872 + 0.370558i) q^{65} +(-3.42058 - 5.19210i) q^{66} +(8.83064 + 7.40979i) q^{67} +(-0.0716657 + 0.406437i) q^{68} +(9.86983 + 4.94738i) q^{69} +(-0.238502 + 0.200434i) q^{70} +(0.373587 + 0.215690i) q^{71} +(3.86826 + 7.67310i) q^{72} +(1.31951 + 0.761822i) q^{73} +(2.23226 - 6.13309i) q^{74} +(-6.92652 - 5.14839i) q^{75} +(-5.77706 - 1.01865i) q^{76} +(1.83321 - 10.4427i) q^{77} +(-1.07687 - 4.52825i) q^{78} +(1.81204 - 1.52049i) q^{79} +(0.0112194 + 0.0194325i) q^{80} +(-8.94229 - 1.01754i) q^{81} +(7.46651 + 4.31079i) q^{82} +(-6.81615 - 2.48087i) q^{83} +(-1.56598 + 5.25977i) q^{84} +(-0.0347021 - 0.0291185i) q^{85} +(1.16270 - 1.38565i) q^{86} +(-4.61855 - 10.6846i) q^{87} +(-10.7861 - 3.92584i) q^{88} -15.4181 q^{89} +(-0.352686 - 0.0200014i) q^{90} +(3.96334 - 6.87669i) q^{91} +(7.51752 - 1.32554i) q^{92} +(12.6250 - 8.31740i) q^{93} +(2.55911 - 3.04983i) q^{94} +(0.413888 - 0.493252i) q^{95} +(8.63357 + 4.32769i) q^{96} +(-12.2061 + 2.15226i) q^{97} +(5.42568 - 3.14345i) q^{98} +(9.63217 - 7.19377i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.575801 0.686212i −0.407152 0.485225i 0.523034 0.852312i \(-0.324800\pi\)
−0.930187 + 0.367086i \(0.880355\pi\)
\(3\) 1.25894 1.18957i 0.726850 0.686797i
\(4\) 0.207955 1.17937i 0.103978 0.589686i
\(5\) 0.100696 + 0.0844942i 0.0450327 + 0.0377870i 0.665026 0.746820i \(-0.268420\pi\)
−0.619994 + 0.784607i \(0.712865\pi\)
\(6\) −1.54119 0.178947i −0.629190 0.0730549i
\(7\) −1.70219 2.02548i −0.643366 0.765559i
\(8\) −2.48059 + 1.43217i −0.877021 + 0.506348i
\(9\) 0.169862 2.99519i 0.0566207 0.998396i
\(10\) 0.117751i 0.0372361i
\(11\) 2.57587 + 3.06980i 0.776654 + 0.925580i 0.998777 0.0494386i \(-0.0157432\pi\)
−0.222123 + 0.975019i \(0.571299\pi\)
\(12\) −1.14114 1.73214i −0.329419 0.500025i
\(13\) 1.02604 + 2.81901i 0.284571 + 0.781852i 0.996802 + 0.0799075i \(0.0254625\pi\)
−0.712231 + 0.701945i \(0.752315\pi\)
\(14\) −0.409789 + 2.33433i −0.109521 + 0.623877i
\(15\) 0.227282 0.0134118i 0.0586840 0.00346290i
\(16\) 0.160408 + 0.0583836i 0.0401019 + 0.0145959i
\(17\) −0.344621 −0.0835829 −0.0417914 0.999126i \(-0.513307\pi\)
−0.0417914 + 0.999126i \(0.513307\pi\)
\(18\) −2.15314 + 1.60807i −0.507500 + 0.379026i
\(19\) 4.89841i 1.12377i −0.827214 0.561887i \(-0.810076\pi\)
0.827214 0.561887i \(-0.189924\pi\)
\(20\) 0.120590 0.101187i 0.0269649 0.0226262i
\(21\) −4.55239 0.525094i −0.993413 0.114585i
\(22\) 0.623349 3.53519i 0.132898 0.753704i
\(23\) 2.18009 + 5.98976i 0.454581 + 1.24895i 0.929468 + 0.368904i \(0.120267\pi\)
−0.474887 + 0.880047i \(0.657511\pi\)
\(24\) −1.41925 + 4.75384i −0.289704 + 0.970374i
\(25\) −0.865240 4.90702i −0.173048 0.981404i
\(26\) 1.34365 2.32726i 0.263511 0.456414i
\(27\) −3.34913 3.97282i −0.644540 0.764570i
\(28\) −2.74277 + 1.58630i −0.518335 + 0.299783i
\(29\) 2.29851 6.31510i 0.426822 1.17268i −0.520908 0.853613i \(-0.674407\pi\)
0.947731 0.319072i \(-0.103371\pi\)
\(30\) −0.140072 0.148241i −0.0255736 0.0270650i
\(31\) 8.59607 + 1.51572i 1.54390 + 0.272231i 0.879775 0.475391i \(-0.157693\pi\)
0.664125 + 0.747622i \(0.268804\pi\)
\(32\) 1.90702 + 5.23950i 0.337117 + 0.926222i
\(33\) 6.89460 + 0.800529i 1.20020 + 0.139354i
\(34\) 0.198433 + 0.236483i 0.0340310 + 0.0405565i
\(35\) −0.000262488 0.347783i −4.43686e−5 0.0587861i
\(36\) −3.49712 0.823195i −0.582853 0.137199i
\(37\) 3.64300 + 6.30985i 0.598905 + 1.03733i 0.992983 + 0.118257i \(0.0377305\pi\)
−0.394078 + 0.919077i \(0.628936\pi\)
\(38\) −3.36135 + 2.82051i −0.545283 + 0.457547i
\(39\) 4.64512 + 2.32843i 0.743814 + 0.372847i
\(40\) −0.370796 0.0653813i −0.0586280 0.0103377i
\(41\) −9.04416 + 3.29180i −1.41246 + 0.514094i −0.931851 0.362841i \(-0.881807\pi\)
−0.480609 + 0.876935i \(0.659585\pi\)
\(42\) 2.26094 + 3.42626i 0.348871 + 0.528683i
\(43\) 0.350643 + 1.98860i 0.0534726 + 0.303258i 0.999801 0.0199486i \(-0.00635026\pi\)
−0.946328 + 0.323207i \(0.895239\pi\)
\(44\) 4.15611 2.39953i 0.626556 0.361743i
\(45\) 0.270180 0.287252i 0.0402761 0.0428210i
\(46\) 2.85495 4.94491i 0.420939 0.729088i
\(47\) 0.771769 + 4.37692i 0.112574 + 0.638439i 0.987923 + 0.154947i \(0.0495207\pi\)
−0.875349 + 0.483492i \(0.839368\pi\)
\(48\) 0.271395 0.117314i 0.0391725 0.0169328i
\(49\) −1.20513 + 6.89548i −0.172161 + 0.985069i
\(50\) −2.86905 + 3.41920i −0.405745 + 0.483549i
\(51\) −0.433857 + 0.409950i −0.0607522 + 0.0574044i
\(52\) 3.53803 0.623850i 0.490637 0.0865125i
\(53\) 5.49931 3.17503i 0.755388 0.436123i −0.0722494 0.997387i \(-0.523018\pi\)
0.827637 + 0.561263i \(0.189684\pi\)
\(54\) −0.797771 + 4.58577i −0.108563 + 0.624044i
\(55\) 0.526764i 0.0710288i
\(56\) 7.12325 + 2.58656i 0.951884 + 0.345644i
\(57\) −5.82699 6.16681i −0.771804 0.816814i
\(58\) −5.65698 + 2.05897i −0.742798 + 0.270356i
\(59\) 0.167214 0.0608610i 0.0217694 0.00792343i −0.331112 0.943591i \(-0.607424\pi\)
0.352882 + 0.935668i \(0.385202\pi\)
\(60\) 0.0314470 0.270839i 0.00405979 0.0349652i
\(61\) −4.60007 + 0.811116i −0.588978 + 0.103853i −0.460192 0.887820i \(-0.652219\pi\)
−0.128787 + 0.991672i \(0.541108\pi\)
\(62\) −3.90952 6.77148i −0.496509 0.859979i
\(63\) −6.35583 + 4.75431i −0.800759 + 0.598987i
\(64\) 2.66805 4.62120i 0.333506 0.577649i
\(65\) −0.134872 + 0.370558i −0.0167288 + 0.0459620i
\(66\) −3.42058 5.19210i −0.421044 0.639104i
\(67\) 8.83064 + 7.40979i 1.07883 + 0.905249i 0.995824 0.0912992i \(-0.0291020\pi\)
0.0830108 + 0.996549i \(0.473546\pi\)
\(68\) −0.0716657 + 0.406437i −0.00869075 + 0.0492877i
\(69\) 9.86983 + 4.94738i 1.18819 + 0.595595i
\(70\) −0.238502 + 0.200434i −0.0285064 + 0.0239564i
\(71\) 0.373587 + 0.215690i 0.0443366 + 0.0255977i 0.522004 0.852943i \(-0.325184\pi\)
−0.477668 + 0.878540i \(0.658518\pi\)
\(72\) 3.86826 + 7.67310i 0.455878 + 0.904283i
\(73\) 1.31951 + 0.761822i 0.154437 + 0.0891645i 0.575227 0.817994i \(-0.304914\pi\)
−0.420790 + 0.907158i \(0.638247\pi\)
