Properties

Label 189.2.ba.a.101.5
Level $189$
Weight $2$
Character 189.101
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 101.5
Character \(\chi\) \(=\) 189.101
Dual form 189.2.ba.a.131.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.08992 + 1.29892i) q^{2} +(1.72029 - 0.201542i) q^{3} +(-0.151961 - 0.861812i) q^{4} +(1.13756 - 0.954530i) q^{5} +(-1.61319 + 2.45417i) q^{6} +(2.51978 - 0.806679i) q^{7} +(-1.65184 - 0.953692i) q^{8} +(2.91876 - 0.693419i) q^{9} +O(q^{10})\) \(q+(-1.08992 + 1.29892i) q^{2} +(1.72029 - 0.201542i) q^{3} +(-0.151961 - 0.861812i) q^{4} +(1.13756 - 0.954530i) q^{5} +(-1.61319 + 2.45417i) q^{6} +(2.51978 - 0.806679i) q^{7} +(-1.65184 - 0.953692i) q^{8} +(2.91876 - 0.693419i) q^{9} +2.51796i q^{10} +(-0.0836396 + 0.0996778i) q^{11} +(-0.435107 - 1.45194i) q^{12} +(-0.311287 + 0.855253i) q^{13} +(-1.69855 + 4.15219i) q^{14} +(1.76456 - 1.87133i) q^{15} +(4.68381 - 1.70477i) q^{16} -5.63249 q^{17} +(-2.28052 + 4.54700i) q^{18} +0.0959743i q^{19} +(-0.995491 - 0.835316i) q^{20} +(4.17215 - 1.89556i) q^{21} +(-0.0383126 - 0.217282i) q^{22} +(-2.22151 + 6.10356i) q^{23} +(-3.03385 - 1.30771i) q^{24} +(-0.485315 + 2.75236i) q^{25} +(-0.771624 - 1.33649i) q^{26} +(4.88135 - 1.78113i) q^{27} +(-1.07811 - 2.04899i) q^{28} +(0.238914 + 0.656410i) q^{29} +(0.507475 + 4.33161i) q^{30} +(-8.96076 + 1.58002i) q^{31} +(-1.58590 + 4.35722i) q^{32} +(-0.123795 + 0.188331i) q^{33} +(6.13896 - 7.31613i) q^{34} +(2.09641 - 3.32285i) q^{35} +(-1.04113 - 2.41005i) q^{36} +(1.72508 - 2.98792i) q^{37} +(-0.124663 - 0.104604i) q^{38} +(-0.363133 + 1.53402i) q^{39} +(-2.78941 + 0.491848i) q^{40} +(-2.04536 - 0.744450i) q^{41} +(-2.08514 + 7.48528i) q^{42} +(1.37972 - 7.82480i) q^{43} +(0.0986135 + 0.0569345i) q^{44} +(2.65839 - 3.57486i) q^{45} +(-5.50674 - 9.53795i) q^{46} +(2.18137 - 12.3712i) q^{47} +(7.71390 - 3.87667i) q^{48} +(5.69854 - 4.06530i) q^{49} +(-3.04613 - 3.63023i) q^{50} +(-9.68949 + 1.13518i) q^{51} +(0.784371 + 0.138306i) q^{52} +(1.26661 + 0.731275i) q^{53} +(-3.00674 + 8.28175i) q^{54} +0.193227i q^{55} +(-4.93160 - 1.07058i) q^{56} +(0.0193428 + 0.165103i) q^{57} +(-1.11302 - 0.405105i) q^{58} +(5.96770 + 2.17206i) q^{59} +(-1.88088 - 1.23635i) q^{60} +(-7.69007 - 1.35597i) q^{61} +(7.71419 - 13.3614i) q^{62} +(6.79526 - 4.10176i) q^{63} +(1.05325 + 1.82428i) q^{64} +(0.462256 + 1.27004i) q^{65} +(-0.109700 - 0.366065i) q^{66} +(-11.0280 + 9.25358i) q^{67} +(0.855917 + 4.85415i) q^{68} +(-2.59151 + 10.9476i) q^{69} +(2.03119 + 6.34470i) q^{70} +(2.38823 - 1.37884i) q^{71} +(-5.48265 - 1.63818i) q^{72} +(-6.94774 + 4.01128i) q^{73} +(2.00086 + 5.49732i) q^{74} +(-0.280165 + 4.83265i) q^{75} +(0.0827118 - 0.0145843i) q^{76} +(-0.130345 + 0.318636i) q^{77} +(-1.59677 - 2.14363i) q^{78} +(0.310233 + 0.260316i) q^{79} +(3.70088 - 6.41012i) q^{80} +(8.03834 - 4.04785i) q^{81} +(3.19626 - 1.84536i) q^{82} +(-4.54412 + 1.65393i) q^{83} +(-2.26762 - 3.30756i) q^{84} +(-6.40732 + 5.37638i) q^{85} +(8.65997 + 10.3205i) q^{86} +(0.543293 + 1.08106i) q^{87} +(0.233222 - 0.0848857i) q^{88} +15.9719 q^{89} +(1.74600 + 7.34933i) q^{90} +(-0.0944582 + 2.40615i) q^{91} +(5.59770 + 0.987026i) q^{92} +(-15.0966 + 4.52406i) q^{93} +(13.6916 + 16.3170i) q^{94} +(0.0916104 + 0.109177i) q^{95} +(-1.85003 + 7.81528i) q^{96} +(10.2887 + 1.81418i) q^{97} +(-0.930470 + 11.8328i) q^{98} +(-0.175006 + 0.348933i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.08992 + 1.29892i −0.770690 + 0.918472i −0.998473 0.0552397i \(-0.982408\pi\)
0.227784 + 0.973712i \(0.426852\pi\)
\(3\) 1.72029 0.201542i 0.993207 0.116360i
\(4\) −0.151961 0.861812i −0.0759803 0.430906i
\(5\) 1.13756 0.954530i 0.508734 0.426879i −0.351949 0.936019i \(-0.614481\pi\)
0.860684 + 0.509140i \(0.170037\pi\)
\(6\) −1.61319 + 2.45417i −0.658581 + 1.00191i
\(7\) 2.51978 0.806679i 0.952386 0.304896i
\(8\) −1.65184 0.953692i −0.584015 0.337181i
\(9\) 2.91876 0.693419i 0.972921 0.231140i
\(10\) 2.51796i 0.796250i
\(11\) −0.0836396 + 0.0996778i −0.0252183 + 0.0300540i −0.778506 0.627637i \(-0.784022\pi\)
0.753288 + 0.657691i \(0.228467\pi\)
\(12\) −0.435107 1.45194i −0.125605 0.419138i
