Properties

Label 189.2.ba.a.101.7
Level $189$
Weight $2$
Character 189.101
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 101.7
Character \(\chi\) \(=\) 189.101
Dual form 189.2.ba.a.131.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.720590 + 0.858766i) q^{2} +(0.864244 - 1.50103i) q^{3} +(0.129068 + 0.731979i) q^{4} +(-3.14015 + 2.63490i) q^{5} +(0.666265 + 1.82381i) q^{6} +(0.864922 + 2.50038i) q^{7} +(-2.66330 - 1.53766i) q^{8} +(-1.50617 - 2.59451i) q^{9} +O(q^{10})\) \(q+(-0.720590 + 0.858766i) q^{2} +(0.864244 - 1.50103i) q^{3} +(0.129068 + 0.731979i) q^{4} +(-3.14015 + 2.63490i) q^{5} +(0.666265 + 1.82381i) q^{6} +(0.864922 + 2.50038i) q^{7} +(-2.66330 - 1.53766i) q^{8} +(-1.50617 - 2.59451i) q^{9} -4.59533i q^{10} +(-0.647625 + 0.771809i) q^{11} +(1.21027 + 0.438874i) q^{12} +(-1.20956 + 3.32323i) q^{13} +(-2.77050 - 1.05898i) q^{14} +(1.24120 + 6.99064i) q^{15} +(1.84274 - 0.670703i) q^{16} +6.15187 q^{17} +(3.31340 + 0.576133i) q^{18} +2.40834i q^{19} +(-2.33398 - 1.95844i) q^{20} +(4.50064 + 0.862668i) q^{21} +(-0.196131 - 1.11232i) q^{22} +(-0.696226 + 1.91287i) q^{23} +(-4.60981 + 2.66878i) q^{24} +(2.04961 - 11.6239i) q^{25} +(-1.98228 - 3.43342i) q^{26} +(-5.19612 + 0.0185082i) q^{27} +(-1.71859 + 0.955824i) q^{28} +(0.707925 + 1.94501i) q^{29} +(-6.89772 - 3.97149i) q^{30} +(0.819437 - 0.144489i) q^{31} +(1.35175 - 3.71391i) q^{32} +(0.598801 + 1.63913i) q^{33} +(-4.43298 + 5.28302i) q^{34} +(-9.30423 - 5.57259i) q^{35} +(1.70473 - 1.43735i) q^{36} +(1.98418 - 3.43671i) q^{37} +(-2.06820 - 1.73543i) q^{38} +(3.94291 + 4.68766i) q^{39} +(12.4147 - 2.18905i) q^{40} +(9.37310 + 3.41153i) q^{41} +(-3.98395 + 3.24337i) q^{42} +(1.78960 - 10.1493i) q^{43} +(-0.648535 - 0.374432i) q^{44} +(11.5658 + 4.17855i) q^{45} +(-1.14101 - 1.97629i) q^{46} +(-1.26362 + 7.16632i) q^{47} +(0.585835 - 3.34566i) q^{48} +(-5.50382 + 4.32527i) q^{49} +(8.50528 + 10.1362i) q^{50} +(5.31672 - 9.23412i) q^{51} +(-2.58865 - 0.456449i) q^{52} +(-3.60509 - 2.08140i) q^{53} +(3.72838 - 4.47559i) q^{54} -4.13002i q^{55} +(1.54118 - 7.98922i) q^{56} +(3.61499 + 2.08140i) q^{57} +(-2.18043 - 0.793611i) q^{58} +(2.60824 + 0.949323i) q^{59} +(-4.95680 + 1.81080i) q^{60} +(3.70113 + 0.652610i) q^{61} +(-0.466396 + 0.807822i) q^{62} +(5.18454 - 6.01003i) q^{63} +(4.17633 + 7.23361i) q^{64} +(-4.95819 - 13.6225i) q^{65} +(-1.83912 - 0.666914i) q^{66} +(-1.49295 + 1.25274i) q^{67} +(0.794008 + 4.50304i) q^{68} +(2.26956 + 2.69824i) q^{69} +(11.4901 - 3.97461i) q^{70} +(5.21039 - 3.00822i) q^{71} +(0.0219080 + 9.22592i) q^{72} +(-6.29382 + 3.63374i) q^{73} +(1.52154 + 4.18040i) q^{74} +(-15.6764 - 13.1224i) q^{75} +(-1.76286 + 0.310839i) q^{76} +(-2.48996 - 0.951754i) q^{77} +(-6.86683 + 0.00815301i) q^{78} +(5.62671 + 4.72137i) q^{79} +(-4.01925 + 6.96154i) q^{80} +(-4.46293 + 7.81551i) q^{81} +(-9.68386 + 5.59098i) q^{82} +(-7.39595 + 2.69190i) q^{83} +(-0.0505671 + 3.40572i) q^{84} +(-19.3178 + 16.2095i) q^{85} +(7.42633 + 8.85035i) q^{86} +(3.53133 + 0.618346i) q^{87} +(2.91160 - 1.05973i) q^{88} +13.1252 q^{89} +(-11.9226 + 6.92133i) q^{90} +(-9.35552 - 0.150018i) q^{91} +(-1.49004 - 0.262734i) q^{92} +(0.491312 - 1.35487i) q^{93} +(-5.24364 - 6.24913i) q^{94} +(-6.34574 - 7.56255i) q^{95} +(-4.40644 - 5.23875i) q^{96} +(-5.98600 - 1.05549i) q^{97} +(0.251602 - 7.84324i) q^{98} +(2.97789 + 0.517795i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.720590 + 0.858766i −0.509534 + 0.607239i −0.958073 0.286524i \(-0.907500\pi\)
0.448539 + 0.893763i \(0.351945\pi\)
\(3\) 0.864244 1.50103i 0.498971 0.866618i
\(4\) 0.129068 + 0.731979i 0.0645338 + 0.365990i
\(5\) −3.14015 + 2.63490i −1.40432 + 1.17836i −0.445172 + 0.895445i \(0.646858\pi\)
−0.959144 + 0.282917i \(0.908698\pi\)
\(6\) 0.666265 + 1.82381i 0.272002 + 0.744567i
\(7\) 0.864922 + 2.50038i 0.326910 + 0.945056i
\(8\) −2.66330 1.53766i −0.941619 0.543644i
\(9\) −1.50617 2.59451i −0.502055 0.864836i
\(10\) 4.59533i 1.45317i
\(11\) −0.647625 + 0.771809i −0.195266 + 0.232709i −0.854789 0.518975i \(-0.826314\pi\)
0.659523 + 0.751684i \(0.270758\pi\)
\(12\) 1.21027 + 0.438874i 0.349374 + 0.126692i
\(13\) −1.20956 + 3.32323i −0.335471 + 0.921699i 0.651191 + 0.758914i \(0.274270\pi\)
−0.986662 + 0.162785i \(0.947952\pi\)
\(14\) −2.77050 1.05898i −0.740446 0.283026i
\(15\) 1.24120 + 6.99064i 0.320476 + 1.80498i
\(16\) 1.84274 0.670703i 0.460686 0.167676i
\(17\) 6.15187 1.49205 0.746024 0.665919i \(-0.231961\pi\)
0.746024 + 0.665919i \(0.231961\pi\)
\(18\) 3.31340 + 0.576133i 0.780976 + 0.135796i
\(19\) 2.40834i 0.552512i 0.961084 + 0.276256i \(0.0890937\pi\)
−0.961084 + 0.276256i \(0.910906\pi\)
\(20\) −2.33398 1.95844i −0.521894 0.437921i
\(21\) 4.50064 + 0.862668i 0.982121 + 0.188250i
\(22\) −0.196131 1.11232i −0.0418153 0.237147i
\(23\) −0.696226 + 1.91287i −0.145173 + 0.398860i −0.990873 0.134799i \(-0.956961\pi\)
0.845700 + 0.533659i \(0.179183\pi\)
\(24\) −4.60981 + 2.66878i −0.940973 + 0.544762i
\(25\) 2.04961 11.6239i 0.409921 2.32478i
\(26\) −1.98228 3.43342i −0.388758 0.673348i
\(27\) −5.19612 + 0.0185082i −0.999994 + 0.00356190i
\(28\) −1.71859 + 0.955824i −0.324784 + 0.180634i
\(29\) 0.707925 + 1.94501i 0.131458 + 0.361179i 0.987906 0.155055i \(-0.0495556\pi\)
−0.856447 + 0.516234i \(0.827333\pi\)
\(30\) −6.89772 3.97149i −1.25935 0.725091i
\(31\) 0.819437 0.144489i 0.147175 0.0259510i −0.0995751 0.995030i \(-0.531748\pi\)
0.246750 + 0.969079i \(0.420637\pi\)
\(32\) 1.35175 3.71391i 0.238959 0.656533i
\(33\) 0.598801 + 1.63913i 0.104238 + 0.285336i
\(34\) −4.43298 + 5.28302i −0.760249 + 0.906030i
\(35\) −9.30423 5.57259i −1.57270 0.941939i
\(36\) 1.70473 1.43735i 0.284121 0.239558i
\(37\) 1.98418 3.43671i 0.326198 0.564991i −0.655556 0.755146i \(-0.727566\pi\)
0.981754 + 0.190155i \(0.0608992\pi\)
\(38\) −2.06820 1.73543i −0.335507 0.281524i
\(39\) 3.94291 + 4.68766i 0.631371 + 0.750627i
\(40\) 12.4147 2.18905i 1.96294 0.346119i
\(41\) 9.37310 + 3.41153i 1.46383 + 0.532791i 0.946418 0.322944i \(-0.104673\pi\)
0.517414 + 0.855735i \(0.326895\pi\)
\(42\) −3.98395 + 3.24337i −0.614737 + 0.500463i
