Properties

Label 189.2.ba.a.101.9
Level $189$
Weight $2$
Character 189.101
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 101.9
Character \(\chi\) \(=\) 189.101
Dual form 189.2.ba.a.131.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.575801 + 0.686212i) q^{2} +(1.25894 + 1.18957i) q^{3} +(0.207955 + 1.17937i) q^{4} +(0.100696 - 0.0844942i) q^{5} +(-1.54119 + 0.178947i) q^{6} +(-1.70219 + 2.02548i) q^{7} +(-2.48059 - 1.43217i) q^{8} +(0.169862 + 2.99519i) q^{9} +O(q^{10})\) \(q+(-0.575801 + 0.686212i) q^{2} +(1.25894 + 1.18957i) q^{3} +(0.207955 + 1.17937i) q^{4} +(0.100696 - 0.0844942i) q^{5} +(-1.54119 + 0.178947i) q^{6} +(-1.70219 + 2.02548i) q^{7} +(-2.48059 - 1.43217i) q^{8} +(0.169862 + 2.99519i) q^{9} +0.117751i q^{10} +(2.57587 - 3.06980i) q^{11} +(-1.14114 + 1.73214i) q^{12} +(1.02604 - 2.81901i) q^{13} +(-0.409789 - 2.33433i) q^{14} +(0.227282 + 0.0134118i) q^{15} +(0.160408 - 0.0583836i) q^{16} -0.344621 q^{17} +(-2.15314 - 1.60807i) q^{18} +4.89841i q^{19} +(0.120590 + 0.101187i) q^{20} +(-4.55239 + 0.525094i) q^{21} +(0.623349 + 3.53519i) q^{22} +(2.18009 - 5.98976i) q^{23} +(-1.41925 - 4.75384i) q^{24} +(-0.865240 + 4.90702i) q^{25} +(1.34365 + 2.32726i) q^{26} +(-3.34913 + 3.97282i) q^{27} +(-2.74277 - 1.58630i) q^{28} +(2.29851 + 6.31510i) q^{29} +(-0.140072 + 0.148241i) q^{30} +(8.59607 - 1.51572i) q^{31} +(1.90702 - 5.23950i) q^{32} +(6.89460 - 0.800529i) q^{33} +(0.198433 - 0.236483i) q^{34} +(-0.000262488 + 0.347783i) q^{35} +(-3.49712 + 0.823195i) q^{36} +(3.64300 - 6.30985i) q^{37} +(-3.36135 - 2.82051i) q^{38} +(4.64512 - 2.32843i) q^{39} +(-0.370796 + 0.0653813i) q^{40} +(-9.04416 - 3.29180i) q^{41} +(2.26094 - 3.42626i) q^{42} +(0.350643 - 1.98860i) q^{43} +(4.15611 + 2.39953i) q^{44} +(0.270180 + 0.287252i) q^{45} +(2.85495 + 4.94491i) q^{46} +(0.771769 - 4.37692i) q^{47} +(0.271395 + 0.117314i) q^{48} +(-1.20513 - 6.89548i) q^{49} +(-2.86905 - 3.41920i) q^{50} +(-0.433857 - 0.409950i) q^{51} +(3.53803 + 0.623850i) q^{52} +(5.49931 + 3.17503i) q^{53} +(-0.797771 - 4.58577i) q^{54} -0.526764i q^{55} +(7.12325 - 2.58656i) q^{56} +(-5.82699 + 6.16681i) q^{57} +(-5.65698 - 2.05897i) q^{58} +(0.167214 + 0.0608610i) q^{59} +(0.0314470 + 0.270839i) q^{60} +(-4.60007 - 0.811116i) q^{61} +(-3.90952 + 6.77148i) q^{62} +(-6.35583 - 4.75431i) q^{63} +(2.66805 + 4.62120i) q^{64} +(-0.134872 - 0.370558i) q^{65} +(-3.42058 + 5.19210i) q^{66} +(8.83064 - 7.40979i) q^{67} +(-0.0716657 - 0.406437i) q^{68} +(9.86983 - 4.94738i) q^{69} +(-0.238502 - 0.200434i) q^{70} +(0.373587 - 0.215690i) q^{71} +(3.86826 - 7.67310i) q^{72} +(1.31951 - 0.761822i) q^{73} +(2.23226 + 6.13309i) q^{74} +(-6.92652 + 5.14839i) q^{75} +(-5.77706 + 1.01865i) q^{76} +(1.83321 + 10.4427i) q^{77} +(-1.07687 + 4.52825i) q^{78} +(1.81204 + 1.52049i) q^{79} +(0.0112194 - 0.0194325i) q^{80} +(-8.94229 + 1.01754i) q^{81} +(7.46651 - 4.31079i) q^{82} +(-6.81615 + 2.48087i) q^{83} +(-1.56598 - 5.25977i) q^{84} +(-0.0347021 + 0.0291185i) q^{85} +(1.16270 + 1.38565i) q^{86} +(-4.61855 + 10.6846i) q^{87} +(-10.7861 + 3.92584i) q^{88} -15.4181 q^{89} +(-0.352686 + 0.0200014i) q^{90} +(3.96334 + 6.87669i) q^{91} +(7.51752 + 1.32554i) q^{92} +(12.6250 + 8.31740i) q^{93} +(2.55911 + 3.04983i) q^{94} +(0.413888 + 0.493252i) q^{95} +(8.63357 - 4.32769i) q^{96} +(-12.2061 - 2.15226i) q^{97} +(5.42568 + 3.14345i) q^{98} +(9.63217 + 7.19377i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.575801 + 0.686212i −0.407152 + 0.485225i −0.930187 0.367086i \(-0.880355\pi\)
0.523034 + 0.852312i \(0.324800\pi\)
\(3\) 1.25894 + 1.18957i 0.726850 + 0.686797i
\(4\) 0.207955 + 1.17937i 0.103978 + 0.589686i
\(5\) 0.100696 0.0844942i 0.0450327 0.0377870i −0.619994 0.784607i \(-0.712865\pi\)
0.665026 + 0.746820i \(0.268420\pi\)
\(6\) −1.54119 + 0.178947i −0.629190 + 0.0730549i
\(7\) −1.70219 + 2.02548i −0.643366 + 0.765559i
\(8\) −2.48059 1.43217i −0.877021 0.506348i
\(9\) 0.169862 + 2.99519i 0.0566207 + 0.998396i
\(10\) 0.117751i 0.0372361i
\(11\) 2.57587 3.06980i 0.776654 0.925580i −0.222123 0.975019i \(-0.571299\pi\)
0.998777 + 0.0494386i \(0.0157432\pi\)
\(12\) −1.14114 + 1.73214i −0.329419 + 0.500025i
\(13\) 1.02604 2.81901i 0.284571 0.781852i −0.712231 0.701945i \(-0.752315\pi\)
0.996802 0.0799075i \(-0.0254625\pi\)
\(14\) −0.409789 2.33433i −0.109521 0.623877i
\(15\) 0.227282 + 0.0134118i 0.0586840 + 0.00346290i
\(16\) 0.160408 0.0583836i 0.0401019 0.0145959i
\(17\) −0.344621 −0.0835829 −0.0417914 0.999126i \(-0.513307\pi\)
−0.0417914 + 0.999126i \(0.513307\pi\)
\(18\) −2.15314 1.60807i −0.507500 0.379026i
\(19\) 4.89841i 1.12377i 0.827214 + 0.561887i \(0.189924\pi\)
−0.827214 + 0.561887i \(0.810076\pi\)
\(20\) 0.120590 + 0.101187i 0.0269649 + 0.0226262i
\(21\) −4.55239 + 0.525094i −0.993413 + 0.114585i
\(22\) 0.623349 + 3.53519i 0.132898 + 0.753704i
\(23\) 2.18009 5.98976i 0.454581 1.24895i −0.474887 0.880047i \(-0.657511\pi\)
0.929468 0.368904i \(-0.120267\pi\)
\(24\) −1.41925 4.75384i −0.289704 0.970374i
\(25\) −0.865240 + 4.90702i −0.173048 + 0.981404i
\(26\) 1.34365 + 2.32726i 0.263511 + 0.456414i
\(27\) −3.34913 + 3.97282i −0.644540 + 0.764570i
\(28\) −2.74277 1.58630i −0.518335 0.299783i
\(29\) 2.29851 + 6.31510i 0.426822 + 1.17268i 0.947731 + 0.319072i \(0.103371\pi\)
−0.520908 + 0.853613i \(0.674407\pi\)
\(30\) −0.140072 + 0.148241i −0.0255736 + 0.0270650i
\(31\) 8.59607 1.51572i 1.54390 0.272231i 0.664125 0.747622i \(-0.268804\pi\)
0.879775 + 0.475391i \(0.157693\pi\)
\(32\) 1.90702 5.23950i 0.337117 0.926222i
\(33\) 6.89460 0.800529i 1.20020 0.139354i
\(34\) 0.198433 0.236483i 0.0340310 0.0405565i
\(35\) −0.000262488 0.347783i −4.43686e−5 0.0587861i
\(36\) −3.49712 + 0.823195i −0.582853 + 0.137199i
\(37\) 3.64300 6.30985i 0.598905 1.03733i −0.394078 0.919077i \(-0.628936\pi\)
0.992983 0.118257i \(-0.0377305\pi\)
\(38\) −3.36135 2.82051i −0.545283 0.457547i
\(39\) 4.64512 2.32843i 0.743814 0.372847i
\(40\) −0.370796 + 0.0653813i −0.0586280 + 0.0103377i
\(41\) −9.04416 3.29180i −1.41246 0.514094i −0.480609 0.876935i \(-0.659585\pi\)
−0.931851 + 0.362841i \(0.881807\pi\)
\(42\) 2.26094 3.42626i 0.348871 0.528683i