\(13\) −0.311287 + 0.855253i −0.0863354 + 0.237205i −0.975346 0.220683i \(-0.929171\pi\)
0.889010 + 0.457887i \(0.151394\pi\)
\(14\) −1.69855 + 4.15219i −0.453955 + 1.10972i
\(15\) 1.76456 1.87133i 0.455607 0.483176i
\(16\) 4.68381 1.70477i 1.17095 0.426191i
\(17\) −5.63249 −1.36608 −0.683040 0.730381i \(-0.739342\pi\)
−0.683040 + 0.730381i \(0.739342\pi\)
\(18\) −2.28052 + 4.54700i −0.537525 + 1.07174i
\(19\) 0.0959743i 0.0220180i 0.999939 + 0.0110090i \(0.00350435\pi\)
−0.999939 + 0.0110090i \(0.996496\pi\)
\(20\) −0.995491 0.835316i −0.222598 0.186782i
\(21\) 4.17215 1.89556i 0.910438 0.413645i
\(22\) −0.0383126 0.217282i −0.00816828 0.0463246i
\(23\) −2.22151 + 6.10356i −0.463218 + 1.27268i 0.459835 + 0.888005i \(0.347909\pi\)
−0.923052 + 0.384675i \(0.874313\pi\)
\(24\) −3.03385 1.30771i −0.619282 0.266935i
\(25\) −0.485315 + 2.75236i −0.0970630 + 0.550472i
\(26\) −0.771624 1.33649i −0.151328 0.262108i
\(27\) 4.88135 1.78113i 0.939416 0.342779i
\(28\) −1.07811 2.04899i −0.203744 0.387223i
\(29\) 0.238914 + 0.656410i 0.0443651 + 0.121892i 0.959897 0.280354i \(-0.0904518\pi\)
−0.915532 + 0.402246i \(0.868230\pi\)
\(30\) 0.507475 + 4.33161i 0.0926518 + 0.790841i
\(31\) −8.96076 + 1.58002i −1.60940 + 0.283781i −0.904804 0.425828i \(-0.859983\pi\)
−0.704596 + 0.709609i \(0.748872\pi\)
\(32\) −1.58590 + 4.35722i −0.280350 + 0.770254i
\(33\) −0.123795 + 0.188331i −0.0215499 + 0.0327842i
\(34\) 6.13896 7.31613i 1.05282 1.25471i
\(35\) 2.09641 3.32285i 0.354358 0.561664i
\(36\) −1.04113 2.41005i −0.173522 0.401675i
\(37\) 1.72508 2.98792i 0.283601 0.491211i −0.688668 0.725077i \(-0.741804\pi\)
0.972269 + 0.233866i \(0.0751376\pi\)
\(38\) −0.124663 0.104604i −0.0202229 0.0169691i
\(39\) −0.363133 + 1.53402i −0.0581477 + 0.245639i
\(40\) −2.78941 + 0.491848i −0.441044 + 0.0777680i
\(41\) −2.04536 0.744450i −0.319432 0.116264i 0.177328 0.984152i \(-0.443255\pi\)
−0.496760 + 0.867888i \(0.665477\pi\)
\(42\) −2.08514 + 7.48528i −0.321744 + 1.15500i
\(43\) 1.37972 7.82480i 0.210406 1.19327i −0.678297 0.734788i \(-0.737282\pi\)
0.888703 0.458483i \(-0.151607\pi\)
\(44\) 0.0986135 + 0.0569345i 0.0148665 + 0.00858320i
\(45\) 2.65839 3.57486i 0.396290 0.532908i
\(46\) −5.50674 9.53795i −0.811924 1.40629i
\(47\) 2.18137 12.3712i 0.318186 1.80452i −0.235585 0.971854i \(-0.575701\pi\)
0.553771 0.832669i \(-0.313188\pi\)
\(48\) 7.71390 3.87667i 1.11341 0.559549i
\(49\) 5.69854 4.06530i 0.814077 0.580757i
\(50\) −3.04613 3.63023i −0.430787 0.513392i
\(51\) −9.68949 + 1.13518i −1.35680 + 0.158957i
\(52\) 0.784371 + 0.138306i 0.108773 + 0.0191795i
\(53\) 1.26661 + 0.731275i 0.173982 + 0.100448i 0.584462 0.811421i \(-0.301306\pi\)
−0.410480 + 0.911869i \(0.634639\pi\)
\(54\) −3.00674 + 8.28175i −0.409166 + 1.12700i
\(55\) 0.193227i 0.0260547i
\(56\) −4.93160 1.07058i −0.659013 0.143063i
\(57\) 0.0193428 + 0.165103i 0.00256202 + 0.0218685i
\(58\) −1.11302 0.405105i −0.146146 0.0531929i
\(59\) 5.96770 + 2.17206i 0.776928 + 0.282779i 0.699891 0.714250i \(-0.253232\pi\)
0.0770368 + 0.997028i \(0.475454\pi\)
\(60\) −1.88088 1.23635i −0.242820 0.159612i
\(61\) −7.69007 1.35597i −0.984613 0.173614i −0.341913 0.939732i \(-0.611075\pi\)
−0.642700 + 0.766118i \(0.722186\pi\)
\(62\) 7.71419 13.3614i 0.979703 1.69690i
\(63\) 6.79526 4.10176i 0.856122 0.516774i
\(64\) 1.05325 + 1.82428i 0.131656 + 0.228035i
\(65\) 0.462256 + 1.27004i 0.0573358 + 0.157529i
\(66\) −0.109700 0.366065i −0.0135031 0.0450595i
\(67\) −11.0280 + 9.25358i −1.34728 + 1.13050i −0.367592 + 0.929987i \(0.619818\pi\)
−0.979690 + 0.200517i \(0.935738\pi\)
\(68\) 0.855917 + 4.85415i 0.103795 + 0.588652i
\(69\) −2.59151 + 10.9476i −0.311982 + 1.31793i
\(70\) 2.03119 + 6.34470i 0.242773 + 0.758337i
\(71\) 2.38823 1.37884i 0.283431 0.163639i −0.351545 0.936171i \(-0.614344\pi\)
0.634975 + 0.772532i \(0.281010\pi\)
\(72\) −5.48265 1.63818i −0.646136 0.193062i
\(73\) −6.94774 + 4.01128i −0.813171 + 0.469485i −0.848056 0.529907i \(-0.822227\pi\)
0.0348847 + 0.999391i \(0.488894\pi\)
\(74\) 2.00086 + 5.49732i 0.232595 + 0.639051i
\(75\) −0.280165 + 4.83265i −0.0323507 + 0.558027i
\(76\) 0.0827118 0.0145843i 0.00948770 0.00167294i
\(77\) −0.130345 + 0.318636i −0.0148542 + 0.0363119i