\(43\) 1.78960 10.1493i 0.272912 1.54776i −0.472607 0.881273i \(-0.656687\pi\)
0.745518 0.666485i \(-0.232202\pi\)
\(44\) −0.648535 0.374432i −0.0977704 0.0564478i
\(45\) 11.5658 + 4.17855i 1.72413 + 0.622901i
\(46\) −1.14101 1.97629i −0.168233 0.291388i
\(47\) −1.26362 + 7.16632i −0.184317 + 1.04532i 0.742512 + 0.669833i \(0.233634\pi\)
−0.926829 + 0.375483i \(0.877477\pi\)
\(48\) 0.585835 3.34566i 0.0845580 0.482904i
\(49\) −5.50382 + 4.32527i −0.786260 + 0.617896i
\(50\) 8.50528 + 10.1362i 1.20283 + 1.43347i
\(51\) 5.31672 9.23412i 0.744489 1.29304i
\(52\) −2.58865 0.456449i −0.358981 0.0632981i
\(53\) −3.60509 2.08140i −0.495197 0.285902i 0.231531 0.972828i \(-0.425627\pi\)
−0.726728 + 0.686925i \(0.758960\pi\)
\(54\) 3.72838 4.47559i 0.507368 0.609050i
\(55\) 4.13002i 0.556892i
\(56\) 1.54118 7.98922i 0.205949 1.06760i
\(57\) 3.61499 + 2.08140i 0.478817 + 0.275688i
\(58\) −2.18043 0.793611i −0.286304 0.104206i
\(59\) 2.60824 + 0.949323i 0.339564 + 0.123591i 0.506173 0.862432i \(-0.331060\pi\)
−0.166609 + 0.986023i \(0.553282\pi\)
\(60\) −4.95680 + 1.81080i −0.639921 + 0.233773i
\(61\) 3.70113 + 0.652610i 0.473882 + 0.0835581i 0.405488 0.914100i \(-0.367102\pi\)
0.0683935 + 0.997658i \(0.478213\pi\)
\(62\) −0.466396 + 0.807822i −0.0592324 + 0.102593i
\(63\) 5.18454 6.01003i 0.653191 0.757193i
\(64\) 4.17633 + 7.23361i 0.522041 + 0.904201i
\(65\) −4.95819 13.6225i −0.614987 1.68966i
\(66\) −1.83912 0.666914i −0.226380 0.0820914i
\(67\) −1.49295 + 1.25274i −0.182393 + 0.153046i −0.729413 0.684074i \(-0.760207\pi\)
0.547020 + 0.837120i \(0.315762\pi\)
\(68\) 0.794008 + 4.50304i 0.0962876 + 0.546074i
\(69\) 2.26956 + 2.69824i 0.273222 + 0.324830i
\(70\) 11.4901 3.97461i 1.37333 0.475056i
\(71\) 5.21039 3.00822i 0.618360 0.357010i −0.157870 0.987460i \(-0.550463\pi\)
0.776230 + 0.630450i \(0.217129\pi\)
\(72\) 0.0219080 + 9.22592i 0.00258188 + 1.08728i
\(73\) −6.29382 + 3.63374i −0.736636 + 0.425297i −0.820845 0.571151i \(-0.806497\pi\)
0.0842090 + 0.996448i \(0.473164\pi\)
\(74\) 1.52154 + 4.18040i 0.176876 + 0.485962i
\(75\) −15.6764 13.1224i −1.81016 1.51524i
\(76\) −1.76286 + 0.310839i −0.202214 + 0.0356557i
\(77\) −2.48996 0.951754i −0.283757 0.108462i
\(78\) −6.86683 + 0.00815301i −0.777515 + 0.000923147i
\(79\) 5.62671 + 4.72137i 0.633054 + 0.531196i 0.901876 0.431994i \(-0.142190\pi\)
−0.268822 + 0.963190i \(0.586634\pi\)
\(80\) −4.01925 + 6.96154i −0.449366 + 0.778324i
\(81\) −4.46293 + 7.81551i −0.495881 + 0.868390i
\(82\) −9.68386 + 5.59098i −1.06940 + 0.617421i
\(83\) −7.39595 + 2.69190i −0.811811 + 0.295475i −0.714372 0.699767i \(-0.753287\pi\)
−0.0974392 + 0.995241i \(0.531065\pi\)
\(84\) −0.0505671 + 3.40572i −0.00551732 + 0.371595i
\(85\) −19.3178 + 16.2095i −2.09531 + 1.75817i
\(86\) 7.42633 + 8.85035i 0.800802 + 0.954358i
\(87\) 3.53133 + 0.618346i 0.378598 + 0.0662937i
\(88\) 2.91160 1.05973i 0.310377 0.112968i
\(89\) 13.1252 1.39127 0.695633 0.718397i \(-0.255124\pi\)
0.695633 + 0.718397i \(0.255124\pi\)
\(90\) −11.9226 + 6.92133i −1.25675 + 0.729572i
\(91\) −9.35552 0.150018i −0.980725 0.0157262i
\(92\) −1.49004 0.262734i −0.155347 0.0273919i
\(93\) 0.491312 1.35487i 0.0509467 0.140494i
\(94\) −5.24364 6.24913i −0.540841 0.644549i
\(95\) −6.34574 7.56255i −0.651059 0.775902i
\(96\) −4.40644 5.23875i −0.449730 0.534677i
\(97\) −5.98600 1.05549i −0.607786 0.107169i −0.138719 0.990332i \(-0.544299\pi\)
−0.469067 + 0.883163i \(0.655410\pi\)
\(98\) 0.251602 7.84324i 0.0254156 0.792287i
\(99\) 2.97789 + 0.517795i 0.299290 + 0.0520403i
\(100\) 8.77298 0.877298
\(101\) −3.53944 + 1.28825i −0.352187 + 0.128186i −0.512055 0.858953i \(-0.671115\pi\)
0.159868 + 0.987138i \(0.448893\pi\)
\(102\) 4.09878 + 11.2198i 0.405839 + 1.11093i
\(103\) −5.62314 6.70140i −0.554065 0.660308i 0.414215 0.910179i \(-0.364056\pi\)
−0.968279 + 0.249871i \(0.919612\pi\)
\(104\) 8.33141 6.99088i 0.816962 0.685512i
\(105\) −16.4057 + 9.14983i −1.60104 + 0.892932i
\(106\) 4.38523 1.59609i 0.425931 0.155026i
\(107\) 1.78505 1.03060i 0.172568 0.0996319i −0.411228 0.911532i \(-0.634900\pi\)
0.583796 + 0.811900i \(0.301567\pi\)
\(108\) −0.684199 3.80106i −0.0658371 0.365757i
\(109\) −0.225918 + 0.391301i −0.0216390 + 0.0374798i −0.876642 0.481143i \(-0.840222\pi\)
0.855003 + 0.518623i \(0.173555\pi\)
\(110\) 3.54672 + 2.97605i 0.338166 + 0.283755i
\(111\) −3.44377 5.94846i −0.326868 0.564603i
\(112\) 3.27084 + 4.02745i 0.309066 + 0.380559i
\(113\) 5.67858 1.00129i 0.534196 0.0941931i 0.0999585 0.994992i \(-0.468129\pi\)
0.434237 + 0.900798i \(0.357018\pi\)
\(114\) −4.39236 + 1.60460i −0.411382 + 0.150284i
\(115\) −2.85395 7.84117i −0.266132 0.731193i
\(116\) −1.33233 + 0.769224i −0.123704 + 0.0714206i
\(117\) 10.4439 1.86713i 0.965543 0.172616i
\(118\) −2.69472 + 1.55580i −0.248069 + 0.143223i
\(119\) 5.32089 + 15.3820i 0.487765 + 1.41007i
\(120\) 7.44352 20.5267i 0.679498 1.87382i
\(121\) 1.73386 + 9.83320i 0.157624 + 0.893927i
\(122\) −3.22744 + 2.70814i −0.292199 + 0.245184i
\(123\) 13.2214 11.1209i 1.19214 1.00274i
\(124\) 0.211526 + 0.581162i 0.0189956 + 0.0521899i
\(125\) 13.9438 + 24.1513i 1.24717 + 2.16016i
\(126\) 1.42528 + 8.78308i 0.126974 + 0.782459i
\(127\) −0.738713 + 1.27949i −0.0655502 + 0.113536i −0.896938 0.442157i \(-0.854214\pi\)
0.831388 + 0.555693i \(0.187547\pi\)
\(128\) −1.43696 0.253374i −0.127010 0.0223953i
\(129\) −13.6878 11.4577i −1.20514 1.00880i
\(130\) 15.2714 + 5.55832i 1.33939 + 0.487497i
\(131\) −4.00000 1.45588i −0.349481 0.127201i 0.161314 0.986903i \(-0.448427\pi\)
−0.510795 + 0.859702i \(0.670649\pi\)
\(132\) −1.12253 + 0.649869i −0.0977033 + 0.0565638i
\(133\) −6.02178 + 2.08303i −0.522154 + 0.180622i
\(134\) 2.18481i 0.188739i
\(135\) 16.2678 13.7494i 1.40011 1.18336i
\(136\) −16.3843 9.45947i −1.40494 0.811143i
\(137\) 5.56639 + 0.981504i 0.475568 + 0.0838556i 0.406295 0.913742i \(-0.366821\pi\)
0.0692738 + 0.997598i \(0.477932\pi\)
\(138\) −3.95257 + 0.00469291i −0.336465 + 0.000399487i
\(139\) 10.0379 + 11.9627i 0.851405 + 1.01466i 0.999669 + 0.0257167i \(0.00818678\pi\)
−0.148265 + 0.988948i \(0.547369\pi\)