\(74\) 2.23226 6.13309i 0.259495 0.712957i
\(75\) −6.92652 5.14839i −0.799805 0.594485i
\(76\) −5.77706 1.01865i −0.662674 0.116847i
\(77\) 1.83321 10.4427i 0.208914 1.19006i
\(78\) −1.07687 4.52825i −0.121931 0.512723i
\(79\) 1.81204 1.52049i 0.203871 0.171068i −0.535136 0.844766i \(-0.679740\pi\)
0.739007 + 0.673698i \(0.235295\pi\)
\(80\) 0.0112194 + 0.0194325i 0.00125436 + 0.00217262i
\(81\) −8.94229 1.01754i −0.993588 0.113060i
\(82\) 7.46651 + 4.31079i 0.824538 + 0.476047i
\(83\) −6.81615 2.48087i −0.748169 0.272311i −0.0603341 0.998178i \(-0.519217\pi\)
−0.687835 + 0.725867i \(0.741439\pi\)
\(84\) −1.56598 + 5.25977i −0.170862 + 0.573888i
\(85\) −0.0347021 0.0291185i −0.00376397 0.00315834i
\(86\) 1.16270 1.38565i 0.125377 0.149418i
\(87\) −4.61855 10.6846i −0.495160 1.14551i
\(88\) −10.7861 3.92584i −1.14981 0.418496i
\(89\) −15.4181 −1.63431 −0.817156 0.576417i \(-0.804450\pi\)
−0.817156 + 0.576417i \(0.804450\pi\)
\(90\) −0.352686 0.0200014i −0.0371764 0.00210833i
\(91\) 3.96334 6.87669i 0.415471 0.720873i
\(92\) 7.51752 1.32554i 0.783756 0.138197i
\(93\) 12.6250 8.31740i 1.30915 0.862474i
\(94\) 2.55911 3.04983i 0.263952 0.314566i
\(95\) 0.413888 0.493252i 0.0424640 0.0506066i
\(96\) 8.63357 + 4.32769i 0.881160 + 0.441693i
\(97\) −12.2061 + 2.15226i −1.23934 + 0.218529i −0.754634 0.656147i \(-0.772185\pi\)
−0.484708 + 0.874676i \(0.661074\pi\)
\(98\) 5.42568 3.14345i 0.548076 0.317536i
\(99\) 9.63217 7.19377i 0.968070 0.723001i
\(100\) −5.96714 −0.596714
\(101\) −3.54678 1.29092i −0.352917 0.128451i 0.159477 0.987202i \(-0.449019\pi\)
−0.512394 + 0.858750i \(0.671241\pi\)
\(102\) 0.531128 + 0.0616690i 0.0525895 + 0.00610614i
\(103\) −6.43432 + 7.66812i −0.633992 + 0.755563i −0.983408 0.181405i \(-0.941935\pi\)
0.349416 + 0.936968i \(0.386380\pi\)
\(104\) −6.58247 5.52335i −0.645464 0.541609i
\(105\) −0.414042 0.437526i −0.0404063 0.0426982i
\(106\) −5.34525 1.94551i −0.519176 0.188965i
\(107\) −4.00378 2.31158i −0.387060 0.223469i 0.293826 0.955859i \(-0.405072\pi\)
−0.680885 + 0.732390i \(0.738405\pi\)
\(108\) −5.38191 + 3.12370i −0.517874 + 0.300578i
\(109\) −5.95833 10.3201i −0.570704 0.988489i −0.996494 0.0836667i \(-0.973337\pi\)
0.425789 0.904822i \(-0.359996\pi\)
\(110\) 0.361472 0.303311i 0.0344650 0.0289196i
\(111\) 12.0923 + 3.61014i 1.14775 + 0.342660i
\(112\) −0.154789 0.424282i −0.0146262 0.0400909i
\(113\) −3.00669 0.530160i −0.282846 0.0498733i 0.0304256 0.999537i \(-0.490314\pi\)
−0.313271 + 0.949664i \(0.601425\pi\)
\(114\) −0.876558 + 7.54941i −0.0820972 + 0.707067i
\(115\) −0.286573 + 0.787352i −0.0267230 + 0.0734209i
\(116\) −6.96987 4.02405i −0.647136 0.373624i
\(117\) 8.61774 2.59433i 0.796711 0.239845i
\(118\) −0.138046 0.0797007i −0.0127081 0.00733704i
\(119\) 0.586609 + 0.698023i 0.0537744 + 0.0639876i
\(120\) −0.544586 + 0.358775i −0.0497136 + 0.0327516i
\(121\) −0.878449 + 4.98193i −0.0798590 + 0.452903i
\(122\) 3.20532 + 2.68958i 0.290196 + 0.243503i
\(123\) −7.47024 + 14.9028i −0.673569 + 1.34374i
\(124\) 3.57519 9.82277i 0.321062 0.882110i
\(125\) 0.656113 1.13642i 0.0586845 0.101645i
\(126\) 6.92216 + 1.62391i 0.616675 + 0.144669i
\(127\) 4.57273 + 7.92020i 0.405764 + 0.702804i 0.994410 0.105587i \(-0.0336720\pi\)
−0.588646 + 0.808391i \(0.700339\pi\)
\(128\) 6.27472 1.10640i 0.554612 0.0977931i
\(129\) 2.80701 + 2.08641i 0.247143 + 0.183698i
\(130\) 0.331941 0.120817i 0.0291131 0.0105963i
\(131\) −5.23893 + 1.90681i −0.457727 + 0.166599i −0.560585 0.828097i \(-0.689424\pi\)
0.102858 + 0.994696i \(0.467201\pi\)
\(132\) 2.37789 7.96483i 0.206969 0.693249i
\(133\) −9.92164 + 8.33801i −0.860315 + 0.722997i
\(134\) 10.3263i 0.892052i
\(135\) −0.00156415 0.683031i −0.000134621 0.0587859i
\(136\) 0.854863 0.493555i 0.0733039 0.0423220i
\(137\) 14.2458 2.51192i 1.21710 0.214608i 0.472023 0.881586i \(-0.343524\pi\)
0.745077 + 0.666979i \(0.232413\pi\)
\(138\) −2.28810 9.62150i −0.194776 0.819037i
\(139\) −8.80185 + 10.4896i −0.746563 + 0.889720i −0.996919 0.0784343i \(-0.975008\pi\)
0.250356 + 0.968154i \(0.419452\pi\)
\(140\) −0.410220 0.0720137i −0.0346699 0.00608627i
\(141\) 6.17825 + 4.59221i 0.520302 + 0.386734i
\(142\) −0.0671020 0.380554i −0.00563107 0.0319354i
\(143\) −6.01086 + 10.4111i −0.502654 + 0.870622i
\(144\) 0.202117 0.470534i 0.0168431 0.0392112i
\(145\) 0.765040 0.441696i 0.0635331 0.0366809i
\(146\) −0.237005 1.34412i −0.0196147 0.111241i
\(147\) 6.68545 + 10.1146i 0.551406 + 0.834237i
\(148\) 8.19925 2.98428i 0.673974 0.245306i
\(149\) 16.0341 + 2.82725i 1.31357 + 0.231617i 0.786175 0.618004i \(-0.212059\pi\)
0.527393 + 0.849622i \(0.323170\pi\)
\(150\) 0.455405 + 7.71751i 0.0371836 + 0.630132i
\(151\) −3.24977 + 2.72688i −0.264462 + 0.221910i −0.765370 0.643590i \(-0.777444\pi\)
0.500908 + 0.865501i \(0.333000\pi\)
\(152\) 7.01536 + 12.1510i 0.569020 + 0.985572i
\(153\) −0.0585380 + 1.03220i −0.00473252 + 0.0834488i
\(154\) −8.22150 + 4.75496i −0.662508 + 0.383166i
\(155\) 0.737523 + 0.878945i 0.0592393 + 0.0705986i
\(156\) 3.71206 4.99411i 0.297203 0.399849i
\(157\) −1.56492 4.29960i −0.124895 0.343145i 0.861449 0.507843i \(-0.169557\pi\)
−0.986344 + 0.164698i \(0.947335\pi\)
\(158\) −2.08675 0.367951i −0.166013 0.0292726i
\(159\) 3.14639 10.5390i 0.249525 0.835794i
\(160\) −0.250677 + 0.688731i −0.0198178 + 0.0544489i
\(161\) 8.42121 14.6114i 0.663684 1.15154i
\(162\) 4.45073 + 6.72221i 0.349682 + 0.528147i
\(163\) −4.14531 + 7.17988i −0.324686 + 0.562372i −0.981449 0.191725i \(-0.938592\pi\)
0.656763 + 0.754097i \(0.271925\pi\)
\(164\) 2.00148 + 11.3510i 0.156290 + 0.886363i
\(165\) 0.626621 + 0.663164i 0.0487823 + 0.0516273i
\(166\) 2.22233 + 6.10581i 0.172487 + 0.473903i
\(167\) 0.761050 4.31613i 0.0588919 0.333992i −0.941100 0.338130i \(-0.890206\pi\)
0.999991 + 0.00413722i \(0.00131692\pi\)
\(168\) 12.0446 5.21725i 0.929264 0.402520i
\(169\) 3.06452 2.57143i 0.235732 0.197803i