\(43\) 0.350643 1.98860i 0.0534726 0.303258i −0.946328 0.323207i \(-0.895239\pi\)
0.999801 + 0.0199486i \(0.00635026\pi\)
\(44\) 4.15611 + 2.39953i 0.626556 + 0.361743i
\(45\) 0.270180 + 0.287252i 0.0402761 + 0.0428210i
\(46\) 2.85495 + 4.94491i 0.420939 + 0.729088i
\(47\) 0.771769 4.37692i 0.112574 0.638439i −0.875349 0.483492i \(-0.839368\pi\)
0.987923 0.154947i \(-0.0495207\pi\)
\(48\) 0.271395 + 0.117314i 0.0391725 + 0.0169328i
\(49\) −1.20513 6.89548i −0.172161 0.985069i
\(50\) −2.86905 3.41920i −0.405745 0.483549i
\(51\) −0.433857 0.409950i −0.0607522 0.0574044i
\(52\) 3.53803 + 0.623850i 0.490637 + 0.0865125i
\(53\) 5.49931 + 3.17503i 0.755388 + 0.436123i 0.827637 0.561263i \(-0.189684\pi\)
−0.0722494 + 0.997387i \(0.523018\pi\)
\(54\) −0.797771 4.58577i −0.108563 0.624044i
\(55\) 0.526764i 0.0710288i
\(56\) 7.12325 2.58656i 0.951884 0.345644i
\(57\) −5.82699 + 6.16681i −0.771804 + 0.816814i
\(58\) −5.65698 2.05897i −0.742798 0.270356i
\(59\) 0.167214 + 0.0608610i 0.0217694 + 0.00792343i 0.352882 0.935668i \(-0.385202\pi\)
−0.331112 + 0.943591i \(0.607424\pi\)
\(60\) 0.0314470 + 0.270839i 0.00405979 + 0.0349652i
\(61\) −4.60007 0.811116i −0.588978 0.103853i −0.128787 0.991672i \(-0.541108\pi\)
−0.460192 + 0.887820i \(0.652219\pi\)
\(62\) −3.90952 + 6.77148i −0.496509 + 0.859979i
\(63\) −6.35583 4.75431i −0.800759 0.598987i
\(64\) 2.66805 + 4.62120i 0.333506 + 0.577649i
\(65\) −0.134872 0.370558i −0.0167288 0.0459620i
\(66\) −3.42058 + 5.19210i −0.421044 + 0.639104i
\(67\) 8.83064 7.40979i 1.07883 0.905249i 0.0830108 0.996549i \(-0.473546\pi\)
0.995824 + 0.0912992i \(0.0291020\pi\)
\(68\) −0.0716657 0.406437i −0.00869075 0.0492877i
\(69\) 9.86983 4.94738i 1.18819 0.595595i
\(70\) −0.238502 0.200434i −0.0285064 0.0239564i
\(71\) 0.373587 0.215690i 0.0443366 0.0255977i −0.477668 0.878540i \(-0.658518\pi\)
0.522004 + 0.852943i \(0.325184\pi\)
\(72\) 3.86826 7.67310i 0.455878 0.904283i
\(73\) 1.31951 0.761822i 0.154437 0.0891645i −0.420790 0.907158i \(-0.638247\pi\)
0.575227 + 0.817994i \(0.304914\pi\)
\(74\) 2.23226 + 6.13309i 0.259495 + 0.712957i
\(75\) −6.92652 + 5.14839i −0.799805 + 0.594485i
\(76\) −5.77706 + 1.01865i −0.662674 + 0.116847i
\(77\) 1.83321 + 10.4427i 0.208914 + 1.19006i
\(78\) −1.07687 + 4.52825i −0.121931 + 0.512723i
\(79\) 1.81204 + 1.52049i 0.203871 + 0.171068i 0.739007 0.673698i \(-0.235295\pi\)
−0.535136 + 0.844766i \(0.679740\pi\)
\(80\) 0.0112194 0.0194325i 0.00125436 0.00217262i
\(81\) −8.94229 + 1.01754i −0.993588 + 0.113060i
\(82\) 7.46651 4.31079i 0.824538 0.476047i
\(83\) −6.81615 + 2.48087i −0.748169 + 0.272311i −0.687835 0.725867i \(-0.741439\pi\)
−0.0603341 + 0.998178i \(0.519217\pi\)
\(84\) −1.56598 5.25977i −0.170862 0.573888i
\(85\) −0.0347021 + 0.0291185i −0.00376397 + 0.00315834i
\(86\) 1.16270 + 1.38565i 0.125377 + 0.149418i
\(87\) −4.61855 + 10.6846i −0.495160 + 1.14551i
\(88\) −10.7861 + 3.92584i −1.14981 + 0.418496i
\(89\) −15.4181 −1.63431 −0.817156 0.576417i \(-0.804450\pi\)
−0.817156 + 0.576417i \(0.804450\pi\)
\(90\) −0.352686 + 0.0200014i −0.0371764 + 0.00210833i
\(91\) 3.96334 + 6.87669i 0.415471 + 0.720873i
\(92\) 7.51752 + 1.32554i 0.783756 + 0.138197i
\(93\) 12.6250 + 8.31740i 1.30915 + 0.862474i
\(94\) 2.55911 + 3.04983i 0.263952 + 0.314566i
\(95\) 0.413888 + 0.493252i 0.0424640 + 0.0506066i
\(96\) 8.63357 4.32769i 0.881160 0.441693i
\(97\) −12.2061 2.15226i −1.23934 0.218529i −0.484708 0.874676i \(-0.661074\pi\)
−0.754634 + 0.656147i \(0.772185\pi\)
\(98\) 5.42568 + 3.14345i 0.548076 + 0.317536i
\(99\) 9.63217 + 7.19377i 0.968070 + 0.723001i
\(100\) −5.96714 −0.596714
\(101\) −3.54678 + 1.29092i −0.352917 + 0.128451i −0.512394 0.858750i \(-0.671241\pi\)
0.159477 + 0.987202i \(0.449019\pi\)
\(102\) 0.531128 0.0616690i 0.0525895 0.00610614i
\(103\) −6.43432 7.66812i −0.633992 0.755563i 0.349416 0.936968i \(-0.386380\pi\)
−0.983408 + 0.181405i \(0.941935\pi\)
\(104\) −6.58247 + 5.52335i −0.645464 + 0.541609i
\(105\) −0.414042 + 0.437526i −0.0404063 + 0.0426982i
\(106\) −5.34525 + 1.94551i −0.519176 + 0.188965i
\(107\) −4.00378 + 2.31158i −0.387060 + 0.223469i −0.680885 0.732390i \(-0.738405\pi\)
0.293826 + 0.955859i \(0.405072\pi\)
\(108\) −5.38191 3.12370i −0.517874 0.300578i
\(109\) −5.95833 + 10.3201i −0.570704 + 0.988489i 0.425789 + 0.904822i \(0.359996\pi\)
−0.996494 + 0.0836667i \(0.973337\pi\)
\(110\) 0.361472 + 0.303311i 0.0344650 + 0.0289196i
\(111\) 12.0923 3.61014i 1.14775 0.342660i
\(112\) −0.154789 + 0.424282i −0.0146262 + 0.0400909i
\(113\) −3.00669 + 0.530160i −0.282846 + 0.0498733i −0.313271 0.949664i \(-0.601425\pi\)
0.0304256 + 0.999537i \(0.490314\pi\)
\(114\) −0.876558 7.54941i −0.0820972 0.707067i
\(115\) −0.286573 0.787352i −0.0267230 0.0734209i
\(116\) −6.96987 + 4.02405i −0.647136 + 0.373624i
\(117\) 8.61774 + 2.59433i 0.796711 + 0.239845i
\(118\) −0.138046 + 0.0797007i −0.0127081 + 0.00733704i
\(119\) 0.586609 0.698023i 0.0537744 0.0639876i
\(120\) −0.544586 0.358775i −0.0497136 0.0327516i
\(121\) −0.878449 4.98193i −0.0798590 0.452903i
\(122\) 3.20532 2.68958i 0.290196 0.243503i
\(123\) −7.47024 14.9028i −0.673569 1.34374i
\(124\) 3.57519 + 9.82277i 0.321062 + 0.882110i
\(125\) 0.656113 + 1.13642i 0.0586845 + 0.101645i
\(126\) 6.92216 1.62391i 0.616675 0.144669i
\(127\) 4.57273 7.92020i 0.405764 0.702804i −0.588646 0.808391i \(-0.700339\pi\)
0.994410 + 0.105587i \(0.0336720\pi\)
\(128\) 6.27472 + 1.10640i 0.554612 + 0.0977931i
\(129\) 2.80701 2.08641i 0.247143 0.183698i
\(130\) 0.331941 + 0.120817i 0.0291131 + 0.0105963i
\(131\) −5.23893 1.90681i −0.457727 0.166599i 0.102858 0.994696i \(-0.467201\pi\)
−0.560585 + 0.828097i \(0.689424\pi\)
\(132\) 2.37789 + 7.96483i 0.206969 + 0.693249i
\(133\) −9.92164 8.33801i −0.860315 0.722997i
\(134\) 10.3263i 0.892052i
\(135\) −0.00156415 + 0.683031i −0.000134621 + 0.0587859i
\(136\) 0.854863 + 0.493555i 0.0733039 + 0.0423220i
\(137\) 14.2458 + 2.51192i 1.21710 + 0.214608i 0.745077 0.666979i \(-0.232413\pi\)
0.472023 + 0.881586i \(0.343524\pi\)
\(138\) −2.28810 + 9.62150i −0.194776 + 0.819037i
\(139\) −8.80185 10.4896i −0.746563 0.889720i 0.250356 0.968154i \(-0.419452\pi\)
−0.996919 + 0.0784343i \(0.975008\pi\)
\(140\) −0.410220 + 0.0720137i −0.0346699 + 0.00608627i