\(140\) 2.87814 7.52975i 0.243247 0.636380i
\(141\) 9.66477 + 8.09017i 0.813921 + 0.681315i
\(142\) −1.17120 + 6.64220i −0.0982849 + 0.557401i
\(143\) −1.78156 3.08575i −0.148982 0.258044i
\(144\) −4.51562 3.77082i −0.376302 0.314235i
\(145\) −7.34788 4.24230i −0.610208 0.352304i
\(146\) 1.41473 8.02335i 0.117084 0.664017i
\(147\) 1.73571 + 11.9995i 0.143159 + 0.989700i
\(148\) 2.77169 + 1.00881i 0.227832 + 0.0829239i
\(149\) −8.44056 + 1.48830i −0.691478 + 0.121926i −0.508334 0.861160i \(-0.669738\pi\)
−0.183144 + 0.983086i \(0.558627\pi\)
\(150\) 22.5653 4.00651i 1.84245 0.327130i
\(151\) 10.0414 + 8.42577i 0.817161 + 0.685679i 0.952305 0.305146i \(-0.0987054\pi\)
−0.135144 + 0.990826i \(0.543150\pi\)
\(152\) 3.70321 6.41414i 0.300370 0.520256i
\(153\) −9.26573 15.9611i −0.749090 1.29038i
\(154\) 2.61158 1.45247i 0.210447 0.117043i
\(155\) −2.19244 + 2.61285i −0.176101 + 0.209869i
\(156\) −2.92237 + 3.49115i −0.233977 + 0.279516i
\(157\) −4.83314 + 13.2789i −0.385726 + 1.05977i 0.583179 + 0.812344i \(0.301809\pi\)
−0.968906 + 0.247431i \(0.920414\pi\)
\(158\) −8.10910 + 1.42985i −0.645126 + 0.113753i
\(159\) −6.23992 + 3.61250i −0.494858 + 0.286490i
\(160\) 5.54107 + 15.2240i 0.438060 + 1.20356i
\(161\) −5.38508 0.0863512i −0.424404 0.00680543i
\(162\) −3.49575 9.46439i −0.274652 0.743593i
\(163\) 1.36219 + 2.35938i 0.106695 + 0.184801i 0.914429 0.404745i \(-0.132640\pi\)
−0.807734 + 0.589546i \(0.799307\pi\)
\(164\) −1.28740 + 7.30123i −0.100529 + 0.570130i
\(165\) −6.19927 3.56934i −0.482612 0.277873i
\(166\) 3.01773 8.29115i 0.234221 0.643518i
\(167\) −3.82643 21.7008i −0.296098 1.67926i −0.662706 0.748880i \(-0.730592\pi\)
0.366608 0.930376i \(-0.380519\pi\)
\(168\) −10.6601 9.21799i −0.822443 0.711184i
\(169\) 0.377731 + 0.316954i 0.0290562 + 0.0243811i
\(170\) 28.2699i 2.16820i
\(171\) 6.24846 3.62736i 0.477832 0.277391i
\(172\) 7.66008 0.584075
\(173\) 10.4176 3.79171i 0.792038 0.288278i 0.0858553 0.996308i \(-0.472638\pi\)
0.706183 + 0.708029i \(0.250415\pi\)
\(174\) −3.07566 + 2.58701i −0.233165 + 0.196121i
\(175\) 30.8369 4.92897i 2.33105 0.372595i
\(176\) −0.675750 + 1.85661i −0.0509366 + 0.139947i
\(177\) 3.67912 3.09460i 0.276539 0.232604i
\(178\) −9.45787 + 11.2715i −0.708897 + 0.844831i
\(179\) 12.6666i 0.946743i −0.880863 0.473372i \(-0.843037\pi\)
0.880863 0.473372i \(-0.156963\pi\)
\(180\) −1.56583 + 9.00527i −0.116710 + 0.671213i
\(181\) 1.39406 + 0.804863i 0.103620 + 0.0598250i 0.550914 0.834562i \(-0.314279\pi\)
−0.447294 + 0.894387i \(0.647612\pi\)
\(182\) 6.87033 7.92610i 0.509263 0.587522i
\(183\) 4.17827 4.99149i 0.308866 0.368981i
\(184\) 4.79559 4.02398i 0.353536 0.296652i
\(185\) 2.82474 + 16.0199i 0.207679 + 1.17780i
\(186\) 0.809482 + 1.39823i 0.0593541 + 0.102523i
\(187\) −3.98410 + 4.74807i −0.291346 + 0.347213i
\(188\) −5.40869 −0.394469
\(189\) −4.54052 12.9763i −0.330274 0.943885i
\(190\) 11.0671 0.802894
\(191\) −8.34977 + 9.95086i −0.604168 + 0.720019i −0.978262 0.207371i \(-0.933509\pi\)
0.374094 + 0.927391i \(0.377954\pi\)
\(192\) 14.4672 0.0171770i 1.04408 0.00123964i
\(193\) −2.43784 13.8257i −0.175480 0.995194i −0.937589 0.347746i \(-0.886947\pi\)
0.762109 0.647448i \(-0.224164\pi\)
\(194\) 5.21987 4.37999i 0.374765 0.314465i
\(195\) −24.7328 4.33079i −1.77115 0.310135i
\(196\) −3.87637 3.47043i −0.276884 0.247888i
\(197\) −15.2141 8.78387i −1.08396 0.625825i −0.151998 0.988381i \(-0.548571\pi\)
−0.931962 + 0.362556i \(0.881904\pi\)
\(198\) −2.59050 + 2.18420i −0.184099 + 0.155224i
\(199\) 22.2758i 1.57909i −0.613692 0.789546i \(-0.710316\pi\)
0.613692 0.789546i \(-0.289684\pi\)
\(200\) −23.3323 + 27.8063i −1.64984 + 1.96620i
\(201\) 0.590116 + 3.32363i 0.0416236 + 0.234431i
\(202\) 1.44418 3.96785i 0.101612 0.279177i
\(203\) −4.25096 + 3.45236i −0.298359 + 0.242308i
\(204\) 7.44540 + 2.69990i 0.521282 + 0.189031i
\(205\) −38.4219 + 13.9844i −2.68350 + 0.976716i
\(206\) 9.80691 0.683280
\(207\) 6.01158 1.07473i 0.417834 0.0746988i
\(208\) 6.93512i 0.480864i
\(209\) −1.85878 1.55970i −0.128575 0.107887i
\(210\) 3.96424 20.6820i 0.273559 1.42719i
\(211\) −3.52016 19.9638i −0.242338 1.37437i −0.826595 0.562798i \(-0.809725\pi\)
0.584257 0.811569i \(-0.301386\pi\)
\(212\) 1.05824 2.90749i 0.0726803 0.199688i
\(213\) −0.0123726 10.4208i −0.000847759 0.714020i
\(214\) −0.401247 + 2.27558i −0.0274287 + 0.155556i
\(215\) 21.1228 + 36.5858i 1.44056 + 2.49513i
\(216\) 13.8673 + 7.94056i 0.943549 + 0.540287i
\(217\) 1.07003 + 1.92393i 0.0726381 + 0.130605i
\(218\) −0.173242 0.475978i −0.0117334 0.0322373i
\(219\) 0.0149454 + 12.5876i 0.00100991 + 0.850593i
\(220\) 3.02309 0.533052i 0.203816 0.0359383i
\(221\) −7.44104 + 20.4441i −0.500539 + 1.37522i
\(222\) 7.58988 + 1.32901i 0.509400 + 0.0891974i
\(223\) 15.6660 18.6700i 1.04907 1.25024i 0.0817602 0.996652i \(-0.473946\pi\)
0.967313 0.253585i \(-0.0816097\pi\)
\(224\) 10.4554 + 0.167655i 0.698578 + 0.0112019i
\(225\) −33.2453 + 12.1898i −2.21635 + 0.812652i
\(226\) −3.23206 + 5.59809i −0.214993 + 0.372379i
\(227\) 0.986418 + 0.827703i 0.0654709 + 0.0549366i 0.674936 0.737876i \(-0.264171\pi\)
−0.609465 + 0.792813i \(0.708616\pi\)
\(228\) −1.05696 + 2.91474i −0.0699989 + 0.193033i
\(229\) −0.785032 + 0.138422i −0.0518764 + 0.00914720i −0.199526 0.979893i \(-0.563940\pi\)
0.147650 + 0.989040i \(0.452829\pi\)
\(230\) 8.79026 + 3.19939i 0.579612 + 0.210962i
\(231\) −3.58054 + 2.91495i −0.235582 + 0.191790i
\(232\) 1.10534 6.26868i 0.0725690 0.411559i
\(233\) 11.6293 + 6.71420i 0.761863 + 0.439862i 0.829964 0.557816i \(-0.188361\pi\)
−0.0681010 + 0.997678i \(0.521694\pi\)
\(234\) −5.92237 + 10.3143i −0.387158 + 0.674269i
\(235\) −14.9146 25.8328i −0.972920 1.68515i
\(236\) −0.358245 + 2.03171i −0.0233197 + 0.132253i
\(237\) 11.9498 4.36543i 0.776220 0.283565i
\(238\) −17.0437 6.51474i −1.10478 0.422288i
\(239\) −11.8688 14.1447i −0.767728 0.914942i 0.230583 0.973053i \(-0.425937\pi\)
−0.998310 + 0.0581107i \(0.981492\pi\)
\(240\) 6.97586 + 12.0495i 0.450290 + 0.777790i
\(241\) 13.4746 + 2.37594i 0.867975 + 0.153047i 0.589865 0.807502i \(-0.299181\pi\)
0.278110 + 0.960549i \(0.410292\pi\)