\(78\) −1.59677 2.14363i −0.180799 0.242719i
\(79\) 0.310233 + 0.260316i 0.0349039 + 0.0292879i 0.660073 0.751202i \(-0.270525\pi\)
−0.625169 + 0.780490i \(0.714970\pi\)
\(80\) 3.70088 6.41012i 0.413771 0.716673i
\(81\) 8.03834 4.04785i 0.893149 0.449761i
\(82\) 3.19626 1.84536i 0.352968 0.203786i
\(83\) −4.54412 + 1.65393i −0.498782 + 0.181542i −0.579146 0.815224i \(-0.696614\pi\)
0.0803638 + 0.996766i \(0.474392\pi\)
\(84\) −2.26762 3.30756i −0.247417 0.360885i
\(85\) −6.40732 + 5.37638i −0.694972 + 0.583150i
\(86\) 8.65997 + 10.3205i 0.933828 + 1.11289i
\(87\) 0.543293 + 1.08106i 0.0582472 + 0.115902i
\(88\) 0.233222 0.0848857i 0.0248615 0.00904884i
\(89\) 15.9719 1.69302 0.846508 0.532376i \(-0.178701\pi\)
0.846508 + 0.532376i \(0.178701\pi\)
\(90\) 1.74600 + 7.34933i 0.184045 + 0.774688i
\(91\) −0.0944582 + 2.40615i −0.00990191 + 0.252233i
\(92\) 5.59770 + 0.987026i 0.583601 + 0.102905i
\(93\) −15.0966 + 4.52406i −1.56545 + 0.469123i
\(94\) 13.6916 + 16.3170i 1.41218 + 1.68297i
\(95\) 0.0916104 + 0.109177i 0.00939903 + 0.0112013i
\(96\) −1.85003 + 7.81528i −0.188818 + 0.797643i
\(97\) 10.2887 + 1.81418i 1.04466 + 0.184202i 0.669541 0.742775i \(-0.266491\pi\)
0.375118 + 0.926977i \(0.377602\pi\)
\(98\) −0.930470 + 11.8328i −0.0939916 + 1.19529i
\(99\) −0.175006 + 0.348933i −0.0175887 + 0.0350691i
\(100\) 2.44576 0.244576
\(101\) 4.01032 1.45964i 0.399042 0.145239i −0.134701 0.990886i \(-0.543007\pi\)
0.533743 + 0.845647i \(0.320785\pi\)
\(102\) 9.08626 13.8231i 0.899673 1.36869i
\(103\) −2.60642 3.10621i −0.256818 0.306064i 0.622194 0.782863i \(-0.286241\pi\)
−0.879012 + 0.476799i \(0.841797\pi\)
\(104\) 1.32985 1.11587i 0.130402 0.109420i
\(105\) 2.93673 6.13877i 0.286595 0.599082i
\(106\) −2.33036 + 0.848183i −0.226345 + 0.0823828i
\(107\) −8.99730 + 5.19460i −0.869802 + 0.502181i −0.867283 0.497816i \(-0.834135\pi\)
−0.00251969 + 0.999997i \(0.500802\pi\)
\(108\) −2.27677 3.93614i −0.219083 0.378756i
\(109\) 2.59277 4.49081i 0.248342 0.430142i −0.714724 0.699407i \(-0.753447\pi\)
0.963066 + 0.269265i \(0.0867808\pi\)
\(110\) −0.250985 0.210601i −0.0239305 0.0200801i
\(111\) 2.36543 5.48775i 0.224517 0.520874i
\(112\) 10.4269 8.07395i 0.985253 0.762917i
\(113\) −15.1938 + 2.67908i −1.42931 + 0.252026i −0.834132 0.551565i \(-0.814031\pi\)
−0.595181 + 0.803592i \(0.702920\pi\)
\(114\) −0.235537 0.154825i −0.0220601 0.0145006i
\(115\) 3.29892 + 9.06369i 0.307625 + 0.845194i
\(116\) 0.529396 0.305647i 0.0491532 0.0283786i
\(117\) −0.315523 + 2.71213i −0.0291701 + 0.250737i
\(118\) −9.32564 + 5.38416i −0.858494 + 0.495652i
\(119\) −14.1926 + 4.54361i −1.30103 + 0.416512i
\(120\) −4.69945 + 1.40830i −0.428999 + 0.128560i
\(121\) 1.90719 + 10.8162i 0.173381 + 0.983292i
\(122\) 10.1428 8.51086i 0.918290 0.770537i
\(123\) −3.66864 0.868441i −0.330790 0.0783047i
\(124\) 2.72337 + 7.48239i 0.244565 + 0.671938i
\(125\) 5.78760 + 10.0244i 0.517658 + 0.896611i
\(126\) −2.07844 + 13.2971i −0.185162 + 1.18460i
\(127\) −0.565054 + 0.978702i −0.0501404 + 0.0868458i −0.890006 0.455948i \(-0.849300\pi\)
0.839866 + 0.542794i \(0.182634\pi\)
\(128\) −12.6503 2.23060i −1.11814 0.197159i
\(129\) 0.796493 13.7390i 0.0701273 1.20965i
\(130\) −2.15349 0.783808i −0.188874 0.0687445i
\(131\) 6.15002 + 2.23842i 0.537330 + 0.195572i 0.596408 0.802681i \(-0.296594\pi\)
−0.0590784 + 0.998253i \(0.518816\pi\)
\(132\) 0.181118 + 0.0780688i 0.0157643 + 0.00679502i
\(133\) 0.0774204 + 0.241834i 0.00671320 + 0.0209696i
\(134\) 24.4101i 2.10871i
\(135\) 3.85271 6.68555i 0.331588 0.575400i
\(136\) 9.30399 + 5.37166i 0.797811 + 0.460616i
\(137\) 4.57928 + 0.807451i 0.391234 + 0.0689852i 0.365805 0.930691i \(-0.380794\pi\)
0.0254292 + 0.999677i \(0.491905\pi\)
\(138\) −11.3955 15.2981i −0.970045 1.30226i
\(139\) −8.26472 9.84951i −0.701005 0.835425i 0.291635 0.956530i \(-0.405801\pi\)
−0.992640 + 0.121105i \(0.961356\pi\)
\(140\) −3.18224 1.30177i −0.268949 0.110019i
\(141\) 1.25927 21.7216i 0.106050 1.82929i
\(142\) −0.811975 + 4.60494i −0.0681394 + 0.386438i
\(143\) −0.0592139 0.102561i −0.00495171 0.00857662i
\(144\) 12.4888 8.22364i 1.04073 0.685304i
\(145\) 0.898343 + 0.518658i 0.0746033 + 0.0430722i