\(141\) 6.17825 4.59221i 0.520302 0.386734i
\(142\) −0.0671020 + 0.380554i −0.00563107 + 0.0319354i
\(143\) −6.01086 10.4111i −0.502654 0.870622i
\(144\) 0.202117 + 0.470534i 0.0168431 + 0.0392112i
\(145\) 0.765040 + 0.441696i 0.0635331 + 0.0366809i
\(146\) −0.237005 + 1.34412i −0.0196147 + 0.111241i
\(147\) 6.68545 10.1146i 0.551406 0.834237i
\(148\) 8.19925 + 2.98428i 0.673974 + 0.245306i
\(149\) 16.0341 2.82725i 1.31357 0.231617i 0.527393 0.849622i \(-0.323170\pi\)
0.786175 + 0.618004i \(0.212059\pi\)
\(150\) 0.455405 7.71751i 0.0371836 0.630132i
\(151\) −3.24977 2.72688i −0.264462 0.221910i 0.500908 0.865501i \(-0.333000\pi\)
−0.765370 + 0.643590i \(0.777444\pi\)
\(152\) 7.01536 12.1510i 0.569020 0.985572i
\(153\) −0.0585380 1.03220i −0.00473252 0.0834488i
\(154\) −8.22150 4.75496i −0.662508 0.383166i
\(155\) 0.737523 0.878945i 0.0592393 0.0705986i
\(156\) 3.71206 + 4.99411i 0.297203 + 0.399849i
\(157\) −1.56492 + 4.29960i −0.124895 + 0.343145i −0.986344 0.164698i \(-0.947335\pi\)
0.861449 + 0.507843i \(0.169557\pi\)
\(158\) −2.08675 + 0.367951i −0.166013 + 0.0292726i
\(159\) 3.14639 + 10.5390i 0.249525 + 0.835794i
\(160\) −0.250677 0.688731i −0.0198178 0.0544489i
\(161\) 8.42121 + 14.6114i 0.663684 + 1.15154i
\(162\) 4.45073 6.72221i 0.349682 0.528147i
\(163\) −4.14531 7.17988i −0.324686 0.562372i 0.656763 0.754097i \(-0.271925\pi\)
−0.981449 + 0.191725i \(0.938592\pi\)
\(164\) 2.00148 11.3510i 0.156290 0.886363i
\(165\) 0.626621 0.663164i 0.0487823 0.0516273i
\(166\) 2.22233 6.10581i 0.172487 0.473903i
\(167\) 0.761050 + 4.31613i 0.0588919 + 0.333992i 0.999991 0.00413722i \(-0.00131692\pi\)
−0.941100 + 0.338130i \(0.890206\pi\)
\(168\) 12.0446 + 5.21725i 0.929264 + 0.402520i
\(169\) 3.06452 + 2.57143i 0.235732 + 0.197803i
\(170\) 0.0405794i 0.00311230i
\(171\) −14.6717 + 0.832054i −1.12197 + 0.0636288i
\(172\) 2.41821 0.184387
\(173\) −15.5919 + 5.67499i −1.18543 + 0.431462i −0.858117 0.513454i \(-0.828366\pi\)
−0.327314 + 0.944916i \(0.606144\pi\)
\(174\) −4.67252 9.32148i −0.354223 0.706659i
\(175\) −8.46627 10.1052i −0.639990 0.763880i
\(176\) 0.233963 0.642808i 0.0176356 0.0484535i
\(177\) 0.138115 + 0.275533i 0.0103813 + 0.0207103i
\(178\) 8.87773 10.5801i 0.665414 0.793010i
\(179\) 10.4083i 0.777951i −0.921248 0.388976i \(-0.872829\pi\)
0.921248 0.388976i \(-0.127171\pi\)
\(180\) −0.282592 + 0.378379i −0.0210631 + 0.0282027i
\(181\) 14.3465 + 8.28296i 1.06637 + 0.615668i 0.927187 0.374599i \(-0.122220\pi\)
0.139181 + 0.990267i \(0.455553\pi\)
\(182\) −7.00096 1.23991i −0.518946 0.0919081i
\(183\) −4.82633 6.49323i −0.356773 0.479994i
\(184\) −13.9863 + 11.7359i −1.03108 + 0.865179i
\(185\) −0.166310 0.943191i −0.0122274 0.0693448i
\(186\) −12.9770 + 3.87426i −0.951518 + 0.284075i
\(187\) −0.887699 + 1.05792i −0.0649150 + 0.0773626i
\(188\) 5.32251 0.388184
\(189\) −2.34603 13.5461i −0.170649 0.985332i
\(190\) −0.576792 −0.0418449
\(191\) −6.66865 + 7.94739i −0.482527 + 0.575053i −0.951300 0.308265i \(-0.900252\pi\)
0.468774 + 0.883318i \(0.344696\pi\)
\(192\) −2.13831 + 8.99163i −0.154319 + 0.648915i
\(193\) 3.16593 + 17.9549i 0.227888 + 1.29242i 0.857086 + 0.515174i \(0.172273\pi\)
−0.629197 + 0.777246i \(0.716616\pi\)
\(194\) 8.50519 7.13670i 0.610637 0.512385i
\(195\) 0.271007 0.626949i 0.0194072 0.0448968i
\(196\) 7.88173 2.85525i 0.562981 0.203946i
\(197\) −18.9850 10.9610i −1.35263 0.780941i −0.364012 0.931394i \(-0.618593\pi\)
−0.988617 + 0.150454i \(0.951927\pi\)
\(198\) −10.4827 + 2.46754i −0.744970 + 0.175360i
\(199\) 7.25537i 0.514320i 0.966369 + 0.257160i \(0.0827867\pi\)
−0.966369 + 0.257160i \(0.917213\pi\)
\(200\) 9.17399 10.9331i 0.648699 0.773089i
\(201\) 19.9317 + 1.17616i 1.40587 + 0.0829596i
\(202\) 1.15639 3.17715i 0.0813633 0.223544i
\(203\) −16.7036 6.09389i −1.17236 0.427707i
\(204\) 0.393261 0.596931i 0.0275337 0.0417935i
\(205\) −1.18885 + 0.432707i −0.0830330 + 0.0302215i
\(206\) 8.96685 0.624750
\(207\) 18.3108 + 5.51236i 1.27269 + 0.383135i
\(208\) 0.512094i 0.0355074i
\(209\) 15.0372 + 12.6177i 1.04014 + 0.872783i
\(210\) −0.0618303 0.536048i −0.00426670 0.0369908i
\(211\) 0.796078 + 4.51478i 0.0548043 + 0.310810i 0.999871 0.0160673i \(-0.00511459\pi\)
−0.945067 + 0.326878i \(0.894003\pi\)
\(212\) −2.60093 + 7.14600i −0.178633 + 0.490789i
\(213\) 0.726901 + 0.172865i 0.0498064 + 0.0118445i
\(214\) 0.719141 4.07845i 0.0491595 0.278797i
\(215\) −0.132716 0.229871i −0.00905118 0.0156771i
\(216\) 13.9976 5.05843i 0.952414 0.344182i
\(217\) −11.5620 + 19.9912i −0.784883 + 1.35709i
\(218\) −3.65099 10.0310i −0.247276 0.679386i
\(219\) 2.56743 + 0.610562i 0.173491 + 0.0412580i
\(220\) 0.621251 0.109543i 0.0418847 0.00738540i
\(221\) −0.353593 + 0.971490i −0.0237853 + 0.0653495i
\(222\) −4.48543 + 10.3766i −0.301042 + 0.696433i
\(223\) 15.1586 18.0653i 1.01510 1.20974i 0.0374904 0.999297i \(-0.488064\pi\)
0.977605 0.210447i \(-0.0674919\pi\)
\(224\) 7.36639 + 12.7812i 0.492188 + 0.853982i
\(225\) −14.8444 1.75804i −0.989628 0.117203i
\(226\) 1.36745 2.36849i 0.0909615 0.157550i
\(227\) −1.87601 1.57416i −0.124515 0.104480i 0.578404 0.815751i \(-0.303676\pi\)
−0.702919 + 0.711270i \(0.748120\pi\)
\(228\) −8.48472 5.58977i −0.561914 0.370192i
\(229\) 0.258016 0.0454952i 0.0170502 0.00300640i −0.165117 0.986274i \(-0.552800\pi\)
0.182167 + 0.983268i \(0.441689\pi\)
\(230\) 0.705299 + 0.256708i 0.0465060 + 0.0169268i
\(231\) −10.1144 + 15.3275i −0.665481 + 1.00848i
\(232\) 3.34263 18.9570i 0.219455 1.24459i
\(233\) −25.1425 14.5160i −1.64714 0.950977i −0.978201 0.207662i \(-0.933415\pi\)
−0.668941 0.743316i \(-0.733252\pi\)
\(234\) −6.74236 + 4.41979i −0.440762 + 0.288931i
\(235\) −0.292110 0.505950i −0.0190552 0.0330045i
\(236\) −0.0370047 + 0.209864i −0.00240880 + 0.0136610i
\(237\) 0.472537 + 4.06975i 0.0306945 + 0.264359i
\(238\) 0.141222 + 0.804460i 0.00915407 + 0.0521454i
\(239\) 1.21344 + 1.44612i 0.0784911 + 0.0935420i 0.803861 0.594817i \(-0.202776\pi\)
−0.725370 + 0.688359i \(0.758331\pi\)
\(240\) 0.0372408 0.0111182i 0.00240389 0.000717677i
\(241\) 18.0533 + 3.18328i 1.16291 + 0.205053i 0.721607 0.692303i \(-0.243404\pi\)
0.441307 + 0.897356i \(0.354515\pi\)