\(170\) 0.0405794i 0.00311230i
\(171\) −14.6717 0.832054i −1.12197 0.0636288i
\(172\) 2.41821 0.184387
\(173\) −15.5919 5.67499i −1.18543 0.431462i −0.327314 0.944916i \(-0.606144\pi\)
−0.858117 + 0.513454i \(0.828366\pi\)
\(174\) −4.67252 + 9.32148i −0.354223 + 0.706659i
\(175\) −8.46627 + 10.1052i −0.639990 + 0.763880i
\(176\) 0.233963 + 0.642808i 0.0176356 + 0.0484535i
\(177\) 0.138115 0.275533i 0.0103813 0.0207103i
\(178\) 8.87773 + 10.5801i 0.665414 + 0.793010i
\(179\) 10.4083i 0.777951i 0.921248 + 0.388976i \(0.127171\pi\)
−0.921248 + 0.388976i \(0.872829\pi\)
\(180\) −0.282592 0.378379i −0.0210631 0.0282027i
\(181\) 14.3465 8.28296i 1.06637 0.615668i 0.139181 0.990267i \(-0.455553\pi\)
0.927187 + 0.374599i \(0.122220\pi\)
\(182\) −7.00096 + 1.23991i −0.518946 + 0.0919081i
\(183\) −4.82633 + 6.49323i −0.356773 + 0.479994i
\(184\) −13.9863 11.7359i −1.03108 0.865179i
\(185\) −0.166310 + 0.943191i −0.0122274 + 0.0693448i
\(186\) −12.9770 3.87426i −0.951518 0.284075i
\(187\) −0.887699 1.05792i −0.0649150 0.0773626i
\(188\) 5.32251 0.388184
\(189\) −2.34603 + 13.5461i −0.170649 + 0.985332i
\(190\) −0.576792 −0.0418449
\(191\) −6.66865 7.94739i −0.482527 0.575053i 0.468774 0.883318i \(-0.344696\pi\)
−0.951300 + 0.308265i \(0.900252\pi\)
\(192\) −2.13831 8.99163i −0.154319 0.648915i
\(193\) 3.16593 17.9549i 0.227888 1.29242i −0.629197 0.777246i \(-0.716616\pi\)
0.857086 0.515174i \(-0.172273\pi\)
\(194\) 8.50519 + 7.13670i 0.610637 + 0.512385i
\(195\) 0.271007 + 0.626949i 0.0194072 + 0.0448968i
\(196\) 7.88173 + 2.85525i 0.562981 + 0.203946i
\(197\) −18.9850 + 10.9610i −1.35263 + 0.780941i −0.988617 0.150454i \(-0.951927\pi\)
−0.364012 + 0.931394i \(0.618593\pi\)
\(198\) −10.4827 2.46754i −0.744970 0.175360i
\(199\) 7.25537i 0.514320i −0.966369 0.257160i \(-0.917213\pi\)
0.966369 0.257160i \(-0.0827867\pi\)
\(200\) 9.17399 + 10.9331i 0.648699 + 0.773089i
\(201\) 19.9317 1.17616i 1.40587 0.0829596i
\(202\) 1.15639 + 3.17715i 0.0813633 + 0.223544i
\(203\) −16.7036 + 6.09389i −1.17236 + 0.427707i
\(204\) 0.393261 + 0.596931i 0.0275337 + 0.0417935i
\(205\) −1.18885 0.432707i −0.0830330 0.0302215i
\(206\) 8.96685 0.624750
\(207\) 18.3108 5.51236i 1.27269 0.383135i
\(208\) 0.512094i 0.0355074i
\(209\) 15.0372 12.6177i 1.04014 0.872783i
\(210\) −0.0618303 + 0.536048i −0.00426670 + 0.0369908i
\(211\) 0.796078 4.51478i 0.0548043 0.310810i −0.945067 0.326878i \(-0.894003\pi\)
0.999871 + 0.0160673i \(0.00511459\pi\)
\(212\) −2.60093 7.14600i −0.178633 0.490789i
\(213\) 0.726901 0.172865i 0.0498064 0.0118445i
\(214\) 0.719141 + 4.07845i 0.0491595 + 0.278797i
\(215\) −0.132716 + 0.229871i −0.00905118 + 0.0156771i
\(216\) 13.9976 + 5.05843i 0.952414 + 0.344182i
\(217\) −11.5620 19.9912i −0.784883 1.35709i
\(218\) −3.65099 + 10.0310i −0.247276 + 0.679386i
\(219\) 2.56743 0.610562i 0.173491 0.0412580i
\(220\) 0.621251 + 0.109543i 0.0418847 + 0.00738540i
\(221\) −0.353593 0.971490i −0.0237853 0.0653495i
\(222\) −4.48543 10.3766i −0.301042 0.696433i
\(223\) 15.1586 + 18.0653i 1.01510 + 1.20974i 0.977605 + 0.210447i \(0.0674919\pi\)
0.0374904 + 0.999297i \(0.488064\pi\)
\(224\) 7.36639 12.7812i 0.492188 0.853982i
\(225\) −14.8444 + 1.75804i −0.989628 + 0.117203i
\(226\) 1.36745 + 2.36849i 0.0909615 + 0.157550i
\(227\) −1.87601 + 1.57416i −0.124515 + 0.104480i −0.702919 0.711270i \(-0.748120\pi\)
0.578404 + 0.815751i \(0.303676\pi\)
\(228\) −8.48472 + 5.58977i −0.561914 + 0.370192i
\(229\) 0.258016 + 0.0454952i 0.0170502 + 0.00300640i 0.182167 0.983268i \(-0.441689\pi\)
−0.165117 + 0.986274i \(0.552800\pi\)
\(230\) 0.705299 0.256708i 0.0465060 0.0169268i
\(231\) −10.1144 15.3275i −0.665481 1.00848i
\(232\) 3.34263 + 18.9570i 0.219455 + 1.24459i
\(233\) −25.1425 + 14.5160i −1.64714 + 0.950977i −0.668941 + 0.743316i \(0.733252\pi\)
−0.978201 + 0.207662i \(0.933415\pi\)
\(234\) −6.74236 4.41979i −0.440762 0.288931i
\(235\) −0.292110 + 0.505950i −0.0190552 + 0.0330045i
\(236\) −0.0370047 0.209864i −0.00240880 0.0136610i
\(237\) 0.472537 4.06975i 0.0306945 0.264359i
\(238\) 0.141222 0.804460i 0.00915407 0.0521454i
\(239\) 1.21344 1.44612i 0.0784911 0.0935420i −0.725370 0.688359i \(-0.758331\pi\)
0.803861 + 0.594817i \(0.202776\pi\)
\(240\) 0.0372408 + 0.0111182i 0.00240389 + 0.000717677i
\(241\) 18.0533 3.18328i 1.16291 0.205053i 0.441307 0.897356i \(-0.354515\pi\)
0.721607 + 0.692303i \(0.243404\pi\)
\(242\) 3.92447 2.26580i 0.252275 0.145651i
\(243\) −12.4682 + 9.35644i −0.799838 + 0.600216i
\(244\) 5.59387i 0.358111i
\(245\) −0.703980 + 0.592523i −0.0449757 + 0.0378549i
\(246\) 14.5279 3.45488i 0.926263 0.220275i
\(247\) 13.8087 5.02595i 0.878625 0.319793i
\(248\) −23.4941 + 8.55114i −1.49188 + 0.542998i
\(249\) −11.5323 + 4.98499i −0.730829 + 0.315911i
\(250\) −1.15762 + 0.204119i −0.0732141 + 0.0129096i
\(251\) 3.29266 + 5.70305i 0.207831 + 0.359973i 0.951031 0.309096i \(-0.100026\pi\)
−0.743200 + 0.669069i \(0.766693\pi\)
\(252\) 4.28538 + 8.48457i 0.269953 + 0.534478i
\(253\) −12.7717 + 22.1213i −0.802952 + 1.39075i
\(254\) 2.80196 7.69832i 0.175811 0.483036i
\(255\) −0.0783262 + 0.00462198i −0.00490498 + 0.000289439i
\(256\) −12.5476 10.5287i −0.784224 0.658042i
\(257\) 5.02735 28.5115i 0.313598 1.77850i −0.266381 0.963868i \(-0.585828\pi\)
0.579978 0.814632i \(-0.303061\pi\)
\(258\) −0.184555 3.12756i −0.0114899 0.194713i
\(259\) 6.57942 18.1193i 0.408825 1.12588i
\(260\) 0.408978 + 0.236124i 0.0253638 + 0.0146438i
\(261\) −18.5245 7.95716i −1.14664 0.492536i
\(262\) 4.32506 + 2.49707i 0.267203 + 0.154270i
\(263\) −7.94138 + 21.8188i −0.489686 + 1.34540i 0.411278 + 0.911510i \(0.365082\pi\)
−0.900965 + 0.433892i \(0.857140\pi\)
\(264\) −18.2492 + 7.88845i −1.12316 + 0.485500i
\(265\) 0.822031 + 0.144946i 0.0504970 + 0.00890398i
\(266\) 11.4345 + 2.00732i 0.701096 + 0.123077i
\(267\) −19.4104 + 18.3408i −1.18790 + 1.12244i
\(268\) 10.5753 8.87371i 0.645988 0.542048i