\(242\) −9.69382 5.59673i −0.623142 0.359771i
\(243\) 7.87423 + 13.4535i 0.505132 + 0.863042i
\(244\) 2.79338i 0.178828i
\(245\) 5.88616 28.0840i 0.376053 1.79422i
\(246\) 0.0229954 + 19.3677i 0.00146613 + 1.23484i
\(247\) −8.00348 2.91303i −0.509250 0.185352i
\(248\) −2.40458 0.875196i −0.152691 0.0555750i
\(249\) −2.35128 + 13.4280i −0.149006 + 0.850964i
\(250\) −30.7880 5.42876i −1.94721 0.343345i
\(251\) 2.59174 4.48902i 0.163589 0.283345i −0.772564 0.634937i \(-0.781026\pi\)
0.936153 + 0.351592i \(0.114360\pi\)
\(252\) 5.06838 + 3.01928i 0.319278 + 0.190196i
\(253\) −1.02547 1.77617i −0.0644710 0.111667i
\(254\) −0.566472 1.55637i −0.0355436 0.0976552i
\(255\) 7.63569 + 43.0055i 0.478165 + 2.69311i
\(256\) −11.5440 + 9.68654i −0.721498 + 0.605408i
\(257\) −2.27199 12.8851i −0.141723 0.803751i −0.969940 0.243344i \(-0.921756\pi\)
0.828217 0.560407i \(-0.189355\pi\)
\(258\) 19.7028 3.49826i 1.22664 0.217792i
\(259\) 10.3092 + 1.98873i 0.640585 + 0.123574i
\(260\) 9.33145 5.38751i 0.578712 0.334119i
\(261\) 3.98008 4.76622i 0.246361 0.295022i
\(262\) 4.13262 2.38597i 0.255314 0.147406i
\(263\) −4.81760 13.2362i −0.297066 0.816182i −0.994987 0.100007i \(-0.968114\pi\)
0.697921 0.716175i \(-0.254109\pi\)
\(264\) 0.925639 5.28625i 0.0569691 0.325346i
\(265\) 16.8048 2.96314i 1.03231 0.182024i
\(266\) 2.55040 6.67231i 0.156375 0.409105i
\(267\) 11.3434 19.7012i 0.694202 1.20570i
\(268\) −1.10967 0.931123i −0.0677838 0.0568774i
\(269\) −7.46330 + 12.9268i −0.455045 + 0.788161i −0.998691 0.0511535i \(-0.983710\pi\)
0.543646 + 0.839315i \(0.317044\pi\)
\(270\) 0.0850513 + 23.8779i 0.00517606 + 1.45316i
\(271\) 8.04155 4.64279i 0.488489 0.282029i −0.235458 0.971884i \(-0.575659\pi\)
0.723948 + 0.689855i \(0.242326\pi\)
\(272\) 11.3363 4.12608i 0.687365 0.250180i
\(273\) −8.31064 + 13.9132i −0.502983 + 0.842068i
\(274\) −4.85396 + 4.07296i −0.293239 + 0.246057i
\(275\) 7.64405 + 9.10982i 0.460953 + 0.549343i
\(276\) −1.68213 + 2.00952i −0.101252 + 0.120959i
\(277\) 22.9314 8.34633i 1.37781 0.501483i 0.456298 0.889827i \(-0.349175\pi\)
0.921514 + 0.388344i \(0.126953\pi\)
\(278\) −17.5064 −1.04996
\(279\) −1.60908 1.90841i −0.0963334 0.114254i
\(280\) 16.2112 + 29.1482i 0.968807 + 1.74194i
\(281\) 0.562949 + 0.0992630i 0.0335827 + 0.00592154i 0.190414 0.981704i \(-0.439017\pi\)
−0.156832 + 0.987625i \(0.550128\pi\)
\(282\) −13.9119 + 2.47008i −0.828442 + 0.147091i
\(283\) −14.9788 17.8510i −0.890396 1.06113i −0.997759 0.0669124i \(-0.978685\pi\)
0.107363 0.994220i \(-0.465759\pi\)
\(284\) 2.87445 + 3.42564i 0.170567 + 0.203274i
\(285\) −16.8359 + 2.98923i −0.997270 + 0.177067i
\(286\) 3.93372 + 0.693620i 0.232606 + 0.0410146i
\(287\) −0.423123 + 26.3870i −0.0249762 + 1.55758i
\(288\) −11.6717 + 2.08663i −0.687764 + 0.122956i
\(289\) 20.8455 1.22621
\(290\) 8.93796 3.25315i 0.524855 0.191032i
\(291\) −6.75769 + 8.07294i −0.396143 + 0.473244i
\(292\) −3.47215 4.13795i −0.203192 0.242155i
\(293\) 12.0512 10.1122i 0.704041 0.590760i −0.218879 0.975752i \(-0.570240\pi\)
0.922920 + 0.384992i \(0.125796\pi\)
\(294\) −11.5555 7.15613i −0.673929 0.417354i
\(295\) −10.6916 + 3.89144i −0.622491 + 0.226568i
\(296\) −10.5689 + 6.10199i −0.614308 + 0.354671i
\(297\) 3.35085 4.02240i 0.194436 0.233403i
\(298\) 4.80409 8.32092i 0.278293 0.482018i
\(299\) −5.51477 4.62745i −0.318928 0.267612i
\(300\) 7.58200 13.1685i 0.437747 0.760283i
\(301\) 26.9251 4.30370i 1.55194 0.248061i
\(302\) −14.4715 + 2.55172i −0.832743 + 0.146835i
\(303\) −1.12524 + 6.42615i −0.0646433 + 0.369173i
\(304\) 1.61528 + 4.43796i 0.0926429 + 0.254534i
\(305\) −13.3417 + 7.70281i −0.763942 + 0.441062i
\(306\) 20.3836 + 3.54429i 1.16525 + 0.202614i
\(307\) −30.0731 + 17.3627i −1.71636 + 0.990942i −0.791034 + 0.611772i \(0.790457\pi\)
−0.925327 + 0.379170i \(0.876210\pi\)
\(308\) 0.375291 1.94544i 0.0213842 0.110852i
\(309\) −14.9187 + 2.64885i −0.848698 + 0.150688i
\(310\) −0.663974 3.76559i −0.0377112 0.213871i
\(311\) 7.47602 6.27313i 0.423926 0.355716i −0.405728 0.913994i \(-0.632982\pi\)
0.829654 + 0.558277i \(0.188538\pi\)
\(312\) −3.29314 18.5475i −0.186437 1.05005i
\(313\) −3.37179 9.26391i −0.190585 0.523627i 0.807191 0.590291i \(-0.200987\pi\)
−0.997776 + 0.0666635i \(0.978765\pi\)
\(314\) −7.92079 13.7192i −0.446996 0.774220i
\(315\) −0.444407 + 32.5331i −0.0250395 + 1.83303i
\(316\) −2.72972 + 4.72801i −0.153559 + 0.265971i
\(317\) 11.1490 + 1.96588i 0.626193 + 0.110415i 0.477735 0.878504i \(-0.341458\pi\)
0.148458 + 0.988919i \(0.452569\pi\)
\(318\) 1.39413 7.96176i 0.0781789 0.446473i
\(319\) −1.95964 0.713252i −0.109719 0.0399344i
\(320\) −32.1741 11.7104i −1.79859 0.654632i
\(321\) −0.00423880 3.57010i −0.000236587 0.199264i
\(322\) 3.95459 4.56230i 0.220381 0.254247i
\(323\) 14.8158i 0.824374i
\(324\) −6.29681 2.25804i −0.349823 0.125447i
\(325\) 36.1498 + 20.8711i 2.00523 + 1.15772i
\(326\) −3.00774 0.530345i −0.166583 0.0293731i
\(327\) 0.392105 + 0.677288i 0.0216835 + 0.0374541i
\(328\) −19.7176 23.4985i −1.08872 1.29749i
\(329\) −19.0115 + 3.03879i −1.04814 + 0.167534i
\(330\) 7.53236 2.75169i 0.414643 0.151475i
\(331\) −0.717814 + 4.07092i −0.0394546 + 0.223758i −0.998159 0.0606449i \(-0.980684\pi\)
0.958705 + 0.284403i \(0.0917954\pi\)
\(332\) −2.92500 5.06624i −0.160530 0.278046i
\(333\) −11.9051 + 0.0282699i −0.652393 + 0.00154918i
\(334\) 21.3932 + 12.3513i 1.17058 + 0.675836i
\(335\) 1.38726 7.86756i 0.0757942 0.429851i
\(336\) 8.87212 1.42892i 0.484014 0.0779542i
\(337\) −13.3670 4.86521i −0.728149 0.265025i −0.0487681 0.998810i \(-0.515530\pi\)
−0.679381 + 0.733785i \(0.737752\pi\)
\(338\) −0.544378 + 0.0959885i −0.0296103 + 0.00522109i
\(339\) 3.40472 9.38906i 0.184919 0.509944i
\(340\) −14.3583 12.0481i −0.778691 0.653399i
\(341\) −0.419170 + 0.726023i −0.0226993 + 0.0393164i
\(342\) −1.38753 + 7.97981i −0.0750288 + 0.431499i
\(343\) −15.5752 10.0206i −0.840982 0.541063i
\(344\) −20.3724 + 24.2789i −1.09841 + 1.30903i
\(345\) −14.2363 2.49282i −0.766458 0.134209i
\(346\) −4.25066 + 11.6786i −0.228517 + 0.627844i
\(347\) 7.87722 1.38897i 0.422871 0.0745636i 0.0418368 0.999124i \(-0.486679\pi\)