\(242\) 3.92447 + 2.26580i 0.252275 + 0.145651i
\(243\) −12.4682 9.35644i −0.799838 0.600216i
\(244\) 5.59387i 0.358111i
\(245\) −0.703980 0.592523i −0.0449757 0.0378549i
\(246\) 14.5279 + 3.45488i 0.926263 + 0.220275i
\(247\) 13.8087 + 5.02595i 0.878625 + 0.319793i
\(248\) −23.4941 8.55114i −1.49188 0.542998i
\(249\) −11.5323 4.98499i −0.730829 0.315911i
\(250\) −1.15762 0.204119i −0.0732141 0.0129096i
\(251\) 3.29266 5.70305i 0.207831 0.359973i −0.743200 0.669069i \(-0.766693\pi\)
0.951031 + 0.309096i \(0.100026\pi\)
\(252\) 4.28538 8.48457i 0.269953 0.534478i
\(253\) −12.7717 22.1213i −0.802952 1.39075i
\(254\) 2.80196 + 7.69832i 0.175811 + 0.483036i
\(255\) −0.0783262 0.00462198i −0.00490498 0.000289439i
\(256\) −12.5476 + 10.5287i −0.784224 + 0.658042i
\(257\) 5.02735 + 28.5115i 0.313598 + 1.77850i 0.579978 + 0.814632i \(0.303061\pi\)
−0.266381 + 0.963868i \(0.585828\pi\)
\(258\) −0.184555 + 3.12756i −0.0114899 + 0.194713i
\(259\) 6.57942 + 18.1193i 0.408825 + 1.12588i
\(260\) 0.408978 0.236124i 0.0253638 0.0146438i
\(261\) −18.5245 + 7.95716i −1.14664 + 0.492536i
\(262\) 4.32506 2.49707i 0.267203 0.154270i
\(263\) −7.94138 21.8188i −0.489686 1.34540i −0.900965 0.433892i \(-0.857140\pi\)
0.411278 0.911510i \(-0.365082\pi\)
\(264\) −18.2492 7.88845i −1.12316 0.485500i
\(265\) 0.822031 0.144946i 0.0504970 0.00890398i
\(266\) 11.4345 2.00732i 0.701096 0.123077i
\(267\) −19.4104 18.3408i −1.18790 1.12244i
\(268\) 10.5753 + 8.87371i 0.645988 + 0.542048i
\(269\) −4.60903 + 7.98308i −0.281018 + 0.486737i −0.971636 0.236483i \(-0.924005\pi\)
0.690618 + 0.723220i \(0.257339\pi\)
\(270\) −0.467803 0.394363i −0.0284696 0.0240002i
\(271\) 25.5138 14.7304i 1.54985 0.894807i 0.551700 0.834043i \(-0.313980\pi\)
0.998152 0.0607643i \(-0.0193538\pi\)
\(272\) −0.0552799 + 0.0201202i −0.00335183 + 0.00121997i
\(273\) −3.19067 + 13.3720i −0.193108 + 0.809310i
\(274\) −9.92644 + 8.32927i −0.599678 + 0.503190i
\(275\) 12.8348 + 15.2960i 0.773970 + 0.922381i
\(276\) 7.88729 + 10.6114i 0.474759 + 0.638729i
\(277\) −2.86248 + 1.04186i −0.171990 + 0.0625991i −0.426580 0.904450i \(-0.640282\pi\)
0.254590 + 0.967049i \(0.418059\pi\)
\(278\) 12.2662 0.735680
\(279\) 6.00001 + 25.4894i 0.359211 + 1.52601i
\(280\) 0.498735 0.862331i 0.0298051 0.0515341i
\(281\) 24.6845 + 4.35255i 1.47256 + 0.259651i 0.851599 0.524194i \(-0.175633\pi\)
0.620956 + 0.783845i \(0.286744\pi\)
\(282\) −0.406208 + 6.88379i −0.0241893 + 0.409924i
\(283\) 7.17877 + 8.55533i 0.426734 + 0.508562i 0.935977 0.352061i \(-0.114519\pi\)
−0.509243 + 0.860623i \(0.670075\pi\)
\(284\) 0.332068 + 0.395744i 0.0197046 + 0.0234831i
\(285\) −0.0656964 + 1.11332i −0.00389152 + 0.0659475i
\(286\) 10.6053 + 1.87000i 0.627105 + 0.110575i
\(287\) 22.0623 12.7155i 1.30230 0.750572i
\(288\) 16.0172 + 4.82190i 0.943824 + 0.284133i
\(289\) −16.8812 −0.993014
\(290\) −0.743608 + 0.270651i −0.0436662 + 0.0158932i
\(291\) −12.8065 17.2295i −0.750730 1.01001i
\(292\) 1.17287 + 1.39777i 0.0686371 + 0.0817986i
\(293\) 3.69754 3.10260i 0.216012 0.181256i −0.528360 0.849020i \(-0.677193\pi\)
0.744373 + 0.667764i \(0.232749\pi\)
\(294\) 3.09127 + 10.4116i 0.180286 + 0.607218i
\(295\) 0.0219803 0.00800016i 0.00127974 0.000465787i
\(296\) −18.0735 + 10.4348i −1.05050 + 0.606508i
\(297\) 3.56886 + 20.5146i 0.207087 + 1.19038i
\(298\) −7.29237 + 12.6308i −0.422436 + 0.731680i
\(299\) −14.6483 12.2914i −0.847135 0.710830i
\(300\) −7.51227 7.09831i −0.433721 0.409821i
\(301\) 3.43100 + 4.09518i 0.197759 + 0.236042i
\(302\) 3.74243 0.659892i 0.215353 0.0379725i
\(303\) −6.00082 2.59393i −0.344738 0.149018i
\(304\) 0.285987 + 0.785743i 0.0164025 + 0.0450655i
\(305\) −0.531744 + 0.307003i −0.0304476 + 0.0175789i
\(306\) 0.742018 + 0.554174i 0.0424183 + 0.0316800i
\(307\) −17.7257 + 10.2339i −1.01166 + 0.584082i −0.911677 0.410907i \(-0.865212\pi\)
−0.0999825 + 0.994989i \(0.531879\pi\)
\(308\) −11.9347 + 4.33366i −0.680040 + 0.246933i
\(309\) 1.02132 17.3078i 0.0581008 0.984604i
\(310\) 0.178477 + 1.01219i 0.0101368 + 0.0574888i
\(311\) 11.3004 9.48217i 0.640787 0.537684i −0.263473 0.964667i \(-0.584868\pi\)
0.904260 + 0.426982i \(0.140423\pi\)
\(312\) −14.8573 0.876721i −0.841130 0.0496345i
\(313\) 4.05965 + 11.1538i 0.229465 + 0.630450i 0.999976 0.00697724i \(-0.00222094\pi\)
−0.770511 + 0.637427i \(0.779999\pi\)
\(314\) −2.04935 3.54958i −0.115652 0.200314i
\(315\) −1.04172 + 0.0582889i −0.0586943 + 0.00328421i
\(316\) −1.41639 + 2.45327i −0.0796784 + 0.138007i
\(317\) −20.1601 3.55477i −1.13230 0.199656i −0.424067 0.905631i \(-0.639398\pi\)
−0.708237 + 0.705975i \(0.750509\pi\)
\(318\) −9.04366 3.90925i −0.507143 0.219220i
\(319\) 25.3068 + 9.21090i 1.41691 + 0.515712i
\(320\) 0.659127 + 0.239903i 0.0368463 + 0.0134110i
\(321\) −7.79030 1.85262i −0.434812 0.103403i
\(322\) −14.8755 2.63452i −0.828977 0.146816i
\(323\) 1.68810i 0.0939282i
\(324\) −3.05965 10.3347i −0.169981 0.574150i
\(325\) 12.9452 + 7.47390i 0.718069 + 0.414577i
\(326\) 7.31379 + 1.28962i 0.405074 + 0.0714254i
\(327\) −19.7777 + 5.90460i −1.09371 + 0.326525i
\(328\) 17.7204 + 21.1184i 0.978447 + 1.16607i
\(329\) 7.55166 + 9.01353i 0.416337 + 0.496932i
\(330\) 0.0942630 + 0.811845i 0.00518900 + 0.0446906i
\(331\) −2.39022 + 13.5556i −0.131378 + 0.745083i 0.845935 + 0.533285i \(0.179043\pi\)
−0.977314 + 0.211798i \(0.932068\pi\)
\(332\) −4.34333 7.52287i −0.238371 0.412871i
\(333\) 19.5180 + 9.83965i 1.06958 + 0.539209i
\(334\) −3.40000 1.96299i −0.186040 0.107410i
\(335\) 0.263129 1.49228i 0.0143762 0.0815317i
\(336\) −0.699582 + 0.350014i −0.0381653 + 0.0190948i
\(337\) −11.8712 4.32077i −0.646667 0.235367i −0.00219742 0.999998i \(-0.500699\pi\)
−0.644469 + 0.764630i \(0.722922\pi\)
\(338\) −3.52910 + 0.622276i −0.191958 + 0.0338473i
\(339\) −4.41590 2.90922i −0.239839 0.158007i
\(340\) −0.0415580 0.0348713i −0.00225380 0.00189116i
\(341\) 17.4894 30.2925i 0.947104 1.64043i
\(342\) 7.87699 10.5470i 0.425939 0.570315i
\(343\) 16.0180 + 9.29642i 0.864891 + 0.501960i
\(344\) −3.71780 + 4.43071i −0.200451 + 0.238888i
\(345\) 0.575830 1.33213i 0.0310016 0.0717193i
\(346\) 5.08358 13.9670i 0.273295 0.750872i
\(347\) 17.8481 3.14709i 0.958134 0.168945i 0.327350 0.944903i \(-0.393845\pi\)