\(269\) −4.60903 7.98308i −0.281018 0.486737i 0.690618 0.723220i \(-0.257339\pi\)
−0.971636 + 0.236483i \(0.924005\pi\)
\(270\) −0.467803 + 0.394363i −0.0284696 + 0.0240002i
\(271\) 25.5138 + 14.7304i 1.54985 + 0.894807i 0.998152 + 0.0607643i \(0.0193538\pi\)
0.551700 + 0.834043i \(0.313980\pi\)
\(272\) −0.0552799 0.0201202i −0.00335183 0.00121997i
\(273\) −3.19067 13.3720i −0.193108 0.809310i
\(274\) −9.92644 8.32927i −0.599678 0.503190i
\(275\) 12.8348 15.2960i 0.773970 0.922381i
\(276\) 7.88729 10.6114i 0.474759 0.638729i
\(277\) −2.86248 1.04186i −0.171990 0.0625991i 0.254590 0.967049i \(-0.418059\pi\)
−0.426580 + 0.904450i \(0.640282\pi\)
\(278\) 12.2662 0.735680
\(279\) 6.00001 25.4894i 0.359211 1.52601i
\(280\) 0.498735 + 0.862331i 0.0298051 + 0.0515341i
\(281\) 24.6845 4.35255i 1.47256 0.259651i 0.620956 0.783845i \(-0.286744\pi\)
0.851599 + 0.524194i \(0.175633\pi\)
\(282\) −0.406208 6.88379i −0.0241893 0.409924i
\(283\) 7.17877 8.55533i 0.426734 0.508562i −0.509243 0.860623i \(-0.670075\pi\)
0.935977 + 0.352061i \(0.114519\pi\)
\(284\) 0.332068 0.395744i 0.0197046 0.0234831i
\(285\) −0.0656964 1.11332i −0.00389152 0.0659475i
\(286\) 10.6053 1.87000i 0.627105 0.110575i
\(287\) 22.0623 + 12.7155i 1.30230 + 0.750572i
\(288\) 16.0172 4.82190i 0.943824 0.284133i
\(289\) −16.8812 −0.993014
\(290\) −0.743608 0.270651i −0.0436662 0.0158932i
\(291\) −12.8065 + 17.2295i −0.750730 + 1.01001i
\(292\) 1.17287 1.39777i 0.0686371 0.0817986i
\(293\) 3.69754 + 3.10260i 0.216012 + 0.181256i 0.744373 0.667764i \(-0.232749\pi\)
−0.528360 + 0.849020i \(0.677193\pi\)
\(294\) 3.09127 10.4116i 0.180286 0.607218i
\(295\) 0.0219803 + 0.00800016i 0.00127974 + 0.000465787i
\(296\) −18.0735 10.4348i −1.05050 0.606508i
\(297\) 3.56886 20.5146i 0.207087 1.19038i
\(298\) −7.29237 12.6308i −0.422436 0.731680i
\(299\) −14.6483 + 12.2914i −0.847135 + 0.710830i
\(300\) −7.51227 + 7.09831i −0.433721 + 0.409821i
\(301\) 3.43100 4.09518i 0.197759 0.236042i
\(302\) 3.74243 + 0.659892i 0.215353 + 0.0379725i
\(303\) −6.00082 + 2.59393i −0.344738 + 0.149018i
\(304\) 0.285987 0.785743i 0.0164025 0.0450655i
\(305\) −0.531744 0.307003i −0.0304476 0.0175789i
\(306\) 0.742018 0.554174i 0.0424183 0.0316800i
\(307\) −17.7257 10.2339i −1.01166 0.584082i −0.0999825 0.994989i \(-0.531879\pi\)
−0.911677 + 0.410907i \(0.865212\pi\)
\(308\) −11.9347 4.33366i −0.680040 0.246933i
\(309\) 1.02132 + 17.3078i 0.0581008 + 0.984604i
\(310\) 0.178477 1.01219i 0.0101368 0.0574888i
\(311\) 11.3004 + 9.48217i 0.640787 + 0.537684i 0.904260 0.426982i \(-0.140423\pi\)
−0.263473 + 0.964667i \(0.584868\pi\)
\(312\) −14.8573 + 0.876721i −0.841130 + 0.0496345i
\(313\) 4.05965 11.1538i 0.229465 0.630450i −0.770511 0.637427i \(-0.779999\pi\)
0.999976 + 0.00697724i \(0.00222094\pi\)
\(314\) −2.04935 + 3.54958i −0.115652 + 0.200314i
\(315\) −1.04172 0.0582889i −0.0586943 0.00328421i
\(316\) −1.41639 2.45327i −0.0796784 0.138007i
\(317\) −20.1601 + 3.55477i −1.13230 + 0.199656i −0.708237 0.705975i \(-0.750509\pi\)
−0.424067 + 0.905631i \(0.639398\pi\)
\(318\) −9.04366 + 3.90925i −0.507143 + 0.219220i
\(319\) 25.3068 9.21090i 1.41691 0.515712i
\(320\) 0.659127 0.239903i 0.0368463 0.0134110i
\(321\) −7.79030 + 1.85262i −0.434812 + 0.103403i
\(322\) −14.8755 + 2.63452i −0.828977 + 0.146816i
\(323\) 1.68810i 0.0939282i
\(324\) −3.05965 + 10.3347i −0.169981 + 0.574150i
\(325\) 12.9452 7.47390i 0.718069 0.414577i
\(326\) 7.31379 1.28962i 0.405074 0.0714254i
\(327\) −19.7777 5.90460i −1.09371 0.326525i
\(328\) 17.7204 21.1184i 0.978447 1.16607i
\(329\) 7.55166 9.01353i 0.416337 0.496932i
\(330\) 0.0942630 0.811845i 0.00518900 0.0446906i
\(331\) −2.39022 13.5556i −0.131378 0.745083i −0.977314 0.211798i \(-0.932068\pi\)
0.845935 0.533285i \(-0.179043\pi\)
\(332\) −4.34333 + 7.52287i −0.238371 + 0.412871i
\(333\) 19.5180 9.83965i 1.06958 0.539209i
\(334\) −3.40000 + 1.96299i −0.186040 + 0.107410i
\(335\) 0.263129 + 1.49228i 0.0143762 + 0.0815317i
\(336\) −0.699582 0.350014i −0.0381653 0.0190948i
\(337\) −11.8712 + 4.32077i −0.646667 + 0.235367i −0.644469 0.764630i \(-0.722922\pi\)
−0.00219742 + 0.999998i \(0.500699\pi\)
\(338\) −3.52910 0.622276i −0.191958 0.0338473i
\(339\) −4.41590 + 2.90922i −0.239839 + 0.158007i
\(340\) −0.0415580 + 0.0348713i −0.00225380 + 0.00189116i
\(341\) 17.4894 + 30.2925i 0.947104 + 1.64043i
\(342\) 7.87699 + 10.5470i 0.425939 + 0.570315i
\(343\) 16.0180 9.29642i 0.864891 0.501960i
\(344\) −3.71780 4.43071i −0.200451 0.238888i
\(345\) 0.575830 + 1.33213i 0.0310016 + 0.0717193i
\(346\) 5.08358 + 13.9670i 0.273295 + 0.750872i
\(347\) 17.8481 + 3.14709i 0.958134 + 0.168945i 0.630784 0.775958i \(-0.282733\pi\)
0.327350 + 0.944903i \(0.393845\pi\)
\(348\) −13.5615 + 3.22508i −0.726974 + 0.172882i
\(349\) −6.17471 + 16.9649i −0.330525 + 0.908109i 0.657450 + 0.753498i \(0.271635\pi\)
−0.987975 + 0.154612i \(0.950587\pi\)
\(350\) 11.8092 0.00891295i 0.631228 0.000476417i
\(351\) 7.76310 13.5175i 0.414364 0.721510i
\(352\) −11.1720 + 19.3505i −0.595469 + 1.03138i
\(353\) −2.71457 15.3951i −0.144482 0.819398i −0.967782 0.251791i \(-0.918981\pi\)
0.823300 0.567607i \(-0.192131\pi\)
\(354\) −0.268601 + 0.0638761i −0.0142760 + 0.00339498i
\(355\) 0.0193942 + 0.0532851i 0.00102934 + 0.00282808i
\(356\) −3.20627 + 18.1836i −0.169932 + 0.963731i
\(357\) 1.56885 + 0.180959i 0.0830324 + 0.00957734i
\(358\) 7.14229 5.99309i 0.377482 0.316745i
\(359\) 10.1138i 0.533785i 0.963726 + 0.266892i \(0.0859968\pi\)
−0.963726 + 0.266892i \(0.914003\pi\)
\(360\) −0.258814 + 1.09950i −0.0136407 + 0.0579486i
\(361\) −4.99446 −0.262866
\(362\) −13.9446 5.07542i −0.732912 0.266758i
\(363\) 4.82042 + 7.31693i 0.253007 + 0.384039i
\(364\) −7.28598 6.10430i −0.381889 0.319952i
\(365\) 0.0685006 + 0.188204i 0.00358549 + 0.00985105i
\(366\) 7.23474 0.426917i 0.378166 0.0223153i