0.381034 + 0.924561i \(0.375568\pi\)
\(348\) 0.00316377 + 2.66467i 0.000169596 + 0.142841i
\(349\) 4.85476 + 13.3383i 0.259869 + 0.713985i 0.999175 + 0.0406147i \(0.0129316\pi\)
−0.739306 + 0.673370i \(0.764846\pi\)
\(350\) −17.9879 + 30.0335i −0.961496 + 1.60536i
\(351\) 6.22350 17.2903i 0.332186 0.922888i
\(352\) 1.99100 + 3.44852i 0.106121 + 0.183807i
\(353\) −2.76866 + 15.7018i −0.147361 + 0.835724i 0.818081 + 0.575103i \(0.195038\pi\)
−0.965441 + 0.260620i \(0.916073\pi\)
\(354\) 0.00639890 + 5.38944i 0.000340098 + 0.286445i
\(355\) −8.43505 + 23.1751i −0.447686 + 1.23001i
\(356\) 1.69404 + 9.60735i 0.0897837 + 0.509189i
\(357\) 27.6874 + 5.30702i 1.46537 + 0.280877i
\(358\) 10.8776 + 9.12740i 0.574900 + 0.482398i
\(359\) 14.6420i 0.772774i −0.922337 0.386387i \(-0.873723\pi\)
0.922337 0.386387i \(-0.126277\pi\)
\(360\) −24.3781 28.9130i −1.28484 1.52385i
\(361\) 13.1999 0.694731
\(362\) −1.69574 + 0.617198i −0.0891260 + 0.0324392i
\(363\) 16.2584 + 5.89571i 0.853344 + 0.309445i
\(364\) −1.09769 6.86741i −0.0575344 0.359950i
\(365\) 10.1890 27.9940i 0.533317 1.46528i
\(366\) 1.27570 + 7.18497i 0.0666820 + 0.375564i
\(367\) 6.22653 7.42049i 0.325022 0.387346i −0.578647 0.815578i \(-0.696419\pi\)
0.903669 + 0.428232i \(0.140863\pi\)
\(368\) 3.99188i 0.208091i
\(369\) −5.26620 29.4569i −0.274147 1.53346i
\(370\) −15.7928 9.11798i −0.821029 0.474021i
\(371\) 2.08617 10.8144i 0.108309 0.561453i
\(372\) 1.05515 + 0.184760i 0.0547070 + 0.00957935i
\(373\) 10.0135 8.40236i 0.518482 0.435058i −0.345620 0.938374i \(-0.612332\pi\)
0.864102 + 0.503317i \(0.167887\pi\)
\(374\) −1.20657 6.84282i −0.0623905 0.353834i
\(375\) 48.3026 0.0573499i 2.49433 0.00296153i
\(376\) 14.3847 17.1431i 0.741836 0.884086i
\(377\) −7.31999 −0.376999
\(378\) 14.4154 + 5.45133i 0.741450 + 0.280386i
\(379\) 5.86445 0.301236 0.150618 0.988592i \(-0.451874\pi\)
0.150618 + 0.988592i \(0.451874\pi\)
\(380\) 4.71660 5.62103i 0.241957 0.288353i
\(381\) 1.28212 + 2.21462i 0.0656849 + 0.113458i
\(382\) −2.52870 14.3410i −0.129380 0.733749i
\(383\) −22.2042 + 18.6316i −1.13458 + 0.952029i −0.999248 0.0387708i \(-0.987656\pi\)
−0.135336 + 0.990800i \(0.543211\pi\)
\(384\) −1.62220 + 1.93793i −0.0827827 + 0.0988948i
\(385\) 10.3266 3.57214i 0.526293 0.182053i
\(386\) 13.6297 + 7.86911i 0.693733 + 0.400527i
\(387\) −29.0279 + 10.6434i −1.47557 + 0.541036i
\(388\) 4.51786i 0.229359i
\(389\) 23.6671 28.2053i 1.19997 1.43007i 0.325115 0.945674i \(-0.394597\pi\)
0.874852 0.484391i \(-0.160959\pi\)
\(390\) 21.5414 18.1190i 1.09079 0.917490i
\(391\) −4.28309 + 11.7677i −0.216605 + 0.595118i
\(392\) 21.3091 3.05651i 1.07627 0.154377i
\(393\) −5.64229 + 4.74587i −0.284616 + 0.239397i
\(394\) 18.5064 6.73579i 0.932340 0.339344i
\(395\) −30.1090 −1.51495
\(396\) 0.00533477 + 2.24659i 0.000268082 + 0.112895i
\(397\) 34.8763i 1.75039i 0.483770 + 0.875195i \(0.339267\pi\)
−0.483770 + 0.875195i \(0.660733\pi\)
\(398\) 19.1297 + 16.0517i 0.958886 + 0.804601i
\(399\) −2.07760 + 10.8391i −0.104010 + 0.542634i
\(400\) −4.01929 22.7945i −0.200964 1.13973i
\(401\) −12.5163 + 34.3882i −0.625034 + 1.71727i 0.0692825 + 0.997597i \(0.477929\pi\)
−0.694316 + 0.719670i \(0.744293\pi\)
\(402\) −3.27945 1.88821i −0.163564 0.0941752i
\(403\) −0.510986 + 2.89795i −0.0254540 + 0.144357i
\(404\) −1.39980 2.42452i −0.0696426 0.120624i
\(405\) −6.57880 36.3012i −0.326903 1.80382i
\(406\) 0.0984296 6.13832i 0.00488498 0.304640i
\(407\) 1.36747 + 3.75710i 0.0677832 + 0.186233i
\(408\) −28.3589 + 16.4180i −1.40398 + 0.812810i
\(409\) 37.3852 6.59202i 1.84858 0.325955i 0.864356 0.502881i \(-0.167726\pi\)
0.984224 + 0.176926i \(0.0566154\pi\)
\(410\) 15.6771 43.0725i 0.774237 2.12720i
\(411\) 6.28398 7.50704i 0.309966 0.370295i
\(412\) 4.17952 4.98096i 0.205910 0.245394i
\(413\) −0.117742 + 7.34269i −0.00579371 + 0.361310i
\(414\) −3.40894 + 5.93698i −0.167540 + 0.291786i
\(415\) 16.1315 27.9405i 0.791863 1.37155i
\(416\) 10.7072 + 8.98439i 0.524963 + 0.440496i
\(417\) 26.6316 4.72847i 1.30415 0.231554i
\(418\) 2.67884 0.472351i 0.131026 0.0231035i
\(419\) −20.3827 7.41869i −0.995759 0.362427i −0.207811 0.978169i \(-0.566634\pi\)
−0.787948 + 0.615742i \(0.788856\pi\)
\(420\) −8.81494 10.8277i −0.430125 0.528338i
\(421\) −4.52904 + 25.6854i −0.220732 + 1.25183i 0.649947 + 0.759980i \(0.274791\pi\)
−0.870679 + 0.491852i \(0.836320\pi\)
\(422\) 19.6808 + 11.3627i 0.958049 + 0.553130i
\(423\) 20.4963 7.51521i 0.996564 0.365402i
\(424\) 6.40096 + 11.0868i 0.310858 + 0.538422i
\(425\) 12.6089 71.5087i 0.611622 3.46868i
\(426\) 8.95793 + 7.49849i 0.434013 + 0.363303i
\(427\) 1.56942 + 9.81870i 0.0759495 + 0.475160i
\(428\) 0.984771 + 1.17360i 0.0476007 + 0.0567283i
\(429\) −6.17151 + 0.00732746i −0.297963 + 0.000353773i
\(430\) −46.6395 8.22381i −2.24916 0.396587i
\(431\) −20.8304 12.0264i −1.00336 0.579293i −0.0941228 0.995561i \(-0.530005\pi\)
−0.909242 + 0.416268i \(0.863338\pi\)
\(432\) −9.56270 + 3.51916i −0.460085 + 0.169316i
\(433\) 3.41498i 0.164114i 0.996628 + 0.0820568i \(0.0261489\pi\)
−0.996628 + 0.0820568i \(0.973851\pi\)
\(434\) −2.42326 0.467465i −0.116320 0.0224391i
\(435\) −12.7182 + 7.36299i −0.609790 + 0.353028i
\(436\) −0.315583 0.114863i −0.0151137 0.00550093i
\(437\) −4.60684 1.67675i −0.220375 0.0802099i
\(438\) −10.8206 9.05769i −0.517028 0.432793i
\(439\) −26.8131 4.72787i −1.27972 0.225649i −0.507858 0.861441i \(-0.669562\pi\)
−0.771860 + 0.635792i \(0.780673\pi\)
\(440\) −6.35055 + 10.9995i −0.302751 + 0.524380i
\(441\) 19.5116 + 7.76512i 0.929124 + 0.369768i
\(442\) −12.1947 21.1219i −0.580045 1.00467i
\(443\) 5.11471 + 14.0525i 0.243007 + 0.667657i 0.999900 + 0.0141181i \(0.00449407\pi\)
−0.756893 + 0.653539i \(0.773284\pi\)
\(444\) 3.90967 3.28852i 0.185545 0.156066i
\(445\) −41.2150 + 34.5835i −1.95378 + 1.63941i
\(446\) 4.74441 + 26.9069i 0.224654 + 1.27408i
\(447\) −5.06073 + 13.9558i −0.239364 + 0.660085i
\(448\) −14.4746 + 16.6989i −0.683860 + 0.788950i
\(449\) 16.1509 9.32474i 0.762209 0.440062i −0.0678793 0.997694i \(-0.521623\pi\)
0.830088 + 0.557632i \(0.188290\pi\)