0.630784 + 0.775958i \(0.282733\pi\)
\(348\) −13.5615 3.22508i −0.726974 0.172882i
\(349\) −6.17471 16.9649i −0.330525 0.908109i −0.987975 0.154612i \(-0.950587\pi\)
0.657450 0.753498i \(-0.271635\pi\)
\(350\) 11.8092 + 0.00891295i 0.631228 + 0.000476417i
\(351\) 7.76310 + 13.5175i 0.414364 + 0.721510i
\(352\) −11.1720 19.3505i −0.595469 1.03138i
\(353\) −2.71457 + 15.3951i −0.144482 + 0.819398i 0.823300 + 0.567607i \(0.192131\pi\)
−0.967782 + 0.251791i \(0.918981\pi\)
\(354\) −0.268601 0.0638761i −0.0142760 0.00339498i
\(355\) 0.0193942 0.0532851i 0.00102934 0.00282808i
\(356\) −3.20627 18.1836i −0.169932 0.963731i
\(357\) 1.56885 0.180959i 0.0830324 0.00957734i
\(358\) 7.14229 + 5.99309i 0.377482 + 0.316745i
\(359\) 10.1138i 0.533785i −0.963726 0.266892i \(-0.914003\pi\)
0.963726 0.266892i \(-0.0859968\pi\)
\(360\) −0.258814 1.09950i −0.0136407 0.0579486i
\(361\) −4.99446 −0.262866
\(362\) −13.9446 + 5.07542i −0.732912 + 0.266758i
\(363\) 4.82042 7.31693i 0.253007 0.384039i
\(364\) −7.28598 + 6.10430i −0.381889 + 0.319952i
\(365\) 0.0685006 0.188204i 0.00358549 0.00985105i
\(366\) 7.23474 + 0.426917i 0.378166 + 0.0223153i
\(367\) −17.9093 + 21.3435i −0.934859 + 1.11412i 0.0584104 + 0.998293i \(0.481397\pi\)
−0.993269 + 0.115829i \(0.963048\pi\)
\(368\) 1.08809i 0.0567204i
\(369\) 8.32331 27.6481i 0.433294 1.43930i
\(370\) 0.742991 + 0.428966i 0.0386262 + 0.0223009i
\(371\) −15.7918 + 5.73425i −0.819869 + 0.297707i
\(372\) −7.18388 + 16.6192i −0.372467 + 0.861666i
\(373\) 15.1151 12.6831i 0.782632 0.656706i −0.161278 0.986909i \(-0.551562\pi\)
0.943910 + 0.330203i \(0.107117\pi\)
\(374\) −0.214819 1.21830i −0.0111080 0.0629968i
\(375\) −0.525841 + 2.21118i −0.0271543 + 0.114185i
\(376\) −8.18293 + 9.75203i −0.422002 + 0.502923i
\(377\) 20.1607 1.03833
\(378\) 10.6463 + 6.18996i 0.547588 + 0.318377i
\(379\) 3.29633 0.169321 0.0846605 0.996410i \(-0.473019\pi\)
0.0846605 + 0.996410i \(0.473019\pi\)
\(380\) −0.495658 + 0.590702i −0.0254267 + 0.0303024i
\(381\) 15.1784 4.53150i 0.777613 0.232156i
\(382\) −1.61378 9.15222i −0.0825684 0.468269i
\(383\) −23.6377 + 19.8344i −1.20783 + 1.01349i −0.208459 + 0.978031i \(0.566845\pi\)
−0.999371 + 0.0354584i \(0.988711\pi\)
\(384\) 6.58336 + 8.85709i 0.335956 + 0.451987i
\(385\) 1.06695 + 0.896649i 0.0543767 + 0.0456975i
\(386\) −14.1438 8.16592i −0.719900 0.415635i
\(387\) 6.01578 + 0.712455i 0.305799 + 0.0362161i
\(388\) 14.8431i 0.753545i
\(389\) −8.64017 + 10.2969i −0.438074 + 0.522076i −0.939234 0.343279i \(-0.888462\pi\)
0.501160 + 0.865355i \(0.332907\pi\)
\(390\) 0.274174 + 0.546966i 0.0138834 + 0.0276967i
\(391\) −0.751306 + 2.06420i −0.0379952 + 0.104391i
\(392\) −6.88606 + 18.8308i −0.347799 + 0.951099i
\(393\) −4.32721 8.63262i −0.218279 0.435458i
\(394\) 18.4532 6.71641i 0.929658 0.338368i
\(395\) 0.310938 0.0156450
\(396\) −6.48107 + 12.8559i −0.325686 + 0.646033i
\(397\) 32.3533i 1.62376i −0.583821 0.811882i \(-0.698443\pi\)
0.583821 0.811882i \(-0.301557\pi\)
\(398\) −4.97873 4.17765i −0.249561 0.209407i
\(399\) −2.57213 22.2995i −0.128768 1.11637i
\(400\) 0.147699 + 0.837640i 0.00738493 + 0.0418820i
\(401\) 13.0462 35.8442i 0.651498 1.78998i 0.0393585 0.999225i \(-0.487469\pi\)
0.612139 0.790750i \(-0.290309\pi\)
\(402\) −12.2838 + 13.0001i −0.612659 + 0.648388i
\(403\) 4.54704 25.7876i 0.226504 1.28457i
\(404\) −2.26005 3.91452i −0.112442 0.194754i
\(405\) −0.814480 + 0.858034i −0.0404718 + 0.0426361i
\(406\) 13.7996 7.95334i 0.684864 0.394718i
\(407\) −9.98612 27.4366i −0.494993 1.35998i
\(408\) 0.489105 + 1.63827i 0.0242143 + 0.0811066i
\(409\) −22.3158 + 3.93488i −1.10345 + 0.194567i −0.695562 0.718466i \(-0.744845\pi\)
−0.407885 + 0.913033i \(0.633734\pi\)
\(410\) 0.387613 1.06496i 0.0191428 0.0525945i
\(411\) 14.9465 + 20.1087i 0.737257 + 0.991888i
\(412\) 7.70552 9.18309i 0.379624 0.452418i
\(413\) −0.407902 + 0.235092i −0.0200716 + 0.0115681i
\(414\) −14.3260 + 9.39105i −0.704084 + 0.461545i
\(415\) −0.476741 + 0.825740i −0.0234023 + 0.0405340i
\(416\) −12.8135 10.7518i −0.628235 0.527152i
\(417\) 1.39712 23.6762i 0.0684172 1.15943i
\(418\) −17.3168 + 3.05342i −0.846993 + 0.149348i
\(419\) 1.24840 + 0.454379i 0.0609881 + 0.0221979i 0.372334 0.928099i \(-0.378558\pi\)
−0.311346 + 0.950297i \(0.600780\pi\)
\(420\) −0.602108 0.397323i −0.0293799 0.0193874i
\(421\) −0.798906 + 4.53082i −0.0389363 + 0.220819i −0.998067 0.0621441i \(-0.980206\pi\)
0.959131 + 0.282963i \(0.0913173\pi\)
\(422\) −3.55648 2.05334i −0.173127 0.0999548i
\(423\) 13.2408 + 1.56812i 0.643789 + 0.0762446i
\(424\) −9.09435 15.7519i −0.441661 0.764979i
\(425\) 0.298180 1.69106i 0.0144639 0.0820286i
\(426\) −0.537172 + 0.399273i −0.0260261 + 0.0193448i
\(427\) 9.47306 7.93667i 0.458434 0.384082i
\(428\) −3.55882 4.24124i −0.172022 0.205008i
\(429\) 4.81740 20.2573i 0.232586 0.978032i
\(430\) 0.234159 + 0.0412885i 0.0112921 + 0.00199111i
\(431\) 15.3689 + 8.87327i 0.740296 + 0.427410i 0.822177 0.569232i \(-0.192759\pi\)
−0.0818808 + 0.996642i \(0.526093\pi\)
\(432\) −0.305278 + 0.832806i −0.0146877 + 0.0400684i
\(433\) 1.22234i 0.0587418i −0.999569 0.0293709i \(-0.990650\pi\)
0.999569 0.0293709i \(-0.00935038\pi\)
\(434\) −7.06077 19.4450i −0.338928 0.933388i
\(435\) 0.437713 + 1.46614i 0.0209867 + 0.0702958i
\(436\) −13.4103 4.88096i −0.642239 0.233756i
\(437\) 29.3403 + 10.6790i 1.40354 + 0.510846i
\(438\) −1.89730 + 1.41024i −0.0906566 + 0.0673838i
\(439\) 4.79703 + 0.845847i 0.228950 + 0.0403701i 0.286946 0.957947i \(-0.407360\pi\)
−0.0579961 + 0.998317i \(0.518471\pi\)
\(440\) −0.754414 + 1.30668i −0.0359653 + 0.0622937i
\(441\) 20.4486 4.78087i 0.973741 0.227660i
\(442\) −0.463049 0.802024i −0.0220250 0.0381484i
\(443\) 7.95536 + 21.8572i 0.377971 + 1.03847i 0.972196 + 0.234168i \(0.0752364\pi\)
−0.594226 + 0.804298i \(0.702541\pi\)
\(444\) 6.77236 + 13.5106i 0.321402 + 0.641184i
\(445\) −1.55254 + 1.30274i −0.0735975 + 0.0617557i
\(446\) 3.66832 + 20.8041i 0.173700 + 0.985100i
\(447\) 23.5492 + 15.5143i 1.11384 + 0.733803i
\(448\) −13.9016 2.46206i −0.656791 0.116321i
\(449\) 19.9333 11.5085i 0.940710 0.543119i 0.0505273 0.998723i \(-0.483910\pi\)
0.890183 + 0.455603i \(0.150576\pi\)