\(367\) −17.9093 21.3435i −0.934859 1.11412i −0.993269 0.115829i \(-0.963048\pi\)
0.0584104 0.998293i \(-0.481397\pi\)
\(368\) 1.08809i 0.0567204i
\(369\) 8.32331 + 27.6481i 0.433294 + 1.43930i
\(370\) 0.742991 0.428966i 0.0386262 0.0223009i
\(371\) −15.7918 5.73425i −0.819869 0.297707i
\(372\) −7.18388 16.6192i −0.372467 0.861666i
\(373\) 15.1151 + 12.6831i 0.782632 + 0.656706i 0.943910 0.330203i \(-0.107117\pi\)
−0.161278 + 0.986909i \(0.551562\pi\)
\(374\) −0.214819 + 1.21830i −0.0111080 + 0.0629968i
\(375\) −0.525841 2.21118i −0.0271543 0.114185i
\(376\) −8.18293 9.75203i −0.422002 0.502923i
\(377\) 20.1607 1.03833
\(378\) 10.6463 6.18996i 0.547588 0.318377i
\(379\) 3.29633 0.169321 0.0846605 0.996410i \(-0.473019\pi\)
0.0846605 + 0.996410i \(0.473019\pi\)
\(380\) −0.495658 0.590702i −0.0254267 0.0303024i
\(381\) 15.1784 + 4.53150i 0.777613 + 0.232156i
\(382\) −1.61378 + 9.15222i −0.0825684 + 0.468269i
\(383\) −23.6377 19.8344i −1.20783 1.01349i −0.999371 0.0354584i \(-0.988711\pi\)
−0.208459 0.978031i \(-0.566845\pi\)
\(384\) 6.58336 8.85709i 0.335956 0.451987i
\(385\) 1.06695 0.896649i 0.0543767 0.0456975i
\(386\) −14.1438 + 8.16592i −0.719900 + 0.415635i
\(387\) 6.01578 0.712455i 0.305799 0.0362161i
\(388\) 14.8431i 0.753545i
\(389\) −8.64017 10.2969i −0.438074 0.522076i 0.501160 0.865355i \(-0.332907\pi\)
−0.939234 + 0.343279i \(0.888462\pi\)
\(390\) 0.274174 0.546966i 0.0138834 0.0276967i
\(391\) −0.751306 2.06420i −0.0379952 0.104391i
\(392\) −6.88606 18.8308i −0.347799 0.951099i
\(393\) −4.32721 + 8.63262i −0.218279 + 0.435458i
\(394\) 18.4532 + 6.71641i 0.929658 + 0.338368i
\(395\) 0.310938 0.0156450
\(396\) −6.48107 12.8559i −0.325686 0.646033i
\(397\) 32.3533i 1.62376i 0.583821 + 0.811882i \(0.301557\pi\)
−0.583821 + 0.811882i \(0.698443\pi\)
\(398\) −4.97873 + 4.17765i −0.249561 + 0.209407i
\(399\) −2.57213 + 22.2995i −0.128768 + 1.11637i
\(400\) 0.147699 0.837640i 0.00738493 0.0418820i
\(401\) 13.0462 + 35.8442i 0.651498 + 1.78998i 0.612139 + 0.790750i \(0.290309\pi\)
0.0393585 + 0.999225i \(0.487469\pi\)
\(402\) −12.2838 13.0001i −0.612659 0.648388i
\(403\) 4.54704 + 25.7876i 0.226504 + 1.28457i
\(404\) −2.26005 + 3.91452i −0.112442 + 0.194754i
\(405\) −0.814480 0.858034i −0.0404718 0.0426361i
\(406\) 13.7996 + 7.95334i 0.684864 + 0.394718i
\(407\) −9.98612 + 27.4366i −0.494993 + 1.35998i
\(408\) 0.489105 1.63827i 0.0242143 0.0811066i
\(409\) −22.3158 3.93488i −1.10345 0.194567i −0.407885 0.913033i \(-0.633734\pi\)
−0.695562 + 0.718466i \(0.744845\pi\)
\(410\) 0.387613 + 1.06496i 0.0191428 + 0.0525945i
\(411\) 14.9465 20.1087i 0.737257 0.991888i
\(412\) 7.70552 + 9.18309i 0.379624 + 0.452418i
\(413\) −0.407902 0.235092i −0.0200716 0.0115681i
\(414\) −14.3260 9.39105i −0.704084 0.461545i
\(415\) −0.476741 0.825740i −0.0234023 0.0405340i
\(416\) −12.8135 + 10.7518i −0.628235 + 0.527152i
\(417\) 1.39712 + 23.6762i 0.0684172 + 1.15943i
\(418\) −17.3168 3.05342i −0.846993 0.149348i
\(419\) 1.24840 0.454379i 0.0609881 0.0221979i −0.311346 0.950297i \(-0.600780\pi\)
0.372334 + 0.928099i \(0.378558\pi\)
\(420\) −0.602108 + 0.397323i −0.0293799 + 0.0193874i
\(421\) −0.798906 4.53082i −0.0389363 0.220819i 0.959131 0.282963i \(-0.0913173\pi\)
−0.998067 + 0.0621441i \(0.980206\pi\)
\(422\) −3.55648 + 2.05334i −0.173127 + 0.0999548i
\(423\) 13.2408 1.56812i 0.643789 0.0762446i
\(424\) −9.09435 + 15.7519i −0.441661 + 0.764979i
\(425\) 0.298180 + 1.69106i 0.0144639 + 0.0820286i
\(426\) −0.537172 0.399273i −0.0260261 0.0193448i
\(427\) 9.47306 + 7.93667i 0.458434 + 0.384082i
\(428\) −3.55882 + 4.24124i −0.172022 + 0.205008i
\(429\) 4.81740 + 20.2573i 0.232586 + 0.978032i
\(430\) 0.234159 0.0412885i 0.0112921 0.00199111i
\(431\) 15.3689 8.87327i 0.740296 0.427410i −0.0818808 0.996642i \(-0.526093\pi\)
0.822177 + 0.569232i \(0.192759\pi\)
\(432\) −0.305278 0.832806i −0.0146877 0.0400684i
\(433\) 1.22234i 0.0587418i 0.999569 + 0.0293709i \(0.00935038\pi\)
−0.999569 + 0.0293709i \(0.990650\pi\)
\(434\) −7.06077 + 19.4450i −0.338928 + 0.933388i
\(435\) 0.437713 1.46614i 0.0209867 0.0702958i
\(436\) −13.4103 + 4.88096i −0.642239 + 0.233756i
\(437\) 29.3403 10.6790i 1.40354 0.510846i
\(438\) −1.89730 1.41024i −0.0906566 0.0673838i
\(439\) 4.79703 0.845847i 0.228950 0.0403701i −0.0579961 0.998317i \(-0.518471\pi\)
0.286946 + 0.957947i \(0.407360\pi\)
\(440\) −0.754414 1.30668i −0.0359653 0.0622937i
\(441\) 20.4486 + 4.78087i 0.973741 + 0.227660i
\(442\) −0.463049 + 0.802024i −0.0220250 + 0.0381484i
\(443\) 7.95536 21.8572i 0.377971 1.03847i −0.594226 0.804298i \(-0.702541\pi\)
0.972196 0.234168i \(-0.0752364\pi\)
\(444\) 6.77236 13.5106i 0.321402 0.641184i
\(445\) −1.55254 1.30274i −0.0735975 0.0617557i
\(446\) 3.66832 20.8041i 0.173700 0.985100i
\(447\) 23.5492 15.5143i 1.11384 0.733803i
\(448\) −13.9016 + 2.46206i −0.656791 + 0.116321i
\(449\) 19.9333 + 11.5085i 0.940710 + 0.543119i 0.890183 0.455603i \(-0.150576\pi\)
0.0505273 + 0.998723i \(0.483910\pi\)
\(450\) 9.75382 + 9.17415i 0.459799 + 0.432473i
\(451\) −33.4018 19.2845i −1.57283 0.908072i
\(452\) −1.25051 + 3.43576i −0.0588192 + 0.161604i
\(453\) −0.847459 + 7.29879i −0.0398171 + 0.342927i
\(454\) 2.16041 + 0.380939i 0.101393 + 0.0178783i
\(455\) 0.980134 0.357578i 0.0459494 0.0167635i
\(456\) 23.2863 + 6.95209i 1.09048 + 0.325561i
\(457\) 20.3778 17.0990i 0.953231 0.799856i −0.0266074 0.999646i \(-0.508470\pi\)
0.979839 + 0.199790i \(0.0640260\pi\)
\(458\) −0.117346 0.203250i −0.00548323 0.00949724i
\(459\) 1.15418 + 1.36912i 0.0538725 + 0.0639050i
\(460\) 0.868987 + 0.501710i 0.0405167 + 0.0233923i
\(461\) −25.7975 9.38952i −1.20151 0.437314i −0.337758 0.941233i \(-0.609669\pi\)
−0.863751 + 0.503919i \(0.831891\pi\)
\(462\) −4.69403 + 15.7662i −0.218386 + 0.733512i
\(463\) 2.44473 + 2.05137i 0.113616 + 0.0953355i 0.697826 0.716267i \(-0.254151\pi\)
−0.584210 + 0.811603i \(0.698595\pi\)