\(146\) 2.36216 13.3965i 0.195494 1.10870i
\(147\) 8.98378 8.14197i 0.740970 0.671538i
\(148\) −2.83717 1.03265i −0.233214 0.0848829i
\(149\) 20.1468 3.55243i 1.65049 0.291027i 0.730486 0.682927i \(-0.239293\pi\)
0.920007 + 0.391901i \(0.128182\pi\)
\(150\) −5.97185 5.63111i −0.487600 0.459779i
\(151\) −10.4393 8.75958i −0.849535 0.712845i 0.110152 0.993915i \(-0.464866\pi\)
−0.959687 + 0.281070i \(0.909311\pi\)
\(152\) 0.0915300 0.158535i 0.00742406 0.0128589i
\(153\) −16.4399 + 3.90567i −1.32909 + 0.315755i
\(154\) −0.271816 0.516595i −0.0219035 0.0416284i
\(155\) −8.68526 + 10.3507i −0.697617 + 0.831388i
\(156\) 1.37722 + 0.0798418i 0.110265 + 0.00639246i
\(157\) 1.36266 3.74388i 0.108752 0.298794i −0.873365 0.487067i \(-0.838067\pi\)
0.982117 + 0.188273i \(0.0602889\pi\)
\(158\) −0.676258 + 0.119242i −0.0538002 + 0.00948642i
\(159\) 2.32631 + 1.00273i 0.184488 + 0.0795215i
\(160\) 2.35503 + 6.47040i 0.186182 + 0.511530i
\(161\) −0.674106 + 17.1716i −0.0531270 + 1.35332i
\(162\) −3.50333 + 14.8530i −0.275248 + 1.16696i
\(163\) −12.3022 21.3081i −0.963584 1.66898i −0.713372 0.700785i \(-0.752833\pi\)
−0.250212 0.968191i \(-0.580500\pi\)
\(164\) −0.330762 + 1.87584i −0.0258282 + 0.146479i
\(165\) 0.0389432 + 0.332405i 0.00303173 + 0.0258777i
\(166\) 2.80442 7.70508i 0.217665 0.598030i
\(167\) −3.18840 18.0823i −0.246726 1.39925i −0.816450 0.577417i \(-0.804061\pi\)
0.569724 0.821836i \(-0.307050\pi\)
\(168\) −8.69952 0.847786i −0.671183 0.0654081i
\(169\) 9.32402 + 7.82378i 0.717232 + 0.601829i
\(170\) 14.1824i 1.08774i
\(171\) 0.0665504 + 0.280126i 0.00508924 + 0.0214218i
\(172\) −6.95317 −0.530174
\(173\) −3.04671 + 1.10891i −0.231637 + 0.0843090i −0.455231 0.890373i \(-0.650443\pi\)
0.223594 + 0.974682i \(0.428221\pi\)
\(174\) −1.99635 0.472577i −0.151343 0.0358260i
\(175\) 0.997384 + 7.32682i 0.0753951 + 0.553855i
\(176\) −0.221824 + 0.609457i −0.0167206 + 0.0459396i
\(177\) 10.7039 + 2.53383i 0.804554 + 0.190454i
\(178\) −17.4081 + 20.7461i −1.30479 + 1.55499i
\(179\) 19.6751i 1.47058i 0.677750 + 0.735292i \(0.262955\pi\)
−0.677750 + 0.735292i \(0.737045\pi\)
\(180\) −3.48482 1.74780i −0.259743 0.130273i
\(181\) 14.9844 + 8.65126i 1.11378 + 0.643043i 0.939806 0.341707i \(-0.111005\pi\)
0.173976 + 0.984750i \(0.444338\pi\)
\(182\) −3.02244 2.74521i −0.224038 0.203488i
\(183\) −13.5024 0.782779i −0.998126 0.0578647i
\(184\) 9.49051 7.96348i 0.699650 0.587076i
\(185\) −0.889674 5.04559i −0.0654101 0.370959i
\(186\) 10.5777 24.5401i 0.775597 1.79937i
\(187\) 0.471099 0.561434i 0.0344502 0.0410561i
\(188\) −10.9931 −0.801755
\(189\) 10.8631 8.42573i 0.790175 0.612882i
\(190\) −0.241660 −0.0175318
\(191\) 3.40180 4.05411i 0.246146 0.293345i −0.628799 0.777568i \(-0.716453\pi\)
0.874945 + 0.484223i \(0.160898\pi\)
\(192\) 2.17955 + 2.92600i 0.157296 + 0.211166i
\(193\) 3.06808 + 17.3999i 0.220845 + 1.25248i 0.870470 + 0.492221i \(0.163815\pi\)
−0.649625 + 0.760255i \(0.725074\pi\)
\(194\) −13.5703 + 11.3868i −0.974292 + 0.817528i
\(195\) 1.05118 + 2.09166i 0.0752764 + 0.149787i
\(196\) −4.36948 4.29330i −0.312105 0.306665i
\(197\) 17.9168 + 10.3443i 1.27652 + 0.736997i 0.976206 0.216844i \(-0.0695763\pi\)
0.300311 + 0.953841i \(0.402910\pi\)
\(198\) −0.262493 0.607627i −0.0186545 0.0431821i
\(199\) 12.7755i 0.905634i −0.891604 0.452817i \(-0.850419\pi\)
0.891604 0.452817i \(-0.149581\pi\)
\(200\) 3.42657 4.08362i 0.242295 0.288756i
\(201\) −17.1063 + 18.1414i −1.20658 + 1.27960i
\(202\) −2.47498 + 6.79996i −0.174139 + 0.478443i
\(203\) 1.13152 + 1.46128i 0.0794172 + 0.102562i
\(204\) 2.45073 + 8.17801i 0.171586 + 0.572575i
\(205\) −3.03733 + 1.10550i −0.212136 + 0.0772113i
\(206\) 6.87550 0.479039
\(207\) −2.25175 + 19.3553i −0.156507 + 1.34528i
\(208\) 4.53651i 0.314550i
\(209\) −0.00956651 0.00802726i −0.000661729 0.000555257i
\(210\) 4.77294 + 10.5053i 0.329364 + 0.724936i
\(211\) 3.56749 + 20.2322i 0.245596 + 1.39284i 0.819104 + 0.573645i \(0.194471\pi\)
−0.573508 + 0.819200i \(0.694418\pi\)
\(212\) 0.437747 1.20270i 0.0300646 0.0826018i
\(213\) 3.83054 2.85333i 0.262464 0.195507i
\(214\) 3.05900 17.3484i 0.209109 1.18591i
\(215\) −5.89948 10.2182i −0.402341 0.696876i