\(450\) 9.75382 9.17415i 0.459799 0.432473i
\(451\) −33.4018 + 19.2845i −1.57283 + 0.908072i
\(452\) −1.25051 3.43576i −0.0588192 0.161604i
\(453\) −0.847459 7.29879i −0.0398171 0.342927i
\(454\) 2.16041 0.380939i 0.101393 0.0178783i
\(455\) 0.980134 + 0.357578i 0.0459494 + 0.0167635i
\(456\) 23.2863 6.95209i 1.09048 0.325561i
\(457\) 20.3778 + 17.0990i 0.953231 + 0.799856i 0.979839 0.199790i \(-0.0640260\pi\)
−0.0266074 + 0.999646i \(0.508470\pi\)
\(458\) −0.117346 + 0.203250i −0.00548323 + 0.00949724i
\(459\) 1.15418 1.36912i 0.0538725 0.0639050i
\(460\) 0.868987 0.501710i 0.0405167 0.0233923i
\(461\) −25.7975 + 9.38952i −1.20151 + 0.437314i −0.863751 0.503919i \(-0.831891\pi\)
−0.337758 + 0.941233i \(0.609669\pi\)
\(462\) −4.69403 15.7662i −0.218386 0.733512i
\(463\) 2.44473 2.05137i 0.113616 0.0953355i −0.584210 0.811603i \(-0.698595\pi\)
0.697826 + 0.716267i \(0.254151\pi\)
\(464\) 0.737397 + 0.878795i 0.0342328 + 0.0407970i
\(465\) 1.97406 0.229207i 0.0915449 0.0106292i
\(466\) 24.4382 8.89476i 1.13208 0.412042i
\(467\) 16.9027 0.782162 0.391081 0.920356i \(-0.372101\pi\)
0.391081 + 0.920356i \(0.372101\pi\)
\(468\) −1.26757 + 10.7030i −0.0585935 + 0.494748i
\(469\) −0.0230191 + 30.4991i −0.00106292 + 1.40832i
\(470\) 0.515386 + 0.0908765i 0.0237730 + 0.00419182i
\(471\) −7.08480 + 3.55135i −0.326450 + 0.163638i
\(472\) −0.327627 0.390450i −0.0150802 0.0179719i
\(473\) −5.20138 6.19877i −0.239160 0.285020i
\(474\) −3.06480 2.01910i −0.140771 0.0927405i
\(475\) −24.0366 4.23831i −1.10288 0.194467i
\(476\) 0.945217 + 0.546673i 0.0433240 + 0.0250567i
\(477\) −8.57568 + 17.0108i −0.392653 + 0.778870i
\(478\) −1.69105 −0.0773468
\(479\) 35.4520 12.9035i 1.61984 0.589574i 0.636490 0.771285i \(-0.280386\pi\)
0.983352 + 0.181710i \(0.0581633\pi\)
\(480\) 0.503703 1.16527i 0.0229908 0.0531870i
\(481\) −14.0497 16.7438i −0.640611 0.763450i
\(482\) −12.5795 + 10.5554i −0.572980 + 0.480787i
\(483\) −6.77945 + 28.4125i −0.308476 + 1.29281i
\(484\) 5.69287 2.07204i 0.258767 0.0941835i
\(485\) −1.41096 + 0.814620i −0.0640685 + 0.0369900i
\(486\) 13.5997 3.16842i 0.616896 0.143723i
\(487\) −9.18231 + 15.9042i −0.416090 + 0.720689i −0.995542 0.0943172i \(-0.969933\pi\)
0.579452 + 0.815006i \(0.303267\pi\)
\(488\) 10.2492 + 8.60012i 0.463960 + 0.389309i
\(489\) 3.32225 13.9702i 0.150238 0.631753i
\(490\) 0.811949 0.141905i 0.0366801 0.00641062i
\(491\) −17.9717 + 3.16890i −0.811053 + 0.143011i −0.563769 0.825933i \(-0.690649\pi\)
−0.247284 + 0.968943i \(0.579538\pi\)
\(492\) 16.0225 11.9093i 0.722350 0.536913i
\(493\) −0.792114 2.17632i −0.0356750 0.0980163i
\(494\) −11.3999 + 6.58174i −0.512906 + 0.296126i
\(495\) 1.57776 0.0894771i 0.0709149 0.00402170i
\(496\) 1.29038 0.745003i 0.0579399 0.0334516i
\(497\) −0.199037 + 1.12384i −0.00892805 + 0.0504110i
\(498\) 10.0611 5.04324i 0.450847 0.225993i
\(499\) 6.49963 + 36.8612i 0.290963 + 1.65013i 0.683172 + 0.730258i \(0.260600\pi\)
−0.392208 + 0.919876i \(0.628289\pi\)
\(500\) −1.20382 + 1.01013i −0.0538365 + 0.0451742i
\(501\) −4.17621 + 6.33907i −0.186579 + 0.283209i
\(502\) 2.01759 + 5.54328i 0.0900494 + 0.247409i
\(503\) 8.72136 + 15.1058i 0.388866 + 0.673536i 0.992297 0.123879i \(-0.0395335\pi\)
−0.603431 + 0.797415i \(0.706200\pi\)
\(504\) 8.95721 + 20.8961i 0.398986 + 0.930787i
\(505\) −0.248072 + 0.429673i −0.0110391 + 0.0191202i
\(506\) 22.5339 + 3.97333i 1.00175 + 0.176636i
\(507\) 0.799151 + 6.88273i 0.0354915 + 0.305673i
\(508\) 10.2918 + 3.74591i 0.456625 + 0.166198i
\(509\) 26.2302 + 9.54701i 1.16263 + 0.423164i 0.850037 0.526723i \(-0.176579\pi\)
0.312595 + 0.949886i \(0.398802\pi\)
\(510\) 0.0482719 0.0510871i 0.00213752 0.00226217i
\(511\) −0.703004 + 3.96941i −0.0310991 + 0.175596i
\(512\) 1.92969i 0.0852812i
\(513\) −19.4605 16.4054i −0.859204 0.724317i
\(514\) −22.4597 12.9671i −0.990655 0.571955i
\(515\) −1.29582 0.228489i −0.0571008 0.0100684i
\(516\) 3.04439 + 2.87663i 0.134022 + 0.126636i
\(517\) −11.4483 13.6436i −0.503496 0.600043i
\(518\) −16.2222 5.91825i −0.712761 0.260033i
\(519\) −26.3801 11.4031i −1.15796 0.500543i
\(520\) −0.196139 + 1.11236i −0.00860127 + 0.0487802i
\(521\) 3.13445 + 5.42902i 0.137323 + 0.237850i 0.926482 0.376338i \(-0.122817\pi\)
−0.789160 + 0.614188i \(0.789484\pi\)
\(522\) 5.20610 17.2935i 0.227865 0.756914i
\(523\) 5.33996 + 3.08303i 0.233500 + 0.134811i 0.612186 0.790714i \(-0.290290\pi\)
−0.378686 + 0.925525i \(0.623624\pi\)
\(524\) 1.15938 6.57518i 0.0506478 0.287238i
\(525\) 1.36226 22.7930i 0.0594541 0.994769i
\(526\) 19.5450 + 7.11378i 0.852200 + 0.310176i
\(527\) −2.96239 + 0.522349i −0.129044 + 0.0227539i
\(528\) 1.05921 0.530943i 0.0460962 0.0231063i
\(529\) −13.5054 11.3324i −0.587190 0.492711i
\(530\) −0.373862 + 0.647548i −0.0162395 + 0.0281277i
\(531\) −0.153887 + 0.511176i −0.00667812 + 0.0221832i
\(532\) 7.77036 13.4352i 0.336888 0.582491i
\(533\) −18.5593 + 22.1181i −0.803890 + 0.958039i
\(534\) 23.7622 2.75902i 1.02829 0.119395i
\(535\) −0.207850 + 0.571064i −0.00898615 + 0.0246892i
\(536\) −32.5172 + 5.73367i −1.40453 + 0.247657i
\(537\) 12.3813 13.1034i 0.534294 0.565454i
\(538\) −2.82420 7.75944i −0.121760 0.334533i
\(539\) −24.2720 14.0623i −1.04547 0.605708i
\(540\) −0.805873 + 0.140195i −0.0346792 + 0.00603304i
\(541\) −10.3506 17.9278i −0.445008 0.770777i 0.553045 0.833152i \(-0.313466\pi\)
−0.998053 + 0.0623747i \(0.980133\pi\)
\(542\) −4.58267 + 25.9896i −0.196843 + 1.11635i
\(543\) 8.20827 + 27.4939i 0.352250 + 1.17988i
\(544\) −0.657200 + 1.80564i −0.0281772 + 0.0774163i
\(545\) 0.272010 + 1.54264i 0.0116516 + 0.0660796i
\(546\) −7.33884 9.88908i −0.314073 0.423214i
\(547\) −12.9704 10.8834i −0.554573 0.465342i 0.321913 0.946769i \(-0.395674\pi\)
−0.876486 + 0.481427i \(0.840118\pi\)
\(548\) 17.3235i 0.740022i
\(549\) 1.64807 13.9158i 0.0703378 0.593914i
\(550\) −17.8866 −0.762687
\(551\) −30.9340 + 11.2590i −1.31783 + 0.479651i
\(552\) −31.5685 1.86283i −1.34364 0.0792875i
\(553\) −6.16415 + 1.08211i −0.262126 + 0.0460160i
\(554\) 0.933281 2.56417i 0.0396513 0.108941i
\(555\) 0.912614 1.38526i 0.0387383 0.0588009i
\(556\) 10.5408 12.5620i 0.447030 0.532749i
\(557\) 42.9293i 1.81897i 0.415735 + 0.909486i \(0.363524\pi\)