\(464\) 0.737397 0.878795i 0.0342328 0.0407970i
\(465\) 1.97406 + 0.229207i 0.0915449 + 0.0106292i
\(466\) 24.4382 + 8.89476i 1.13208 + 0.412042i
\(467\) 16.9027 0.782162 0.391081 0.920356i \(-0.372101\pi\)
0.391081 + 0.920356i \(0.372101\pi\)
\(468\) −1.26757 10.7030i −0.0585935 0.494748i
\(469\) −0.0230191 30.4991i −0.00106292 1.40832i
\(470\) 0.515386 0.0908765i 0.0237730 0.00419182i
\(471\) −7.08480 3.55135i −0.326450 0.163638i
\(472\) −0.327627 + 0.390450i −0.0150802 + 0.0179719i
\(473\) −5.20138 + 6.19877i −0.239160 + 0.285020i
\(474\) −3.06480 + 2.01910i −0.140771 + 0.0927405i
\(475\) −24.0366 + 4.23831i −1.10288 + 0.194467i
\(476\) 0.945217 0.546673i 0.0433240 0.0250567i
\(477\) −8.57568 17.0108i −0.392653 0.778870i
\(478\) −1.69105 −0.0773468
\(479\) 35.4520 + 12.9035i 1.61984 + 0.589574i 0.983352 0.181710i \(-0.0581633\pi\)
0.636490 + 0.771285i \(0.280386\pi\)
\(480\) 0.503703 + 1.16527i 0.0229908 + 0.0531870i
\(481\) −14.0497 + 16.7438i −0.640611 + 0.763450i
\(482\) −12.5795 10.5554i −0.572980 0.480787i
\(483\) −6.77945 28.4125i −0.308476 1.29281i
\(484\) 5.69287 + 2.07204i 0.258767 + 0.0941835i
\(485\) −1.41096 0.814620i −0.0640685 0.0369900i
\(486\) 13.5997 + 3.16842i 0.616896 + 0.143723i
\(487\) −9.18231 15.9042i −0.416090 0.720689i 0.579452 0.815006i \(-0.303267\pi\)
−0.995542 + 0.0943172i \(0.969933\pi\)
\(488\) 10.2492 8.60012i 0.463960 0.389309i
\(489\) 3.32225 + 13.9702i 0.150238 + 0.631753i
\(490\) 0.811949 + 0.141905i 0.0366801 + 0.00641062i
\(491\) −17.9717 3.16890i −0.811053 0.143011i −0.247284 0.968943i \(-0.579538\pi\)
−0.563769 + 0.825933i \(0.690649\pi\)
\(492\) 16.0225 + 11.9093i 0.722350 + 0.536913i
\(493\) −0.792114 + 2.17632i −0.0356750 + 0.0980163i
\(494\) −11.3999 6.58174i −0.512906 0.296126i
\(495\) 1.57776 + 0.0894771i 0.0709149 + 0.00402170i
\(496\) 1.29038 + 0.745003i 0.0579399 + 0.0334516i
\(497\) −0.199037 1.12384i −0.00892805 0.0504110i
\(498\) 10.0611 + 5.04324i 0.450847 + 0.225993i
\(499\) 6.49963 36.8612i 0.290963 1.65013i −0.392208 0.919876i \(-0.628289\pi\)
0.683172 0.730258i \(-0.260600\pi\)
\(500\) −1.20382 1.01013i −0.0538365 0.0451742i
\(501\) −4.17621 6.33907i −0.186579 0.283209i
\(502\) 2.01759 5.54328i 0.0900494 0.247409i
\(503\) 8.72136 15.1058i 0.388866 0.673536i −0.603431 0.797415i \(-0.706200\pi\)
0.992297 + 0.123879i \(0.0395335\pi\)
\(504\) 8.95721 20.8961i 0.398986 0.930787i
\(505\) −0.248072 0.429673i −0.0110391 0.0191202i
\(506\) 22.5339 3.97333i 1.00175 0.176636i
\(507\) 0.799151 6.88273i 0.0354915 0.305673i
\(508\) 10.2918 3.74591i 0.456625 0.166198i
\(509\) 26.2302 9.54701i 1.16263 0.423164i 0.312595 0.949886i \(-0.398802\pi\)
0.850037 + 0.526723i \(0.176579\pi\)
\(510\) 0.0482719 + 0.0510871i 0.00213752 + 0.00226217i
\(511\) −0.703004 3.96941i −0.0310991 0.175596i
\(512\) 1.92969i 0.0852812i
\(513\) −19.4605 + 16.4054i −0.859204 + 0.724317i
\(514\) −22.4597 + 12.9671i −0.990655 + 0.571955i
\(515\) −1.29582 + 0.228489i −0.0571008 + 0.0100684i
\(516\) 3.04439 2.87663i 0.134022 0.126636i
\(517\) −11.4483 + 13.6436i −0.503496 + 0.600043i
\(518\) −16.2222 + 5.91825i −0.712761 + 0.260033i
\(519\) −26.3801 + 11.4031i −1.15796 + 0.500543i
\(520\) −0.196139 1.11236i −0.00860127 0.0487802i
\(521\) 3.13445 5.42902i 0.137323 0.237850i −0.789160 0.614188i \(-0.789484\pi\)
0.926482 + 0.376338i \(0.122817\pi\)
\(522\) 5.20610 + 17.2935i 0.227865 + 0.756914i
\(523\) 5.33996 3.08303i 0.233500 0.134811i −0.378686 0.925525i \(-0.623624\pi\)
0.612186 + 0.790714i \(0.290290\pi\)
\(524\) 1.15938 + 6.57518i 0.0506478 + 0.287238i
\(525\) 1.36226 + 22.7930i 0.0594541 + 0.994769i
\(526\) 19.5450 7.11378i 0.852200 0.310176i
\(527\) −2.96239 0.522349i −0.129044 0.0227539i
\(528\) 1.05921 + 0.530943i 0.0460962 + 0.0231063i
\(529\) −13.5054 + 11.3324i −0.587190 + 0.492711i
\(530\) −0.373862 0.647548i −0.0162395 0.0281277i
\(531\) −0.153887 0.511176i −0.00667812 0.0221832i
\(532\) 7.77036 + 13.4352i 0.336888 + 0.582491i
\(533\) −18.5593 22.1181i −0.803890 0.958039i
\(534\) 23.7622 + 2.75902i 1.02829 + 0.119395i
\(535\) −0.207850 0.571064i −0.00898615 0.0246892i
\(536\) −32.5172 5.73367i −1.40453 0.247657i
\(537\) 12.3813 + 13.1034i 0.534294 + 0.565454i
\(538\) −2.82420 + 7.75944i −0.121760 + 0.334533i
\(539\) −24.2720 + 14.0623i −1.04547 + 0.605708i
\(540\) −0.805873 0.140195i −0.0346792 0.00603304i
\(541\) −10.3506 + 17.9278i −0.445008 + 0.770777i −0.998053 0.0623747i \(-0.980133\pi\)
0.553045 + 0.833152i \(0.313466\pi\)
\(542\) −4.58267 25.9896i −0.196843 1.11635i
\(543\) 8.20827 27.4939i 0.352250 1.17988i
\(544\) −0.657200 1.80564i −0.0281772 0.0774163i
\(545\) 0.272010 1.54264i 0.0116516 0.0660796i
\(546\) −7.33884 + 9.88908i −0.314073 + 0.423214i
\(547\) −12.9704 + 10.8834i −0.554573 + 0.465342i −0.876486 0.481427i \(-0.840118\pi\)
0.321913 + 0.946769i \(0.395674\pi\)
\(548\) 17.3235i 0.740022i
\(549\) 1.64807 + 13.9158i 0.0703378 + 0.593914i
\(550\) −17.8866 −0.762687
\(551\) −30.9340 11.2590i −1.31783 0.479651i
\(552\) −31.5685 + 1.86283i −1.34364 + 0.0792875i
\(553\) −6.16415 1.08211i −0.262126 0.0460160i
\(554\) 0.933281 + 2.56417i 0.0396513 + 0.108941i
\(555\) 0.912614 + 1.38526i 0.0387383 + 0.0588009i
\(556\) 10.5408 + 12.5620i 0.447030 + 0.532749i
\(557\) 42.9293i 1.81897i −0.415735 0.909486i \(-0.636476\pi\)
0.415735 0.909486i \(-0.363524\pi\)
\(558\) −20.9459 + 10.5595i −0.886712 + 0.447020i
\(559\) −5.24610 + 3.02883i −0.221886 + 0.128106i
\(560\) 0.0202627 0.0558024i 0.000856257 0.00235808i
\(561\) −2.37602 0.275879i −0.100316 0.0116476i
\(562\) −17.2001 14.4326i −0.725544 0.608804i
\(563\) 0.471251 2.67260i 0.0198609 0.112637i −0.973266 0.229682i \(-0.926231\pi\)
0.993127 + 0.117046i \(0.0373424\pi\)
\(564\) 6.70073 6.33148i 0.282151 0.266604i
\(565\) −0.257967 0.307433i −0.0108527 0.0129338i
\(566\) −10.0043 −0.420513
\(567\) 13.1604 + 19.8445i 0.552687 + 0.833389i
\(568\) −1.23562 −0.0518454