\(450\) 13.4881 37.3338i 0.635834 1.75993i
\(451\) −8.70330 + 5.02485i −0.409822 + 0.236611i
\(452\) 1.46584 + 4.02737i 0.0689474 + 0.189431i
\(453\) 21.3256 7.79056i 1.00196 0.366032i
\(454\) −1.42161 + 0.250668i −0.0667193 + 0.0117644i
\(455\) 29.7730 24.1798i 1.39578 1.13356i
\(456\) −6.42733 11.1020i −0.300987 0.519899i
\(457\) −24.6881 20.7158i −1.15486 0.969044i −0.155039 0.987908i \(-0.549550\pi\)
−0.999822 + 0.0188644i \(0.993995\pi\)
\(458\) 0.446814 0.773904i 0.0208782 0.0361622i
\(459\) −31.9658 + 0.113860i −1.49204 + 0.00531453i
\(460\) 5.37122 3.10107i 0.250434 0.144588i
\(461\) −14.8218 + 5.39468i −0.690318 + 0.251255i −0.663271 0.748379i \(-0.730832\pi\)
−0.0270466 + 0.999634i \(0.508610\pi\)
\(462\) 0.0768417 5.17533i 0.00357500 0.240778i
\(463\) 5.32062 4.46453i 0.247270 0.207484i −0.510726 0.859744i \(-0.670623\pi\)
0.757996 + 0.652260i \(0.226179\pi\)
\(464\) 2.60905 + 3.10934i 0.121122 + 0.144348i
\(465\) 2.02715 + 5.54905i 0.0940070 + 0.257331i
\(466\) −14.1459 + 5.14869i −0.655297 + 0.238509i
\(467\) 14.2646 0.660086 0.330043 0.943966i \(-0.392937\pi\)
0.330043 + 0.943966i \(0.392937\pi\)
\(468\) 2.71468 + 7.40376i 0.125486 + 0.342239i
\(469\) −4.42361 2.64943i −0.204263 0.122339i
\(470\) 32.9316 + 5.80674i 1.51902 + 0.267845i
\(471\) 15.7550 + 18.7309i 0.725954 + 0.863075i
\(472\) −5.48680 6.53891i −0.252550 0.300978i
\(473\) 6.67435 + 7.95419i 0.306887 + 0.365734i
\(474\) −4.86199 + 13.4077i −0.223319 + 0.615837i
\(475\) 27.9943 + 4.93615i 1.28447 + 0.226486i
\(476\) −10.5726 + 5.88010i −0.484593 + 0.269514i
\(477\) 0.0296550 + 12.4884i 0.00135781 + 0.571803i
\(478\) 20.6995 0.946772
\(479\) 8.88334 3.23327i 0.405890 0.147732i −0.131003 0.991382i \(-0.541820\pi\)
0.536894 + 0.843650i \(0.319598\pi\)
\(480\) 27.6404 + 4.83992i 1.26161 + 0.220911i
\(481\) 9.02099 + 10.7508i 0.411322 + 0.490194i
\(482\) −11.7500 + 9.85945i −0.535199 + 0.449086i
\(483\) −4.78364 + 8.00852i −0.217663 + 0.364400i
\(484\) −6.97391 + 2.53830i −0.316996 + 0.115377i
\(485\) 21.5780 12.4581i 0.979808 0.565692i
\(486\) −17.2275 2.93233i −0.781455 0.133013i
\(487\) −6.47468 + 11.2145i −0.293396 + 0.508177i −0.974610 0.223907i \(-0.928119\pi\)
0.681215 + 0.732084i \(0.261452\pi\)
\(488\) −8.85374 7.42917i −0.400790 0.336303i
\(489\) 4.71876 0.00560261i 0.213390 0.000253359i
\(490\) 19.8761 + 25.2919i 0.897909 + 1.14257i
\(491\) −23.2766 + 4.10430i −1.05046 + 0.185224i −0.672120 0.740442i \(-0.734616\pi\)
−0.378340 + 0.925667i \(0.623505\pi\)
\(492\) 9.84671 + 8.24247i 0.443924 + 0.371599i
\(493\) 4.35506 + 11.9654i 0.196142 + 0.538896i
\(494\) 8.26884 4.77402i 0.372033 0.214793i
\(495\) −10.7154 + 6.22049i −0.481620 + 0.279590i
\(496\) 1.41310 0.815855i 0.0634502 0.0366330i
\(497\) 12.0283 + 10.4261i 0.539543 + 0.467674i
\(498\) −9.83718 11.6953i −0.440815 0.524078i
\(499\) −2.29368 13.0081i −0.102679 0.582323i −0.992122 0.125276i \(-0.960018\pi\)
0.889443 0.457047i \(-0.151093\pi\)
\(500\) −15.8786 + 13.3237i −0.710111 + 0.595854i
\(501\) −35.8804 13.0112i −1.60302 0.581296i
\(502\) 1.98744 + 5.46044i 0.0887037 + 0.243711i
\(503\) −12.0725 20.9102i −0.538286 0.932339i −0.998996 0.0447884i \(-0.985739\pi\)
0.460710 0.887551i \(-0.347595\pi\)
\(504\) −23.0494 + 8.03448i −1.02670 + 0.357884i
\(505\) 7.71995 13.3713i 0.343533 0.595017i
\(506\) 2.26426 + 0.399251i 0.100659 + 0.0177489i
\(507\) 0.802208 0.293059i 0.0356273 0.0130152i
\(508\) −1.03190 0.375582i −0.0457833 0.0166638i
\(509\) 15.0961 + 5.49452i 0.669122 + 0.243540i 0.654170 0.756348i \(-0.273018\pi\)
0.0149520 + 0.999888i \(0.495240\pi\)
\(510\) −42.4339 24.4321i −1.87900 1.08187i
\(511\) −14.5294 12.5941i −0.642743 0.557128i
\(512\) 19.8118i 0.875568i
\(513\) −0.0445741 12.5140i −0.00196799 0.552508i
\(514\) 12.7025 + 7.33377i 0.560282 + 0.323479i
\(515\) 35.3150 + 6.22699i 1.55616 + 0.274394i
\(516\) 6.62018 11.4980i 0.291437 0.506171i
\(517\) −4.71268 5.61636i −0.207264 0.247007i
\(518\) −9.13659 + 7.42016i −0.401439 + 0.326023i
\(519\) 3.31192 18.9141i 0.145377 0.830238i
\(520\) −7.74160 + 43.9048i −0.339492 + 1.92535i
\(521\) −4.79393 8.30333i −0.210026 0.363776i 0.741696 0.670736i \(-0.234022\pi\)
−0.951722 + 0.306960i \(0.900688\pi\)
\(522\) 1.22506 + 6.85245i 0.0536193 + 0.299924i
\(523\) 22.7408 + 13.1294i 0.994384 + 0.574108i 0.906582 0.422030i \(-0.138682\pi\)
0.0878023 + 0.996138i \(0.472016\pi\)
\(524\) 0.549403 3.11582i 0.0240008 0.136115i
\(525\) 19.2521 50.5469i 0.840231 2.20605i
\(526\) 14.8383 + 5.40072i 0.646983 + 0.235482i
\(527\) 5.04107 0.888877i 0.219592 0.0387201i
\(528\) 2.20281 + 2.61888i 0.0958649 + 0.113972i
\(529\) 14.4447 + 12.1205i 0.628030 + 0.526980i
\(530\) −9.56473 + 16.5666i −0.415465 + 0.719607i
\(531\) −1.46542 8.19694i −0.0635938 0.355717i
\(532\) −2.30195 4.13896i −0.0998022 0.179447i
\(533\) −22.6746 + 27.0225i −0.982146 + 1.17048i
\(534\) 8.74485 + 23.9378i 0.378427 + 1.03589i
\(535\) −2.88980 + 7.93967i −0.124937 + 0.343262i
\(536\) 5.90246 1.04076i 0.254948 0.0449541i
\(537\) −19.0129 10.9470i −0.820465 0.472398i
\(538\) −5.72312 15.7242i −0.246741 0.677916i
\(539\) 0.226125 7.04905i 0.00973989 0.303624i
\(540\) 12.1639 + 10.1331i 0.523451 + 0.436059i
\(541\) −12.0613 20.8908i −0.518556 0.898166i −0.999768 0.0215613i \(-0.993136\pi\)
0.481211 0.876605i \(-0.340197\pi\)
\(542\) −1.80759 + 10.2514i −0.0776427 + 0.440333i
\(543\) 2.41293 1.39693i 0.103549 0.0599480i
\(544\) 8.31581 22.8475i 0.356538 0.979579i
\(545\) −0.321622 1.82401i −0.0137768 0.0781321i
\(546\) −5.95966 17.1626i −0.255050 0.734493i
\(547\) 21.4421 + 17.9921i 0.916799 + 0.769286i 0.973400 0.229111i \(-0.0735818\pi\)
−0.0566010 + 0.998397i \(0.518026\pi\)
\(548\) 4.20116i 0.179465i
\(549\) −3.88132 10.5856i −0.165651 0.451781i
\(550\) −13.3314 −0.568454
\(551\) −4.68424 + 1.70493i −0.199556 + 0.0726323i
\(552\) −1.89554 10.6760i −0.0806796 0.454401i
\(553\) −6.93856 + 18.1525i −0.295058 + 0.771925i
\(554\) −9.35657 + 25.7070i −0.397522 + 1.09218i
\(555\) 26.4875 + 9.60507i 1.12433 + 0.407713i
\(556\) −7.46089 + 8.89154i −0.316412 + 0.377085i