\(216\) −9.76188 1.71316i −0.664212 0.116566i
\(217\) −21.3045 + 11.2098i −1.44625 + 0.760968i
\(218\) 3.00727 + 8.26242i 0.203678 + 0.559601i
\(219\) −11.1436 + 8.30080i −0.753018 + 0.560916i
\(220\) 0.166525 0.0293628i 0.0112271 0.00197964i
\(221\) 1.75332 4.81720i 0.117941 0.324040i
\(222\) 4.54999 + 9.05370i 0.305376 + 0.607645i
\(223\) 12.6494 15.0750i 0.847070 1.00950i −0.152705 0.988272i \(-0.548798\pi\)
0.999775 0.0212263i \(-0.00675706\pi\)
\(224\) −0.481231 + 12.2585i −0.0321536 + 0.819056i
\(225\) 0.492018 + 8.37001i 0.0328012 + 0.558000i
\(226\) 13.0801 22.6554i 0.870077 1.50702i
\(227\) −0.244120 0.204841i −0.0162028 0.0135958i 0.634650 0.772799i \(-0.281144\pi\)
−0.650853 + 0.759204i \(0.725589\pi\)
\(228\) 0.139349 0.0417591i 0.00922858 0.00276556i
\(229\) 8.52907 1.50391i 0.563617 0.0993809i 0.115422 0.993317i \(-0.463178\pi\)
0.448195 + 0.893936i \(0.352067\pi\)
\(230\) −15.3685 5.59369i −1.01337 0.368837i
\(231\) −0.160012 + 0.574415i −0.0105280 + 0.0377937i
\(232\) 0.231365 1.31214i 0.0151899 0.0861460i
\(233\) −6.35900 3.67137i −0.416592 0.240520i 0.277026 0.960862i \(-0.410651\pi\)
−0.693618 + 0.720343i \(0.743984\pi\)
\(234\) −3.17894 3.36584i −0.207814 0.220032i
\(235\) −9.32722 16.1552i −0.608440 1.05385i
\(236\) 0.965055 5.47310i 0.0628197 0.356268i
\(237\) 0.586153 + 0.385293i 0.0380748 + 0.0250275i
\(238\) 9.56704 23.3872i 0.620139 1.51596i
\(239\) −3.02456 3.60453i −0.195642 0.233157i 0.659301 0.751879i \(-0.270852\pi\)
−0.854943 + 0.518722i \(0.826408\pi\)
\(240\) 5.07467 11.7731i 0.327568 0.759951i
\(241\) −6.53071 1.15154i −0.420680 0.0741773i −0.0406989 0.999171i \(-0.512958\pi\)
−0.379981 + 0.924994i \(0.624070\pi\)
\(242\) −16.1280 9.31152i −1.03675 0.598567i
\(243\) 13.0124 8.58351i 0.834748 0.550633i
\(244\) 6.83345i 0.437467i
\(245\) 2.60201 10.0640i 0.166236 0.642963i
\(246\) 5.12656 3.81872i 0.326857 0.243473i
\(247\) −0.0820823 0.0298755i −0.00522277 0.00190093i
\(248\) 16.3086 + 5.93585i 1.03560 + 0.376927i
\(249\) −7.48385 + 3.76106i −0.474270 + 0.238347i
\(250\) −19.3289 3.40820i −1.22247 0.215554i
\(251\) −7.34905 + 12.7289i −0.463868 + 0.803443i −0.999150 0.0412308i \(-0.986872\pi\)
0.535282 + 0.844674i \(0.320205\pi\)
\(252\) −4.56756 5.23293i −0.287729 0.329644i
\(253\) −0.422583 0.731935i −0.0265675 0.0460163i
\(254\) −0.655388 1.80066i −0.0411227 0.112984i
\(255\) −9.93885 + 10.5403i −0.622395 + 0.660056i
\(256\) 13.4579 11.2925i 0.841118 0.705782i
\(257\) −2.45224 13.9074i −0.152967 0.867517i −0.960621 0.277861i \(-0.910375\pi\)
0.807655 0.589656i \(-0.200737\pi\)
\(258\) 16.9776 + 16.0089i 1.05698 + 0.996673i
\(259\) 1.93651 8.92047i 0.120329 0.554291i
\(260\) 1.02429 0.591374i 0.0635237 0.0366754i
\(261\) 1.15250 + 1.75024i 0.0713379 + 0.108337i
\(262\) −9.61055 + 5.54865i −0.593742 + 0.342797i
\(263\) 5.34900 + 14.6963i 0.329834 + 0.906211i 0.988153 + 0.153472i \(0.0490454\pi\)
−0.658319 + 0.752739i \(0.728732\pi\)
\(264\) 0.384099 0.193031i 0.0236397 0.0118803i
\(265\) 2.13887 0.377141i 0.131390 0.0231676i
\(266\) −0.398504 0.163017i −0.0244338 0.00999520i
\(267\) 27.4762 3.21900i 1.68152 0.197000i
\(268\) 9.65066 + 8.09787i 0.589508 + 0.494656i
\(269\) −2.15558 + 3.73358i −0.131428 + 0.227640i −0.924227 0.381843i \(-0.875290\pi\)
0.792799 + 0.609483i \(0.208623\pi\)
\(270\) 4.48482 + 12.2911i 0.272937 + 0.748010i
\(271\) 16.1867 9.34540i 0.983272 0.567692i 0.0800157 0.996794i \(-0.474503\pi\)
0.903256 + 0.429101i \(0.141170\pi\)
\(272\) −26.3815 + 9.60207i −1.59961 + 0.582211i
\(273\) 0.322446 + 4.15831i 0.0195153 + 0.251672i
\(274\) −6.03986 + 5.06804i −0.364881 + 0.306172i
\(275\) −0.233757 0.278581i −0.0140961 0.0167991i
\(276\) 9.82857 + 0.569795i 0.591610 + 0.0342976i
\(277\) −8.83184 + 3.21453i −0.530654 + 0.193142i −0.593430 0.804885i \(-0.702227\pi\)
0.0627763 + 0.998028i \(0.480005\pi\)
\(278\) 21.8016 1.30757
\(279\) −25.0587 + 10.8253i −1.50023 + 0.648092i
\(280\) −6.63192 + 3.48950i −0.396333 + 0.208538i
\(281\) 27.0442 + 4.76862i 1.61332 + 0.284472i 0.906272 0.422694i \(-0.138916\pi\)
0.707048 + 0.707166i \(0.250027\pi\)
\(282\) 26.8420 + 25.3105i 1.59842 + 1.50722i