−0.415735 + 0.909486i \(0.636476\pi\)
\(558\) −20.9459 10.5595i −0.886712 0.447020i
\(559\) −5.24610 3.02883i −0.221886 0.128106i
\(560\) 0.0202627 + 0.0558024i 0.000856257 + 0.00235808i
\(561\) −2.37602 + 0.275879i −0.100316 + 0.0116476i
\(562\) −17.2001 + 14.4326i −0.725544 + 0.608804i
\(563\) 0.471251 + 2.67260i 0.0198609 + 0.112637i 0.993127 0.117046i \(-0.0373424\pi\)
−0.973266 + 0.229682i \(0.926231\pi\)
\(564\) 6.70073 + 6.33148i 0.282151 + 0.266604i
\(565\) −0.257967 + 0.307433i −0.0108527 + 0.0129338i
\(566\) −10.0043 −0.420513
\(567\) 13.1604 19.8445i 0.552687 0.833389i
\(568\) −1.23562 −0.0518454
\(569\) −21.3534 + 25.4480i −0.895182 + 1.06684i 0.102217 + 0.994762i \(0.467406\pi\)
−0.997399 + 0.0720743i \(0.977038\pi\)
\(570\) −0.726147 0.686133i −0.0304150 0.0287390i
\(571\) 0.378167 + 2.14469i 0.0158258 + 0.0897526i 0.991698 0.128591i \(-0.0410456\pi\)
−0.975872 + 0.218344i \(0.929934\pi\)
\(572\) 11.0286 9.25410i 0.461129 0.386933i
\(573\) −17.8494 + 2.07248i −0.745669 + 0.0865793i
\(574\) −3.97797 + 22.4610i −0.166037 + 0.937505i
\(575\) 27.5056 + 15.8803i 1.14706 + 0.662256i
\(576\) −13.3881 + 8.77627i −0.557839 + 0.365678i
\(577\) 34.2253i 1.42482i −0.701764 0.712410i \(-0.747604\pi\)
0.701764 0.712410i \(-0.252396\pi\)
\(578\) 9.72023 11.5841i 0.404308 0.481836i
\(579\) −17.3728 + 26.3702i −0.721989 + 1.09591i
\(580\) −0.361830 + 0.994121i −0.0150242 + 0.0412786i
\(581\) 6.57739 18.0289i 0.272876 0.747964i
\(582\) 19.1971 + 1.13281i 0.795746 + 0.0469564i
\(583\) 23.9122 8.70333i 0.990342 0.360455i
\(584\) −4.36423 −0.180593
\(585\) 1.08698 0.466911i 0.0449411 0.0193044i
\(586\) 4.32377i 0.178613i
\(587\) 10.2925 + 8.63644i 0.424817 + 0.356464i 0.829992 0.557775i \(-0.188345\pi\)
−0.405175 + 0.914239i \(0.632789\pi\)
\(588\) 13.3191 + 5.78125i 0.549272 + 0.238415i
\(589\) 7.42462 + 42.1071i 0.305926 + 1.73499i
\(590\) −0.00716644 + 0.0196896i −0.000295038 + 0.000810609i
\(591\) −10.8622 36.3833i −0.446810 1.49661i
\(592\) 0.215972 1.22484i 0.00887641 0.0503406i
\(593\) 1.95066 + 3.37864i 0.0801039 + 0.138744i 0.903294 0.429021i \(-0.141141\pi\)
−0.823190 + 0.567765i \(0.807808\pi\)
\(594\) −16.1324 9.36334i −0.661918 0.384183i
\(595\) 9.04589e−5 0.119853i 3.70846e−6 0.00491351i
\(596\) 6.66876 + 18.3223i 0.273163 + 0.750510i
\(597\) −8.63075 + 9.13408i −0.353233 + 0.373833i
\(598\) 16.8690 2.97447i 0.689826 0.121635i
\(599\) −3.18327 + 8.74596i −0.130065 + 0.357350i −0.987582 0.157105i \(-0.949784\pi\)
0.857517 + 0.514456i \(0.172006\pi\)
\(600\) 24.5552 2.85109i 1.00246 0.116395i
\(601\) −20.1709 + 24.0388i −0.822789 + 0.980561i −0.999993 0.00361252i \(-0.998850\pi\)
0.177205 + 0.984174i \(0.443295\pi\)
\(602\) −4.78573 0.00361202i −0.195052 0.000147215i
\(603\) 23.6937 + 25.1908i 0.964882 + 1.02585i
\(604\) 2.54020 4.39975i 0.103359 0.179023i
\(605\) −0.509401 0.427438i −0.0207101 0.0173778i
\(606\) 5.23526 2.62425i 0.212668 0.106603i
\(607\) −7.05213 + 1.24348i −0.286237 + 0.0504714i −0.314923 0.949117i \(-0.601979\pi\)
0.0286860 + 0.999588i \(0.490868\pi\)
\(608\) 25.6653 + 9.34139i 1.04086 + 0.378843i
\(609\) −13.7797 27.5419i −0.558383 1.11605i
\(610\) 0.0955096 0.541662i 0.00386707 0.0219312i
\(611\) −11.5467 6.66650i −0.467130 0.269698i
\(612\) 1.20518 0.283690i 0.0487165 0.0114675i
\(613\) −17.4253 30.1815i −0.703801 1.21902i −0.967122 0.254311i \(-0.918151\pi\)
0.263321 0.964708i \(-0.415182\pi\)
\(614\) 3.18381 18.0563i 0.128488 0.728693i
\(615\) −2.01143 0.869467i −0.0811086 0.0350603i
\(616\) 10.4083 28.5296i 0.419363 1.14949i
\(617\) 4.32090 + 5.14944i 0.173953 + 0.207309i 0.845976 0.533222i \(-0.179019\pi\)
−0.672023 + 0.740530i \(0.734574\pi\)
\(618\) 11.2887 + 10.6667i 0.454099 + 0.429076i
\(619\) −33.9380 5.98419i −1.36408 0.240525i −0.556780 0.830660i \(-0.687963\pi\)
−0.807304 + 0.590135i \(0.799074\pi\)
\(620\) 1.18998 + 0.687033i 0.0477906 + 0.0275919i
\(621\) 16.4948 + 28.7216i 0.661915 + 1.15256i
\(622\) 13.2143i 0.529846i
\(623\) 26.2444 31.2290i 1.05146 1.25116i
\(624\) 0.609170 0.644696i 0.0243863 0.0258085i
\(625\) −23.2490 8.46196i −0.929962 0.338478i
\(626\) −9.99142 3.63658i −0.399338 0.145347i
\(627\) 3.92132 + 33.7726i 0.156603 + 1.34875i
\(628\) −5.39626 0.951506i −0.215334 0.0379692i
\(629\) −1.25545 + 2.17451i −0.0500582 + 0.0867033i
\(630\) 0.559824 0.748404i 0.0223039 0.0298171i
\(631\) 13.2483 + 22.9468i 0.527407 + 0.913496i 0.999490 + 0.0319417i \(0.0101691\pi\)
−0.472083 + 0.881554i \(0.656498\pi\)
\(632\) −2.31734 6.36685i −0.0921790 0.253260i
\(633\) −4.36842 + 6.63083i −0.173629 + 0.263552i
\(634\) 14.0475 11.7873i 0.557899 0.468132i
\(635\) −0.208754 1.18390i −0.00828416 0.0469818i
\(636\) −11.7751 + 5.90240i −0.466911 + 0.234046i
\(637\) −20.6749 3.67773i −0.819170 0.145717i
\(638\) −20.8923 + 12.0622i −0.827133 + 0.477546i
\(639\) 0.709491 + 1.08232i 0.0280670 + 0.0428161i
\(640\) 0.725326 0.418767i 0.0286710 0.0165532i
\(641\) 0.814710 + 2.23840i 0.0321791 + 0.0884114i 0.954742 0.297436i \(-0.0961314\pi\)
−0.922563 + 0.385847i \(0.873909\pi\)
\(642\) 5.75695 4.27906i 0.227209 0.168881i
\(643\) 9.49012 1.67336i 0.374254 0.0659911i 0.0166424 0.999862i \(-0.494702\pi\)
0.357612 + 0.933870i \(0.383591\pi\)
\(644\) −15.4811 + 12.9703i −0.610039 + 0.511100i
\(645\) 0.106365 0.447269i 0.00418814 0.0176112i
\(646\) 1.15839 + 0.972007i 0.0455764 + 0.0382431i
\(647\) −1.16581 + 2.01925i −0.0458328 + 0.0793847i −0.888032 0.459782i \(-0.847927\pi\)
0.842199 + 0.539167i \(0.181261\pi\)
\(648\) 23.6394 + 10.2828i 0.928645 + 0.403946i
\(649\) 0.617553 0.356545i 0.0242411 0.0139956i
\(650\) −12.5825 + 4.57966i −0.493527 + 0.179629i
\(651\) −38.3368 + 11.4139i −1.50254 + 0.447346i
\(652\) 7.60572 6.38196i 0.297863 0.249937i
\(653\) 12.3603 + 14.7305i 0.483698 + 0.576448i 0.951603 0.307330i \(-0.0994356\pi\)
−0.467905 + 0.883779i \(0.654991\pi\)
\(654\) 7.33618 16.9715i 0.286867 0.663640i
\(655\) −0.688655 + 0.250650i −0.0269080 + 0.00979370i
\(656\) −1.64294 −0.0641460
\(657\) 2.50594 + 3.82279i 0.0977658 + 0.149141i
\(658\) −10.5334 0.00795009i −0.410637 0.000309927i
\(659\) 38.6246 + 6.81055i 1.50460 + 0.265301i 0.864360 0.502874i \(-0.167724\pi\)