\(557\) 5.93171i 0.251334i 0.992072 + 0.125667i \(0.0401072\pi\)
−0.992072 + 0.125667i \(0.959893\pi\)
\(558\) 2.79837 0.00664504i 0.118464 0.000281307i
\(559\) 31.5640 + 18.2235i 1.33501 + 0.770770i
\(560\) −20.8829 4.02846i −0.882462 0.170234i
\(561\) 3.68374 + 10.0837i 0.155528 + 0.425736i
\(562\) −0.490899 + 0.411913i −0.0207073 + 0.0173755i
\(563\) 1.83078 + 10.3828i 0.0771580 + 0.437585i 0.998775 + 0.0494840i \(0.0157577\pi\)
−0.921617 + 0.388101i \(0.873131\pi\)
\(564\) −4.67443 + 8.11859i −0.196829 + 0.341854i
\(565\) −15.1933 + 18.1067i −0.639187 + 0.761753i
\(566\) 26.1234 1.09805
\(567\) −23.4019 4.39923i −0.982786 0.184750i
\(568\) −18.5025 −0.776346
\(569\) 9.09551 10.8396i 0.381303 0.454420i −0.540922 0.841073i \(-0.681925\pi\)
0.922225 + 0.386653i \(0.126369\pi\)
\(570\) 9.56470 16.6121i 0.400621 0.695803i
\(571\) 4.10726 + 23.2934i 0.171884 + 0.974800i 0.941680 + 0.336510i \(0.109247\pi\)
−0.769796 + 0.638290i \(0.779642\pi\)
\(572\) 2.02877 1.70234i 0.0848270 0.0711783i
\(573\) 7.72028 + 21.1332i 0.322519 + 0.882852i
\(574\) −22.3554 19.3776i −0.933096 0.808805i
\(575\) 20.8080 + 12.0135i 0.867752 + 0.500997i
\(576\) 12.4774 21.7305i 0.519892 0.905439i
\(577\) 44.6938i 1.86063i 0.366765 + 0.930313i \(0.380465\pi\)
−0.366765 + 0.930313i \(0.619535\pi\)
\(578\) −15.0211 + 17.9014i −0.624794 + 0.744600i
\(579\) −22.8596 8.28949i −0.950013 0.344499i
\(580\) 2.15690 5.92604i 0.0895605 0.246065i
\(581\) −13.1277 16.1644i −0.544629 0.670613i
\(582\) −2.06325 11.6206i −0.0855243 0.481687i
\(583\) 3.94119 1.43448i 0.163227 0.0594099i
\(584\) 22.3498 0.924840
\(585\) −27.8758 + 33.3818i −1.15252 + 1.38017i
\(586\) 17.6359i 0.728534i
\(587\) 21.3980 + 17.9551i 0.883191 + 0.741085i 0.966833 0.255411i \(-0.0822108\pi\)
−0.0836420 + 0.996496i \(0.526655\pi\)
\(588\) −8.55934 + 2.81925i −0.352981 + 0.116264i
\(589\) 0.347979 + 1.97349i 0.0143382 + 0.0813161i
\(590\) 4.36245 11.9857i 0.179599 0.493445i
\(591\) −26.3335 + 15.2454i −1.08322 + 0.627111i
\(592\) 1.35133 7.66376i 0.0555392 0.314979i
\(593\) 2.10565 + 3.64710i 0.0864689 + 0.149768i 0.906016 0.423243i \(-0.139108\pi\)
−0.819547 + 0.573012i \(0.805775\pi\)
\(594\) 1.03971 + 5.77610i 0.0426598 + 0.236996i
\(595\) −57.2384 34.2818i −2.34655 1.40542i
\(596\) −2.17881 5.98622i −0.0892474 0.245205i
\(597\) −33.4366 19.2517i −1.36847 0.787921i
\(598\) 7.94778 1.40141i 0.325009 0.0573079i
\(599\) 2.62407 7.20957i 0.107217 0.294575i −0.874470 0.485080i \(-0.838790\pi\)
0.981686 + 0.190505i \(0.0610126\pi\)
\(600\) 21.5733 + 59.0538i 0.880725 + 2.41086i
\(601\) −17.3311 + 20.6544i −0.706949 + 0.842509i −0.993294 0.115617i \(-0.963115\pi\)
0.286344 + 0.958127i \(0.407560\pi\)
\(602\) −15.7061 + 26.2235i −0.640132 + 1.06879i
\(603\) 5.49887 + 1.98665i 0.223931 + 0.0809026i
\(604\) −4.87146 + 8.43762i −0.198217 + 0.343322i
\(605\) −31.3540 26.3092i −1.27472 1.06962i
\(606\) −4.70772 5.59694i −0.191238 0.227360i
\(607\) 2.86956 0.505981i 0.116472 0.0205371i −0.115108 0.993353i \(-0.536722\pi\)
0.231580 + 0.972816i \(0.425610\pi\)
\(608\) 8.94438 + 3.25549i 0.362742 + 0.132027i
\(609\) 1.50822 + 9.36449i 0.0611163 + 0.379468i
\(610\) 2.99896 17.0079i 0.121424 0.688631i
\(611\) −22.2869 12.8674i −0.901633 0.520558i
\(612\) 10.4873 8.84238i 0.423922 0.357432i
\(613\) −17.2809 29.9315i −0.697971 1.20892i −0.969169 0.246397i \(-0.920753\pi\)
0.271198 0.962523i \(-0.412580\pi\)
\(614\) 6.75987 38.3371i 0.272806 1.54716i
\(615\) −12.2149 + 69.7583i −0.492552 + 2.81293i
\(616\) 5.16805 + 6.36351i 0.208226 + 0.256393i
\(617\) −16.2205 19.3308i −0.653011 0.778228i 0.333354 0.942802i \(-0.391820\pi\)
−0.986365 + 0.164574i \(0.947375\pi\)
\(618\) 8.47556 14.7204i 0.340937 0.592143i
\(619\) 38.8625 + 6.85252i 1.56202 + 0.275426i 0.886786 0.462180i \(-0.152933\pi\)
0.675231 + 0.737606i \(0.264044\pi\)
\(620\) −2.19552 1.26759i −0.0881744 0.0509075i
\(621\) 3.58227 9.95237i 0.143752 0.399375i
\(622\) 10.9405i 0.438674i
\(623\) 11.3523 + 32.8179i 0.454819 + 1.31482i
\(624\) 10.4098 + 5.99363i 0.416726 + 0.239937i
\(625\) −51.9647 18.9136i −2.07859 0.756544i
\(626\) 10.3852 + 3.77990i 0.415076 + 0.151075i
\(627\) −3.94759 + 1.44212i −0.157652 + 0.0575926i
\(628\) −10.3437 1.82387i −0.412759 0.0727805i
\(629\) 12.2064 21.1422i 0.486702 0.842993i
\(630\) −27.6181 23.8247i −1.10033 0.949199i
\(631\) 9.73033 + 16.8534i 0.387358 + 0.670924i 0.992093 0.125503i \(-0.0400544\pi\)
−0.604735 + 0.796427i \(0.706721\pi\)
\(632\) −7.72577 21.2264i −0.307315 0.844340i
\(633\) −33.0085 11.9698i −1.31197 0.475755i
\(634\) −9.72212 + 8.15782i −0.386115 + 0.323989i
\(635\) −1.05165 5.96421i −0.0417335 0.236683i
\(636\) −3.44965 4.10123i −0.136787 0.162624i
\(637\) −7.71670 23.5221i −0.305747 0.931981i
\(638\) 2.02462 1.16891i 0.0801553 0.0462777i
\(639\) −15.6526 8.98752i −0.619206 0.355541i
\(640\) 5.17987 2.99060i 0.204752 0.118214i
\(641\) 16.4862 + 45.2954i 0.651165 + 1.78906i 0.613398 + 0.789774i \(0.289802\pi\)
0.0377667 + 0.999287i \(0.487976\pi\)
\(642\) 3.06894 + 2.56894i 0.121121 + 0.101388i
\(643\) −16.8028 + 2.96278i −0.662636 + 0.116841i −0.494844 0.868982i \(-0.664775\pi\)
−0.167792 + 0.985822i \(0.553664\pi\)
\(644\) −0.631832 3.95291i −0.0248977 0.155766i
\(645\) 73.1716 0.0868769i 2.88113 0.00342078i
\(646\) −12.7233 10.6761i −0.500592 0.420047i
\(647\) 6.85799 11.8784i 0.269616 0.466988i −0.699147 0.714978i \(-0.746437\pi\)
0.968763 + 0.247990i \(0.0797700\pi\)
\(648\) 23.9037 13.9526i 0.939026 0.548110i
\(649\) −2.42186 + 1.39826i −0.0950662 + 0.0548865i
\(650\) −43.9726 + 16.0047i −1.72475 + 0.627756i
\(651\) 3.81264 + 0.0566089i 0.149429 + 0.00221868i
\(652\) −1.55120 + 1.30161i −0.0607498 + 0.0509752i
\(653\) 21.3576 + 25.4530i 0.835787 + 0.996053i 0.999954 + 0.00962007i \(0.00306221\pi\)
−0.164166 + 0.986433i \(0.552493\pi\)
\(654\) −0.864179 0.151320i −0.0337921 0.00591709i
\(655\) 16.3967 5.96790i 0.640671 0.233185i
\(656\) 19.5603 0.763703
\(657\) 18.9073 + 10.8563i 0.737644 + 0.423547i
\(658\) 11.0899 18.5161i 0.432328 0.721834i
\(659\) −1.85923 0.327832i −0.0724252 0.0127705i 0.137318 0.990527i \(-0.456152\pi\)
−0.209743 + 0.977756i \(0.567263\pi\)