\(283\) −13.9408 16.6140i −0.828694 0.987599i −0.999997 0.00238075i \(-0.999242\pi\)
0.171303 0.985218i \(-0.445202\pi\)
\(284\) −1.55122 1.84867i −0.0920481 0.109699i
\(285\) 0.179600 + 0.169352i 0.0106386 + 0.0100316i
\(286\) 0.197757 + 0.0348699i 0.0116936 + 0.00206190i
\(287\) −5.75438 0.225899i −0.339670 0.0133344i
\(288\) −1.60748 + 13.8174i −0.0947217 + 0.814196i
\(289\) 14.7249 0.866172
\(290\) −1.65281 + 0.601575i −0.0970566 + 0.0353257i
\(291\) 18.0651 + 1.04730i 1.05900 + 0.0613936i
\(292\) 4.51275 + 5.37809i 0.264089 + 0.314729i
\(293\) 7.22978 6.06651i 0.422368 0.354409i −0.406695 0.913564i \(-0.633319\pi\)
0.829063 + 0.559155i \(0.188874\pi\)
\(294\) 0.784125 + 20.5433i 0.0457311 + 1.19811i
\(295\) 8.86194 3.22548i 0.515962 0.187795i
\(296\) −5.69911 + 3.29038i −0.331254 + 0.191250i
\(297\) −0.230735 + 0.635535i −0.0133886 + 0.0368775i
\(298\) −17.3441 + 30.0409i −1.00472 + 1.74022i
\(299\) −4.52856 3.79991i −0.261893 0.219755i
\(300\) 4.20741 0.492924i 0.242915 0.0284590i
\(301\) −2.83551 20.8297i −0.163436 1.20061i
\(302\) 22.7559 4.01248i 1.30946 0.230892i
\(303\) 6.60472 3.31924i 0.379431 0.190685i
\(304\) 0.163614 + 0.449525i 0.00938389 + 0.0257820i
\(305\) −10.0423 + 5.79790i −0.575018 + 0.331987i
\(306\) 12.8450 25.6109i 0.734301 1.46408i
\(307\) −4.86656 + 2.80971i −0.277749 + 0.160358i −0.632404 0.774639i \(-0.717932\pi\)
0.354655 + 0.934997i \(0.384598\pi\)
\(308\) 0.294412 + 0.0639128i 0.0167757 + 0.00364177i
\(309\) −5.10982 4.81827i −0.290687 0.274102i
\(310\) −3.97844 22.5628i −0.225960 1.28148i
\(311\) −13.3712 + 11.2198i −0.758213 + 0.636216i −0.937661 0.347551i \(-0.887013\pi\)
0.179448 + 0.983767i \(0.442569\pi\)
\(312\) 2.06282 2.18764i 0.116784 0.123851i
\(313\) 0.170801 + 0.469272i 0.00965424 + 0.0265248i 0.944426 0.328724i \(-0.106618\pi\)
−0.934772 + 0.355248i \(0.884396\pi\)
\(314\) 3.37779 + 5.85051i 0.190620 + 0.330163i
\(315\) 3.81479 11.1523i 0.214939 0.628361i
\(316\) 0.177200 0.306920i 0.00996830 0.0172656i
\(317\) 7.69250 + 1.35640i 0.432054 + 0.0761828i 0.385446 0.922730i \(-0.374048\pi\)
0.0466081 + 0.998913i \(0.485159\pi\)
\(318\) −3.83794 + 1.92878i −0.215221 + 0.108161i
\(319\) −0.0854121 0.0310875i −0.00478216 0.00174056i
\(320\) 2.93946 + 1.06988i 0.164321 + 0.0598079i
\(321\) −14.4310 + 10.7495i −0.805460 + 0.599980i
\(322\) −21.5698 19.5913i −1.20204 1.09178i
\(323\) 0.540574i 0.0300784i
\(324\) −4.71000 6.31242i −0.261666 0.350690i
\(325\) −2.20289 1.27184i −0.122194 0.0705490i
\(326\) 41.0858 + 7.24454i 2.27553 + 0.401238i
\(327\) 3.55522 8.24803i 0.196604 0.456117i
\(328\) 2.66864 + 3.18036i 0.147351 + 0.175606i
\(329\) −4.48300 32.9323i −0.247156 1.81562i
\(330\) −0.474211 0.311710i −0.0261044 0.0171591i
\(331\) −5.48925 + 31.1311i −0.301716 + 1.71112i 0.336855 + 0.941556i \(0.390637\pi\)
−0.638572 + 0.769562i \(0.720474\pi\)
\(332\) 2.11590 + 3.66485i 0.116125 + 0.201135i
\(333\) 2.96321 9.91723i 0.162383 0.543461i
\(334\) 26.9625 + 15.5668i 1.47532 + 0.851779i
\(335\) −3.71223 + 21.0531i −0.202821 + 1.15025i
\(336\) 16.3101 15.9910i 0.889787 0.872379i
\(337\) −6.59007 2.39859i −0.358984 0.130659i 0.156231 0.987721i \(-0.450066\pi\)
−0.515215 + 0.857061i \(0.672288\pi\)
\(338\) −20.3249 + 3.58382i −1.10553 + 0.194934i
\(339\) −25.5977 + 7.67096i −1.39028 + 0.416629i
\(340\) 5.60709 + 4.70491i 0.304087 + 0.255159i
\(341\) 0.591981 1.02534i 0.0320576 0.0555253i
\(342\) −0.436395 0.218872i −0.0235975 0.0118352i
\(343\) 11.0797 14.8405i 0.598245 0.801313i
\(344\) −9.74154 + 11.6095i −0.525229 + 0.625943i
\(345\) 7.50179 + 14.9273i 0.403883 + 0.803657i
\(346\) 1.88029 5.16605i 0.101085 0.277728i
\(347\) −10.4676 + 1.84572i −0.561929 + 0.0990832i −0.447396 0.894336i \(-0.647648\pi\)
−0.114533 + 0.993419i \(0.536537\pi\)
\(348\) 0.849112 0.632496i 0.0455172 0.0339053i
\(349\) −2.52401 6.93467i −0.135107 0.371204i 0.853627 0.520885i \(-0.174398\pi\)
−0.988734 + 0.149680i \(0.952176\pi\)
\(350\) −10.6040 6.69013i −0.566807 0.357602i
\(351\) 0.00381826 + 4.72923i 0.000203804 + 0.252428i
\(352\) −0.301674 0.522514i −0.0160793 0.0278501i
\(353\) 2.89186 16.4006i 0.153918 0.872915i −0.805850 0.592120i \(-0.798291\pi\)
0.959768 0.280794i \(-0.0905979\pi\)