0.640239 + 0.768176i \(0.278835\pi\)
\(660\) 0.912427 + 0.601111i 0.0355162 + 0.0233982i
\(661\) −22.2105 26.4694i −0.863888 1.02954i −0.999249 0.0387452i \(-0.987664\pi\)
0.135361 0.990796i \(-0.456781\pi\)
\(662\) −7.92573 9.44552i −0.308042 0.367110i
\(663\) −1.60080 + 0.802425i −0.0621701 + 0.0311636i
\(664\) 20.4611 + 3.60784i 0.794044 + 0.140011i
\(665\) −1.70359 0.00128578i −0.0660622 4.98602e-5i
\(666\) −17.9906 + 7.72782i −0.697120 + 0.299447i
\(667\) 42.8369 1.65865
\(668\) −4.93206 + 1.79512i −0.190827 + 0.0694554i
\(669\) 40.5737 4.71099i 1.56867 0.182138i
\(670\) 0.872509 + 1.03982i 0.0337079 + 0.0401716i
\(671\) −14.3391 + 12.0320i −0.553556 + 0.464489i
\(672\) −5.93028 + 24.8536i −0.228766 + 0.958750i
\(673\) 13.9024 5.06006i 0.535898 0.195051i −0.0598720 0.998206i \(-0.519069\pi\)
0.595770 + 0.803155i \(0.296847\pi\)
\(674\) 9.80042 5.65828i 0.377498 0.217949i
\(675\) −16.5969 19.8717i −0.638816 0.764862i
\(676\) −2.39540 + 4.14895i −0.0921307 + 0.159575i
\(677\) 14.3500 + 12.0411i 0.551516 + 0.462777i 0.875454 0.483302i \(-0.160563\pi\)
−0.323938 + 0.946078i \(0.605007\pi\)
\(678\) 4.53902 1.35512i 0.174320 0.0520430i
\(679\) 25.1364 21.0596i 0.964647 0.808195i
\(680\) 0.127784 0.0225318i 0.00490030 0.000864055i
\(681\) −0.489216 4.21340i −0.0187468 0.161458i
\(682\) 10.7167 + 29.4439i 0.410364 + 1.12746i
\(683\) −19.2619 + 11.1209i −0.737037 + 0.425529i −0.820991 0.570941i \(-0.806579\pi\)
0.0839538 + 0.996470i \(0.473245\pi\)
\(684\) −4.03235 17.1303i −0.154181 0.654995i
\(685\) 1.64674 0.950746i 0.0629187 0.0363261i
\(686\) −15.6025 + 5.63887i −0.595706 + 0.215293i
\(687\) 0.378946 + 0.249651i 0.0144577 + 0.00952479i
\(688\) −0.0598556 0.339458i −0.00228197 0.0129417i
\(689\) 14.5929 12.2449i 0.555946 0.466494i
\(690\) 0.582558 + 1.16218i 0.0221776 + 0.0442434i
\(691\) 0.935144 + 2.56929i 0.0355745 + 0.0977403i 0.956208 0.292687i \(-0.0945495\pi\)
−0.920634 + 0.390427i \(0.872327\pi\)
\(692\) −9.93535 17.2085i −0.377685 0.654170i
\(693\) −30.9666 + 7.26464i −1.17632 + 0.275961i
\(694\) −8.11734 + 14.0597i −0.308130 + 0.533697i
\(695\) −1.77263 0.312562i −0.0672396 0.0118562i
\(696\) 26.7588 19.8895i 1.01429 0.753908i
\(697\) 3.11681 + 1.13443i 0.118058 + 0.0429694i
\(698\) 15.1969 + 5.53123i 0.575212 + 0.209360i
\(699\) −14.3851 48.1835i −0.544096 1.82247i
\(700\) 10.1572 12.0863i 0.383905 0.456820i
\(701\) 7.89910i 0.298345i −0.988811 0.149173i \(-0.952339\pi\)
0.988811 0.149173i \(-0.0476610\pi\)
\(702\) −13.7459 2.45624i −0.518804 0.0927047i
\(703\) 30.9083 + 17.8449i 1.16573 + 0.673033i
\(704\) 21.0587 + 3.71322i 0.793680 + 0.139947i
\(705\) 0.234112 0.984445i 0.00881715 0.0370763i
\(706\) −9.00125 10.7273i −0.338766 0.403726i
\(707\) 3.42254 9.38131i 0.128718 0.352820i
\(708\) −0.296234 + 0.220187i −0.0111332 + 0.00827514i
\(709\) 6.03163 34.2071i 0.226523 1.28467i −0.633230 0.773964i \(-0.718271\pi\)
0.859753 0.510711i \(-0.170618\pi\)
\(710\) 0.0253977 + 0.0439901i 0.000953159 + 0.00165092i
\(711\) −4.24634 + 5.68568i −0.159250 + 0.213230i
\(712\) 38.2459 + 22.0813i 1.43332 + 0.827531i
\(713\) 9.66145 54.7928i 0.361824 2.05201i
\(714\) −0.779169 + 1.18076i −0.0291597 + 0.0441888i
\(715\) −1.48495 0.540478i −0.0555340 0.0202127i
\(716\) 12.2752 2.16446i 0.458747 0.0808895i
\(717\) −0.192610 + 3.26406i −0.00719314 + 0.121898i
\(718\) 6.94020 + 5.82352i 0.259006 + 0.217332i
\(719\) −1.44565 + 2.50394i −0.0539137 + 0.0933812i −0.891723 0.452582i \(-0.850503\pi\)
0.837809 + 0.545963i \(0.183836\pi\)
\(720\) 0.0601098 + 0.0303033i 0.00224016 + 0.00112934i
\(721\) 26.4840 + 0.0199887i 0.986317 + 0.000744419i
\(722\) 2.87581 3.42726i 0.107027 0.127549i
\(723\) 18.9413 + 25.4831i 0.704433 + 0.947728i
\(724\) −6.78527 + 18.6424i −0.252172 + 0.692838i
\(725\) −32.9771 + 5.81475i −1.22474 + 0.215954i
\(726\) 2.24536 + 7.52093i 0.0833332 + 0.279128i
\(727\) 8.56203 + 23.5240i 0.317548 + 0.872456i 0.991076 + 0.133295i \(0.0425557\pi\)
−0.673528 + 0.739161i \(0.735222\pi\)
\(728\) 0.0171587 22.7344i 0.000635945 0.842593i
\(729\) −4.56667 26.6110i −0.169136 0.985593i
\(730\) 0.0897052 + 0.155374i 0.00332014 + 0.00575065i
\(731\) −0.120839 + 0.685312i −0.00446939 + 0.0253472i
\(732\) 6.65428 7.04235i 0.245949 0.260293i
\(733\) 6.23827 17.1395i 0.230416 0.633062i −0.769569 0.638563i \(-0.779529\pi\)
0.999985 + 0.00550162i \(0.00175123\pi\)
\(734\) −4.33397 24.5792i −0.159970 0.907234i
\(735\) −0.181424 1.58338i −0.00669192 0.0584039i
\(736\) −27.2259 22.8452i −1.00356 0.842086i
\(737\) 46.1950i 1.70161i
\(738\) 14.1799 + 21.6314i 0.521969 + 0.796261i
\(739\) 23.7495 0.873641 0.436821 0.899549i \(-0.356104\pi\)
0.436821 + 0.899549i \(0.356104\pi\)
\(740\) 1.07779 0.392283i 0.0396203 0.0144206i
\(741\) 11.4056 + 22.7537i 0.418995 + 0.835878i
\(742\) 5.15801 14.1383i 0.189357 0.519034i
\(743\) 3.47920 9.55903i 0.127640 0.350687i −0.859369 0.511357i \(-0.829143\pi\)
0.987008 + 0.160670i \(0.0513654\pi\)
\(744\) −19.4055 38.7132i −0.711440 1.41929i
\(745\) 1.37569 1.63949i 0.0504014 0.0600661i
\(746\) 17.6751i 0.647132i
\(747\) −8.58849 19.9942i −0.314236 0.731551i
\(748\) −1.43228 0.826928i −0.0523694 0.0302355i
\(749\) 2.13311 12.0443i 0.0779422 0.440090i
\(750\) −1.21456 1.63403i −0.0443493 0.0596665i
\(751\) −10.6919 + 8.97158i −0.390153 + 0.327378i −0.816673 0.577101i \(-0.804184\pi\)
0.426520 + 0.904478i \(0.359740\pi\)
\(752\) −0.131743 0.747150i −0.00480416 0.0272458i
\(753\) 10.9294 3.26296i 0.398290 0.118909i
\(754\) −11.6085 + 13.8345i −0.422757 + 0.503823i
\(755\) −0.557645 −0.0202948
\(756\) 15.4880 5.58383i 0.563293 0.203082i
\(757\) −23.1271 −0.840570 −0.420285 0.907392i \(-0.638070\pi\)
−0.420285 + 0.907392i \(0.638070\pi\)
\(758\) −1.89803 + 2.26198i −0.0689395 + 0.0821589i
\(759\) 10.2359 43.0422i 0.371540 1.56233i
\(760\) −0.320265 1.81631i −0.0116172 0.0658846i
\(761\) 12.8791 10.8068i 0.466866 0.391747i −0.378784 0.925485i \(-0.623658\pi\)
0.845650 + 0.533738i \(0.179213\pi\)
\(762\) −5.63017 + 13.0248i −0.203959 + 0.471841i
\(763\) −10.7610 29.6352i −0.389575 1.07287i
\(764\) −10.7597 6.21212i −0.389273 0.224747i
\(765\) −0.0931099 0.0989930i −0.00336639 0.00357910i
\(766\) 27.6411i 0.998715i
\(767\) 0.343135