\(569\) −21.3534 25.4480i −0.895182 1.06684i −0.997399 0.0720743i \(-0.977038\pi\)
0.102217 0.994762i \(-0.467406\pi\)
\(570\) −0.726147 + 0.686133i −0.0304150 + 0.0287390i
\(571\) 0.378167 2.14469i 0.0158258 0.0897526i −0.975872 0.218344i \(-0.929934\pi\)
0.991698 + 0.128591i \(0.0410456\pi\)
\(572\) 11.0286 + 9.25410i 0.461129 + 0.386933i
\(573\) −17.8494 2.07248i −0.745669 0.0865793i
\(574\) −3.97797 22.4610i −0.166037 0.937505i
\(575\) 27.5056 15.8803i 1.14706 0.662256i
\(576\) −13.3881 8.77627i −0.557839 0.365678i
\(577\) 34.2253i 1.42482i 0.701764 + 0.712410i \(0.252396\pi\)
−0.701764 + 0.712410i \(0.747604\pi\)
\(578\) 9.72023 + 11.5841i 0.404308 + 0.481836i
\(579\) −17.3728 26.3702i −0.721989 1.09591i
\(580\) −0.361830 0.994121i −0.0150242 0.0412786i
\(581\) 6.57739 + 18.0289i 0.272876 + 0.747964i
\(582\) 19.1971 1.13281i 0.795746 0.0469564i
\(583\) 23.9122 + 8.70333i 0.990342 + 0.360455i
\(584\) −4.36423 −0.180593
\(585\) 1.08698 + 0.466911i 0.0449411 + 0.0193044i
\(586\) 4.32377i 0.178613i
\(587\) 10.2925 8.63644i 0.424817 0.356464i −0.405175 0.914239i \(-0.632789\pi\)
0.829992 + 0.557775i \(0.188345\pi\)
\(588\) 13.3191 5.78125i 0.549272 0.238415i
\(589\) 7.42462 42.1071i 0.305926 1.73499i
\(590\) −0.00716644 0.0196896i −0.000295038 0.000810609i
\(591\) −10.8622 + 36.3833i −0.446810 + 1.49661i
\(592\) 0.215972 + 1.22484i 0.00887641 + 0.0503406i
\(593\) 1.95066 3.37864i 0.0801039 0.138744i −0.823190 0.567765i \(-0.807808\pi\)
0.903294 + 0.429021i \(0.141141\pi\)
\(594\) −16.1324 + 9.36334i −0.661918 + 0.384183i
\(595\) 9.04589e−5 0.119853i 3.70846e−6 0.00491351i
\(596\) 6.66876 18.3223i 0.273163 0.750510i
\(597\) −8.63075 9.13408i −0.353233 0.373833i
\(598\) 16.8690 + 2.97447i 0.689826 + 0.121635i
\(599\) −3.18327 8.74596i −0.130065 0.357350i 0.857517 0.514456i \(-0.172006\pi\)
−0.987582 + 0.157105i \(0.949784\pi\)
\(600\) 24.5552 + 2.85109i 1.00246 + 0.116395i
\(601\) −20.1709 24.0388i −0.822789 0.980561i 0.177205 0.984174i \(-0.443295\pi\)
−0.999993 + 0.00361252i \(0.998850\pi\)
\(602\) −4.78573 + 0.00361202i −0.195052 + 0.000147215i
\(603\) 23.6937 25.1908i 0.964882 1.02585i
\(604\) 2.54020 + 4.39975i 0.103359 + 0.179023i
\(605\) −0.509401 + 0.427438i −0.0207101 + 0.0173778i
\(606\) 5.23526 + 2.62425i 0.212668 + 0.106603i
\(607\) −7.05213 1.24348i −0.286237 0.0504714i 0.0286860 0.999588i \(-0.490868\pi\)
−0.314923 + 0.949117i \(0.601979\pi\)
\(608\) 25.6653 9.34139i 1.04086 0.378843i
\(609\) −13.7797 + 27.5419i −0.558383 + 1.11605i
\(610\) 0.0955096 + 0.541662i 0.00386707 + 0.0219312i
\(611\) −11.5467 + 6.66650i −0.467130 + 0.269698i
\(612\) 1.20518 + 0.283690i 0.0487165 + 0.0114675i
\(613\) −17.4253 + 30.1815i −0.703801 + 1.21902i 0.263321 + 0.964708i \(0.415182\pi\)
−0.967122 + 0.254311i \(0.918151\pi\)
\(614\) 3.18381 + 18.0563i 0.128488 + 0.728693i
\(615\) −2.01143 + 0.869467i −0.0811086 + 0.0350603i
\(616\) 10.4083 + 28.5296i 0.419363 + 1.14949i
\(617\) 4.32090 5.14944i 0.173953 0.207309i −0.672023 0.740530i \(-0.734574\pi\)
0.845976 + 0.533222i \(0.179019\pi\)
\(618\) 11.2887 10.6667i 0.454099 0.429076i
\(619\) −33.9380 + 5.98419i −1.36408 + 0.240525i −0.807304 0.590135i \(-0.799074\pi\)
−0.556780 + 0.830660i \(0.687963\pi\)
\(620\) 1.18998 0.687033i 0.0477906 0.0275919i
\(621\) 16.4948 28.7216i 0.661915 1.15256i
\(622\) 13.2143i 0.529846i
\(623\) 26.2444 + 31.2290i 1.05146 + 1.25116i
\(624\) 0.609170 + 0.644696i 0.0243863 + 0.0258085i
\(625\) −23.2490 + 8.46196i −0.929962 + 0.338478i
\(626\) −9.99142 + 3.63658i −0.399338 + 0.145347i
\(627\) 3.92132 33.7726i 0.156603 1.34875i
\(628\) −5.39626 + 0.951506i −0.215334 + 0.0379692i
\(629\) −1.25545 2.17451i −0.0500582 0.0867033i
\(630\) 0.559824 + 0.748404i 0.0223039 + 0.0298171i
\(631\) 13.2483 22.9468i 0.527407 0.913496i −0.472083 0.881554i \(-0.656498\pi\)
0.999490 0.0319417i \(-0.0101691\pi\)
\(632\) −2.31734 + 6.36685i −0.0921790 + 0.253260i
\(633\) −4.36842 6.63083i −0.173629 0.263552i
\(634\) 14.0475 + 11.7873i 0.557899 + 0.468132i
\(635\) −0.208754 + 1.18390i −0.00828416 + 0.0469818i
\(636\) −11.7751 5.90240i −0.466911 0.234046i
\(637\) −20.6749 + 3.67773i −0.819170 + 0.145717i
\(638\) −20.8923 12.0622i −0.827133 0.477546i
\(639\) 0.709491 1.08232i 0.0280670 0.0428161i
\(640\) 0.725326 + 0.418767i 0.0286710 + 0.0165532i
\(641\) 0.814710 2.23840i 0.0321791 0.0884114i −0.922563 0.385847i \(-0.873909\pi\)
0.954742 + 0.297436i \(0.0961314\pi\)
\(642\) 5.75695 + 4.27906i 0.227209 + 0.168881i
\(643\) 9.49012 + 1.67336i 0.374254 + 0.0659911i 0.357612 0.933870i \(-0.383591\pi\)
0.0166424 + 0.999862i \(0.494702\pi\)
\(644\) −15.4811 12.9703i −0.610039 0.511100i
\(645\) 0.106365 + 0.447269i 0.00418814 + 0.0176112i
\(646\) 1.15839 0.972007i 0.0455764 0.0382431i
\(647\) −1.16581 2.01925i −0.0458328 0.0793847i 0.842199 0.539167i \(-0.181261\pi\)
−0.888032 + 0.459782i \(0.847927\pi\)
\(648\) 23.6394 10.2828i 0.928645 0.403946i
\(649\) 0.617553 + 0.356545i 0.0242411 + 0.0139956i
\(650\) −12.5825 4.57966i −0.493527 0.179629i
\(651\) −38.3368 11.4139i −1.50254 0.447346i
\(652\) 7.60572 + 6.38196i 0.297863 + 0.249937i
\(653\) 12.3603 14.7305i 0.483698 0.576448i −0.467905 0.883779i \(-0.654991\pi\)
0.951603 + 0.307330i \(0.0994356\pi\)
\(654\) 7.33618 + 16.9715i 0.286867 + 0.663640i
\(655\) −0.688655 0.250650i −0.0269080 0.00979370i
\(656\) −1.64294 −0.0641460
\(657\) 2.50594 3.82279i 0.0977658 0.149141i
\(658\) −10.5334 + 0.00795009i −0.410637 + 0.000309927i
\(659\) 38.6246 6.81055i 1.50460 0.265301i 0.640239 0.768176i \(-0.278835\pi\)
0.864360 + 0.502874i \(0.167724\pi\)
\(660\) 0.912427 0.601111i 0.0355162 0.0233982i
\(661\) −22.2105 + 26.4694i −0.863888 + 1.02954i 0.135361 + 0.990796i \(0.456781\pi\)
−0.999249 + 0.0387452i \(0.987664\pi\)
\(662\) −7.92573 + 9.44552i −0.308042 + 0.367110i
\(663\) −1.60080 0.802425i −0.0621701 0.0311636i
\(664\) 20.4611 3.60784i 0.794044 0.140011i