\(354\) −14.9576 + 11.1418i −0.794989 + 0.592180i
\(355\) 1.40062 3.84816i 0.0743370 0.204239i
\(356\) −2.42710 13.7648i −0.128636 0.729531i
\(357\) −23.4996 + 10.6767i −1.24373 + 0.565071i
\(358\) −25.5563 21.4443i −1.35069 1.13336i
\(359\) 17.3398i 0.915160i −0.889169 0.457580i \(-0.848716\pi\)
0.889169 0.457580i \(-0.151284\pi\)
\(360\) −7.80056 + 3.36981i −0.411126 + 0.177605i
\(361\) 18.9908 0.999515
\(362\) −27.5691 + 10.0343i −1.44900 + 0.527392i
\(363\) 5.46083 + 18.2226i 0.286619 + 0.956438i
\(364\) 2.08801 0.284236i 0.109441 0.0148980i
\(365\) −4.07462 + 11.1949i −0.213275 + 0.585969i
\(366\) 15.7333 16.6853i 0.822392 0.872155i
\(367\) 17.1783 20.4723i 0.896698 1.06864i −0.100581 0.994929i \(-0.532070\pi\)
0.997279 0.0737143i \(-0.0234853\pi\)
\(368\) 32.3750i 1.68767i
\(369\) −6.48614 0.754582i −0.337655 0.0392820i
\(370\) 7.52347 + 4.34368i 0.391127 + 0.225817i
\(371\) 3.78147 + 0.820906i 0.196324 + 0.0426193i
\(372\) 6.19298 + 12.3230i 0.321091 + 0.638916i
\(373\) −14.1817 + 11.8999i −0.734300 + 0.616151i −0.931300 0.364253i \(-0.881325\pi\)
0.197000 + 0.980403i \(0.436880\pi\)
\(374\) 0.215795 + 1.22384i 0.0111585 + 0.0632831i
\(375\) 11.9767 + 16.0784i 0.618472 + 0.830285i
\(376\) −15.4016 + 18.3549i −0.794276 + 0.946582i
\(377\) −0.635767 −0.0327437
\(378\) −0.895601 + 23.2936i −0.0460647 + 1.19809i
\(379\) 35.2309 1.80969 0.904846 0.425739i \(-0.139986\pi\)
0.904846 + 0.425739i \(0.139986\pi\)
\(380\) 0.0801689 0.0955416i 0.00411258 0.00490118i
\(381\) −0.774805 + 1.79753i −0.0396945 + 0.0920902i
\(382\) 1.55825 + 8.83730i 0.0797272 + 0.452156i
\(383\) −12.7995 + 10.7400i −0.654022 + 0.548790i −0.908288 0.418345i \(-0.862610\pi\)
0.254266 + 0.967134i \(0.418166\pi\)
\(384\) −22.2118 1.28769i −1.13349 0.0657122i
\(385\) 0.155872 + 0.486887i 0.00794396 + 0.0248141i
\(386\) −25.9450 14.9794i −1.32057 0.762429i
\(387\) −1.39878 23.7955i −0.0711039 1.20959i
\(388\) 9.14261i 0.464146i
\(389\) 6.09977 7.26943i 0.309271 0.368575i −0.588912 0.808197i \(-0.700443\pi\)
0.898183 + 0.439623i \(0.144888\pi\)
\(390\) −3.86260 0.914354i −0.195590 0.0463001i
\(391\) 12.5126 34.3782i 0.632792 1.73858i
\(392\) −13.2901 + 1.28058i −0.671253 + 0.0646793i
\(393\) 11.0309 + 2.61124i 0.556436 + 0.131720i
\(394\) −32.9642 + 11.9980i −1.66071 + 0.604449i
\(395\) 0.601390 0.0302592
\(396\) 0.327309 + 0.0977978i 0.0164479 + 0.00491453i
\(397\) 38.0530i 1.90983i 0.296886 + 0.954913i \(0.404052\pi\)
−0.296886 + 0.954913i \(0.595948\pi\)
\(398\) 16.5943 + 13.9243i 0.831799 + 0.697962i
\(399\) 0.181925 + 0.400420i 0.00910763 + 0.0200461i
\(400\) 2.41901 + 13.7189i 0.120950 + 0.685943i
\(401\) −1.92376 + 5.28549i −0.0960680 + 0.263945i −0.978413 0.206658i \(-0.933741\pi\)
0.882345 + 0.470603i \(0.155963\pi\)
\(402\) −4.91965 41.9923i −0.245370 2.09439i
\(403\) 1.43804 8.15556i 0.0716341 0.406257i
\(404\) −1.86734 3.23434i −0.0929039 0.160914i
\(405\) 5.28034 12.2775i 0.262382 0.610075i
\(406\) −3.13134 0.122927i −0.155406 0.00610076i
\(407\) 0.153545 + 0.421860i 0.00761092 + 0.0209108i
\(408\) 17.0881 + 7.36565i 0.845989 + 0.364654i
\(409\) −2.17218 + 0.383014i −0.107407 + 0.0189388i −0.227093 0.973873i \(-0.572922\pi\)
0.119686 + 0.992812i \(0.461811\pi\)
\(410\) 1.87450 5.15014i 0.0925749 0.254347i
\(411\) 8.04040 + 0.466129i 0.396604 + 0.0229924i
\(412\) −2.28090 + 2.71827i −0.112372 + 0.133919i
\(413\) 16.7894 + 0.659100i 0.826153 + 0.0324322i
\(414\) −22.6866 24.0205i −1.11499 1.18054i
\(415\) −3.59051 + 6.21895i −0.176251 + 0.305276i
\(416\) −3.23285 2.71269i −0.158504 0.133000i
\(417\) −16.2028 15.2783i −0.793453 0.748181i
\(418\) 0.0208535 0.00367703i 0.00101998 0.000179849i
\(419\) −11.5894 4.21819i −0.566178 0.206072i 0.0430419 0.999073i \(-0.486295\pi\)
−0.609220 + 0.793001i \(0.708517\pi\)
\(420\) −5.73673 1.59806i −0.279924 0.0779772i
\(421\) 3.05146 17.3057i 0.148719 0.843427i −0.815587 0.578635i \(-0.803586\pi\)
0.964306 0.264792i \(-0.0853034\pi\)
\(422\) −30.1683 17.4176i −1.46857 0.847878i
\(423\) −2.21150 37.6211i −0.107527 1.82920i
\(424\) −1.39482 2.41590i −0.0677386 0.117327i
\(425\) 2.73353 15.5026i 0.132596 0.751988i
\(426\) −0.468741 + 8.08545i −0.0227106 + 0.391742i