\(660\) 1.81256 4.99842i 0.0705538 0.194563i
\(661\) −30.0773 35.8448i −1.16987 1.39420i −0.902545 0.430595i \(-0.858304\pi\)
−0.267328 0.963606i \(-0.586141\pi\)
\(662\) −2.97872 3.54990i −0.115771 0.137971i
\(663\) 24.2563 + 28.8379i 0.942035 + 1.11997i
\(664\) 23.8369 + 4.20308i 0.925050 + 0.163111i
\(665\) 13.4207 22.4078i 0.520432 0.868936i
\(666\) 8.55439 10.2440i 0.331476 0.396948i
\(667\) −4.21342 −0.163144
\(668\) 15.3906 5.60173i 0.595482 0.216738i
\(669\) −14.4850 39.6505i −0.560021 1.53298i
\(670\) 5.75674 + 6.86062i 0.222402 + 0.265049i
\(671\) −2.90064 + 2.43392i −0.111978 + 0.0939605i
\(672\) 9.28764 15.5489i 0.358278 0.599812i
\(673\) 19.5365 7.11069i 0.753075 0.274097i 0.0631762 0.998002i \(-0.479877\pi\)
0.689899 + 0.723905i \(0.257655\pi\)
\(674\) 13.8102 7.97334i 0.531950 0.307122i
\(675\) −10.4349 + 60.4371i −0.401638 + 2.32622i
\(676\) −0.183251 + 0.317400i −0.00704810 + 0.0122077i
\(677\) 29.3952 + 24.6655i 1.12975 + 0.947973i 0.999056 0.0434493i \(-0.0138347\pi\)
0.130695 + 0.991423i \(0.458279\pi\)
\(678\) 5.60960 + 9.68952i 0.215435 + 0.372124i
\(679\) −2.53829 15.8802i −0.0974105 0.609426i
\(680\) 76.3738 13.4668i 2.92880 0.516427i
\(681\) 2.09491 0.765303i 0.0802772 0.0293265i
\(682\) −0.321434 0.883134i −0.0123084 0.0338169i
\(683\) −12.1220 + 6.99865i −0.463836 + 0.267796i −0.713656 0.700496i \(-0.752962\pi\)
0.249820 + 0.968292i \(0.419629\pi\)
\(684\) 3.46163 + 4.10557i 0.132359 + 0.156980i
\(685\) −20.0654 + 11.5848i −0.766661 + 0.442632i
\(686\) 19.8287 6.15469i 0.757064 0.234987i
\(687\) −0.470683 + 1.29798i −0.0179577 + 0.0495212i
\(688\) −3.50942 19.9029i −0.133795 0.758791i
\(689\) 11.2775 9.46299i 0.429640 0.360511i
\(690\) 12.3993 10.4294i 0.472033 0.397039i
\(691\) −15.8752 43.6168i −0.603922 1.65926i −0.743248 0.669016i \(-0.766716\pi\)
0.139326 0.990247i \(-0.455506\pi\)
\(692\) 4.12003 + 7.13611i 0.156620 + 0.271274i
\(693\) 1.28096 + 7.89372i 0.0486597 + 0.299858i
\(694\) −4.48345 + 7.76556i −0.170189 + 0.294777i
\(695\) −63.0410 11.1158i −2.39128 0.421648i
\(696\) −8.45418 7.07682i −0.320455 0.268246i
\(697\) 57.6621 + 20.9873i 2.18411 + 0.794950i
\(698\) −14.9528 5.44237i −0.565972 0.205997i
\(699\) 20.1288 11.6532i 0.761341 0.440766i
\(700\) 7.58795 + 21.9358i 0.286798 + 0.829096i
\(701\) 25.1102i 0.948399i 0.880417 + 0.474199i \(0.157262\pi\)
−0.880417 + 0.474199i \(0.842738\pi\)
\(702\) 10.3637 + 17.8037i 0.391154 + 0.671959i
\(703\) 8.27676 + 4.77859i 0.312164 + 0.180228i
\(704\) −8.28766 1.46134i −0.312353 0.0550762i
\(705\) −51.6656 + 0.0613428i −1.94584 + 0.00231030i
\(706\) −11.4891 13.6922i −0.432399 0.515313i
\(707\) −6.28245 7.73571i −0.236276 0.290931i
\(708\) 2.74004 + 2.29362i 0.102977 + 0.0861997i
\(709\) 3.87398 21.9704i 0.145490 0.825116i −0.821482 0.570234i \(-0.806852\pi\)
0.966972 0.254882i \(-0.0820365\pi\)
\(710\) −13.8238 23.9435i −0.518797 0.898583i
\(711\) 3.77487 21.7097i 0.141569 0.814177i
\(712\) −34.9563 20.1820i −1.31004 0.756353i
\(713\) −0.294126 + 1.66807i −0.0110151 + 0.0624697i
\(714\) −24.5087 + 19.9528i −0.917216 + 0.746714i
\(715\) 13.7250 + 4.99550i 0.513286 + 0.186821i
\(716\) 9.27166 1.63484i 0.346498 0.0610970i
\(717\) −31.4890 + 5.59092i −1.17598 + 0.208797i
\(718\) 12.5740 + 10.5509i 0.469259 + 0.393755i
\(719\) −1.57773 + 2.73271i −0.0588395 + 0.101913i −0.893945 0.448177i \(-0.852073\pi\)
0.835105 + 0.550090i \(0.185407\pi\)
\(720\) 24.1154 0.0572648i 0.898729 0.00213413i
\(721\) 11.8925 19.8562i 0.442899 0.739483i
\(722\) −9.51171 + 11.3356i −0.353989 + 0.421868i
\(723\) 15.2117 18.1724i 0.565729 0.675837i
\(724\) −0.409215 + 1.12431i −0.0152083 + 0.0417846i
\(725\) 24.0595 4.24234i 0.893548 0.157557i
\(726\) −16.7787 + 9.71375i −0.622715 + 0.360511i
\(727\) −2.93771 8.07129i −0.108954 0.299348i 0.873219 0.487328i \(-0.162028\pi\)
−0.982173 + 0.187980i \(0.939806\pi\)
\(728\) 24.6859 + 14.7851i 0.914920 + 0.547974i
\(729\) 26.9993 0.192342i 0.999975 0.00712376i
\(730\) 16.6982 + 28.9222i 0.618029 + 1.07046i
\(731\) 11.0094 62.4374i 0.407197 2.30933i
\(732\) 4.19295 + 2.41416i 0.154976 + 0.0892301i
\(733\) 9.57552 26.3085i 0.353680 0.971727i −0.627498 0.778619i \(-0.715921\pi\)
0.981177 0.193109i \(-0.0618570\pi\)
\(734\) 1.88569 + 10.6943i 0.0696019 + 0.394732i
\(735\) −37.0678 33.1067i −1.36726 1.22116i
\(736\) 6.16309 + 5.17145i 0.227175 + 0.190622i
\(737\) 1.96358i 0.0723293i
\(738\) 29.0913 + 16.7039i 1.07087 + 0.614880i
\(739\) 20.6207 0.758546 0.379273 0.925285i \(-0.376174\pi\)
0.379273 + 0.925285i \(0.376174\pi\)
\(740\) −11.3616 + 4.13530i −0.417662 + 0.152017i
\(741\) −11.2895 + 9.49588i −0.414730 + 0.348840i
\(742\) 7.78373 + 9.58425i 0.285750 + 0.351849i
\(743\) 2.11075 5.79924i 0.0774359 0.212753i −0.894934 0.446198i \(-0.852778\pi\)
0.972370 + 0.233445i \(0.0749998\pi\)
\(744\) −3.39184 + 2.85296i −0.124351 + 0.104595i
\(745\) 22.5831 26.9135i 0.827381 0.986034i
\(746\) 14.6539i 0.536519i
\(747\) 18.1237 + 15.1344i 0.663111 + 0.553738i
\(748\) −3.98971 2.30346i −0.145878 0.0842227i
\(749\) 4.12083 + 3.57192i 0.150572 + 0.130515i
\(750\) −34.7571 + 41.5219i −1.26915 + 1.51617i
\(751\) −15.2733 + 12.8158i −0.557330 + 0.467656i −0.877414 0.479734i \(-0.840733\pi\)
0.320084 + 0.947389i \(0.396289\pi\)
\(752\) 2.47796 + 14.0532i 0.0903618 + 0.512467i
\(753\) −4.49825 7.76988i −0.163925 0.283150i
\(754\) 5.27471 6.28616i 0.192094 0.228928i
\(755\) −53.7326 −1.95553
\(756\) 8.91233 4.99838i 0.324138 0.181789i
\(757\) 14.8634 0.540221 0.270110 0.962829i \(-0.412940\pi\)
0.270110 + 0.962829i \(0.412940\pi\)
\(758\) −4.22586 + 5.03619i −0.153490 + 0.182923i
\(759\) −3.55234 + 0.00421771i −0.128942 + 0.000153093i
\(760\) 5.27199 + 29.8989i 0.191235 + 1.08455i
\(761\) 11.7805 9.88505i 0.427044 0.358333i −0.403791 0.914851i \(-0.632308\pi\)
0.830835 + 0.556519i \(0.187863\pi\)
\(762\) −2.82572 0.494792i −0.102365 0.0179244i
\(763\) −1.17380 0.226436i −0.0424945 0.00819752i
\(764\) −8.36151 4.82752i −0.302509 0.174654i
\(765\) 71.1515 + 25.7059i 2.57249 + 0.929398i
\(766\) 32.4940i 1.17406i
\(767\) −6.30964 + 7.51954i −0.227828 + 0.271515i