\(665\) −1.70359 + 0.00128578i −0.0660622 + 4.98602e-5i
\(666\) −17.9906 7.72782i −0.697120 0.299447i
\(667\) 42.8369 1.65865
\(668\) −4.93206 1.79512i −0.190827 0.0694554i
\(669\) 40.5737 + 4.71099i 1.56867 + 0.182138i
\(670\) 0.872509 1.03982i 0.0337079 0.0401716i
\(671\) −14.3391 12.0320i −0.553556 0.464489i
\(672\) −5.93028 24.8536i −0.228766 0.958750i
\(673\) 13.9024 + 5.06006i 0.535898 + 0.195051i 0.595770 0.803155i \(-0.296847\pi\)
−0.0598720 + 0.998206i \(0.519069\pi\)
\(674\) 9.80042 + 5.65828i 0.377498 + 0.217949i
\(675\) −16.5969 + 19.8717i −0.638816 + 0.764862i
\(676\) −2.39540 4.14895i −0.0921307 0.159575i
\(677\) 14.3500 12.0411i 0.551516 0.462777i −0.323938 0.946078i \(-0.605007\pi\)
0.875454 + 0.483302i \(0.160563\pi\)
\(678\) 4.53902 + 1.35512i 0.174320 + 0.0520430i
\(679\) 25.1364 + 21.0596i 0.964647 + 0.808195i
\(680\) 0.127784 + 0.0225318i 0.00490030 + 0.000864055i
\(681\) −0.489216 + 4.21340i −0.0187468 + 0.161458i
\(682\) 10.7167 29.4439i 0.410364 1.12746i
\(683\) −19.2619 11.1209i −0.737037 0.425529i 0.0839538 0.996470i \(-0.473245\pi\)
−0.820991 + 0.570941i \(0.806579\pi\)
\(684\) −4.03235 + 17.1303i −0.154181 + 0.654995i
\(685\) 1.64674 + 0.950746i 0.0629187 + 0.0363261i
\(686\) −15.6025 5.63887i −0.595706 0.215293i
\(687\) 0.378946 0.249651i 0.0144577 0.00952479i
\(688\) −0.0598556 + 0.339458i −0.00228197 + 0.0129417i
\(689\) 14.5929 + 12.2449i 0.555946 + 0.466494i
\(690\) 0.582558 1.16218i 0.0221776 0.0442434i
\(691\) 0.935144 2.56929i 0.0355745 0.0977403i −0.920634 0.390427i \(-0.872327\pi\)
0.956208 + 0.292687i \(0.0945495\pi\)
\(692\) −9.93535 + 17.2085i −0.377685 + 0.654170i
\(693\) −30.9666 7.26464i −1.17632 0.275961i
\(694\) −8.11734 14.0597i −0.308130 0.533697i
\(695\) −1.77263 + 0.312562i −0.0672396 + 0.0118562i
\(696\) 26.7588 + 19.8895i 1.01429 + 0.753908i
\(697\) 3.11681 1.13443i 0.118058 0.0429694i
\(698\) 15.1969 5.53123i 0.575212 0.209360i
\(699\) −14.3851 + 48.1835i −0.544096 + 1.82247i
\(700\) 10.1572 + 12.0863i 0.383905 + 0.456820i
\(701\) 7.89910i 0.298345i 0.988811 + 0.149173i \(0.0476610\pi\)
−0.988811 + 0.149173i \(0.952339\pi\)
\(702\) −13.7459 + 2.45624i −0.518804 + 0.0927047i
\(703\) 30.9083 17.8449i 1.16573 0.673033i
\(704\) 21.0587 3.71322i 0.793680 0.139947i
\(705\) 0.234112 + 0.984445i 0.00881715 + 0.0370763i
\(706\) −9.00125 + 10.7273i −0.338766 + 0.403726i
\(707\) 3.42254 + 9.38131i 0.128718 + 0.352820i
\(708\) −0.296234 0.220187i −0.0111332 0.00827514i
\(709\) 6.03163 + 34.2071i 0.226523 + 1.28467i 0.859753 + 0.510711i \(0.170618\pi\)
−0.633230 + 0.773964i \(0.718271\pi\)
\(710\) 0.0253977 0.0439901i 0.000953159 0.00165092i
\(711\) −4.24634 5.68568i −0.159250 0.213230i
\(712\) 38.2459 22.0813i 1.43332 0.827531i
\(713\) 9.66145 + 54.7928i 0.361824 + 2.05201i
\(714\) −0.779169 1.18076i −0.0291597 0.0441888i
\(715\) −1.48495 + 0.540478i −0.0555340 + 0.0202127i
\(716\) 12.2752 + 2.16446i 0.458747 + 0.0808895i
\(717\) −0.192610 3.26406i −0.00719314 0.121898i
\(718\) 6.94020 5.82352i 0.259006 0.217332i
\(719\) −1.44565 2.50394i −0.0539137 0.0933812i 0.837809 0.545963i \(-0.183836\pi\)
−0.891723 + 0.452582i \(0.850503\pi\)
\(720\) 0.0601098 0.0303033i 0.00224016 0.00112934i
\(721\) 26.4840 0.0199887i 0.986317 0.000744419i
\(722\) 2.87581 + 3.42726i 0.107027 + 0.127549i
\(723\) 18.9413 25.4831i 0.704433 0.947728i
\(724\) −6.78527 18.6424i −0.252172 0.692838i
\(725\) −32.9771 5.81475i −1.22474 0.215954i
\(726\) 2.24536 7.52093i 0.0833332 0.279128i
\(727\) 8.56203 23.5240i 0.317548 0.872456i −0.673528 0.739161i \(-0.735222\pi\)
0.991076 0.133295i \(-0.0425557\pi\)
\(728\) 0.0171587 + 22.7344i 0.000635945 + 0.842593i
\(729\) −4.56667 + 26.6110i −0.169136 + 0.985593i
\(730\) 0.0897052 0.155374i 0.00332014 0.00575065i
\(731\) −0.120839 0.685312i −0.00446939 0.0253472i
\(732\) 6.65428 + 7.04235i 0.245949 + 0.260293i
\(733\) 6.23827 + 17.1395i 0.230416 + 0.633062i 0.999985 0.00550162i \(-0.00175123\pi\)
−0.769569 + 0.638563i \(0.779529\pi\)
\(734\) −4.33397 + 24.5792i −0.159970 + 0.907234i
\(735\) −0.181424 + 1.58338i −0.00669192 + 0.0584039i
\(736\) −27.2259 + 22.8452i −1.00356 + 0.842086i
\(737\) 46.1950i 1.70161i
\(738\) 14.1799 21.6314i 0.521969 0.796261i
\(739\) 23.7495 0.873641 0.436821 0.899549i \(-0.356104\pi\)
0.436821 + 0.899549i \(0.356104\pi\)
\(740\) 1.07779 + 0.392283i 0.0396203 + 0.0144206i
\(741\) 11.4056 22.7537i 0.418995 0.835878i
\(742\) 5.15801 + 14.1383i 0.189357 + 0.519034i
\(743\) 3.47920 + 9.55903i 0.127640 + 0.350687i 0.987008 0.160670i \(-0.0513654\pi\)
−0.859369 + 0.511357i \(0.829143\pi\)
\(744\) −19.4055 + 38.7132i −0.711440 + 1.41929i
\(745\) 1.37569 + 1.63949i 0.0504014 + 0.0600661i
\(746\) 17.6751i 0.647132i
\(747\) −8.58849 + 19.9942i −0.314236 + 0.731551i
\(748\) −1.43228 + 0.826928i −0.0523694 + 0.0302355i
\(749\) 2.13311 + 12.0443i 0.0779422 + 0.440090i
\(750\) −1.21456 + 1.63403i −0.0443493 + 0.0596665i
\(751\) −10.6919 8.97158i −0.390153 0.327378i 0.426520 0.904478i \(-0.359740\pi\)
−0.816673 + 0.577101i \(0.804184\pi\)
\(752\) −0.131743 + 0.747150i −0.00480416 + 0.0272458i
\(753\) 10.9294 + 3.26296i 0.398290 + 0.118909i
\(754\) −11.6085 13.8345i −0.422757 0.503823i
\(755\) −0.557645 −0.0202948
\(756\) 15.4880 + 5.58383i 0.563293 + 0.203082i
\(757\) −23.1271 −0.840570 −0.420285 0.907392i \(-0.638070\pi\)
−0.420285 + 0.907392i \(0.638070\pi\)
\(758\) −1.89803 2.26198i −0.0689395 0.0821589i
\(759\) 10.2359 + 43.0422i 0.371540 + 1.56233i
\(760\) −0.320265 + 1.81631i −0.0116172 + 0.0658846i
\(761\) 12.8791 + 10.8068i 0.466866 + 0.391747i 0.845650 0.533738i \(-0.179213\pi\)
−0.378784 + 0.925485i \(0.623658\pi\)
\(762\) −5.63017 13.0248i −0.203959 0.471841i
\(763\) −10.7610 + 29.6352i −0.389575 + 1.07287i
\(764\) −10.7597 + 6.21212i −0.389273 + 0.224747i
\(765\) −0.0931099 + 0.0989930i −0.00336639 + 0.00357910i
\(766\) 27.6411i 0.998715i