\(427\) −20.4711 + 2.78668i −0.990665 + 0.134857i
\(428\) 5.84400 + 6.96461i 0.282480 + 0.336647i
\(429\) −0.122535 0.164501i −0.00591605 0.00794217i
\(430\) 19.7026 + 3.47409i 0.950141 + 0.167536i
\(431\) −30.8867 17.8324i −1.48776 0.858957i −0.487856 0.872924i \(-0.662221\pi\)
−0.999902 + 0.0139669i \(0.995554\pi\)
\(432\) 19.8269 16.6640i 0.953921 0.801748i
\(433\) 7.92231i 0.380722i 0.981714 + 0.190361i \(0.0609659\pi\)
−0.981714 + 0.190361i \(0.939034\pi\)
\(434\) 8.65970 39.8905i 0.415679 1.91481i
\(435\) 1.64994 + 0.711187i 0.0791084 + 0.0340988i
\(436\) −4.26424 1.55205i −0.204220 0.0743299i
\(437\) −0.585785 0.213208i −0.0280219 0.0101991i
\(438\) 1.36364 23.5219i 0.0651573 1.12392i
\(439\) 16.5370 + 2.91592i 0.789269 + 0.139169i 0.553731 0.832696i \(-0.313204\pi\)
0.235538 + 0.971865i \(0.424315\pi\)
\(440\) 0.184279 0.319180i 0.00878514 0.0152163i
\(441\) 13.8137 15.8171i 0.657796 0.753196i
\(442\) 4.34616 + 7.52778i 0.206726 + 0.358060i
\(443\) −5.93568 16.3082i −0.282013 0.774824i −0.997122 0.0758113i \(-0.975845\pi\)
0.715109 0.699013i \(-0.246377\pi\)
\(444\) −5.08886 1.20464i −0.241507 0.0571695i
\(445\) 18.1690 15.2456i 0.861295 0.722713i
\(446\) 5.79430 + 32.8611i 0.274368 + 1.55602i
\(447\) 33.9424 10.1716i 1.60542 0.481101i
\(448\) 4.12555 + 3.74714i 0.194914 + 0.177036i
\(449\) −6.63080 + 3.82829i −0.312927 + 0.180668i −0.648235 0.761440i \(-0.724493\pi\)
0.335309 + 0.942108i \(0.391159\pi\)
\(450\) −11.4082 8.48354i −0.537787 0.399918i
\(451\) 0.245278 0.141612i 0.0115497 0.00666823i
\(452\) 4.61772 + 12.6871i 0.217199 + 0.596750i
\(453\) −19.7239 12.9650i −0.926711 0.609150i
\(454\) 0.532142 0.0938310i 0.0249747 0.00440371i
\(455\) 2.18929 + 2.82732i 0.102636 + 0.132547i
\(456\) 0.125506 0.291172i 0.00587737 0.0136354i
\(457\) 22.7892 + 19.1224i 1.06603 + 0.894507i 0.994687 0.102945i \(-0.0328265\pi\)
0.0713449 + 0.997452i \(0.477271\pi\)
\(458\) −7.34256 + 12.7177i −0.343095 + 0.594258i
\(459\) −27.4941 + 10.0322i −1.28332 + 0.468263i
\(460\) 7.30989 4.22037i 0.340826 0.196776i
\(461\) 0.444066 0.161627i 0.0206822 0.00752772i −0.331658 0.943400i \(-0.607608\pi\)
0.352341 + 0.935872i \(0.385386\pi\)
\(462\) −0.571716 0.833908i −0.0265986 0.0387969i
\(463\) 1.97532 1.65749i 0.0918008 0.0770300i −0.595732 0.803183i \(-0.703138\pi\)
0.687533 + 0.726153i \(0.258694\pi\)
\(464\) 2.23805 + 2.66720i 0.103899 + 0.123822i
\(465\) −12.8550 + 19.5566i −0.596138 + 0.906915i
\(466\) 11.6996 4.25831i 0.541974 0.197262i
\(467\) −5.31125 −0.245775 −0.122888 0.992421i \(-0.539216\pi\)
−0.122888 + 0.992421i \(0.539216\pi\)
\(468\) 2.38529 0.140216i 0.110260 0.00648148i
\(469\) −20.3234 + 32.2130i −0.938447 + 1.48746i
\(470\) 31.1502 + 5.49262i 1.43685 + 0.253355i
\(471\) 1.58962 6.71518i 0.0732457 0.309419i
\(472\) −7.78622 9.27925i −0.358390 0.427112i
\(473\) 0.664559 + 0.791991i 0.0305565 + 0.0364158i
\(474\) −1.13932 + 0.341425i −0.0523309 + 0.0156822i
\(475\) −0.264156 0.0465778i −0.0121203 0.00213714i
\(476\) 6.07245 + 11.5409i 0.278330 + 0.528977i
\(477\) 4.20400 + 1.25613i 0.192488 + 0.0575142i
\(478\) 7.97850 0.364928
\(479\) 30.9511 11.2653i 1.41419 0.514723i 0.481834 0.876262i \(-0.339971\pi\)
0.932357 + 0.361539i \(0.117749\pi\)
\(480\) 5.35539 + 10.6563i 0.244439 + 0.486391i
\(481\) 2.01843 + 2.40548i 0.0920327 + 0.109680i
\(482\) 8.61371 7.22776i 0.392344 0.329215i
\(483\) 2.30115 + 29.6760i 0.104706 + 1.35030i
\(484\) 9.03172 3.28728i 0.410533 0.149422i
\(485\) 13.4357 7.75713i 0.610086 0.352233i
\(486\) −3.03324 + 26.2574i −0.137591 + 1.19106i
\(487\) −12.1204 + 20.9931i −0.549226 + 0.951288i 0.449101 + 0.893481i \(0.351744\pi\)
−0.998328 + 0.0578073i \(0.981589\pi\)
\(488\) 11.4096 + 9.57381i 0.516489 + 0.433386i
\(489\) −25.4578 34.1765i −1.15124 1.54552i
\(490\) 10.2363 + 14.3487i 0.462427 + 0.648208i
\(491\) −11.3569 + 2.00253i −0.512529 + 0.0903727i −0.423931 0.905695i \(-0.639350\pi\)
−0.0885987 + 0.996067i \(0.528239\pi\)
\(492\) −0.190944 + 3.29365i −0.00860841 + 0.148489i
\(493\) −1.34568 3.69722i −0.0606063 0.166514i
\(494\) 0.128269 0.0740561i 0.00577109 0.00333194i
\(495\) 0.133987 + 0.563982i 0.00602226 + 0.0253491i
\(496\) −39.2769 + 22.6765i −1.76358 + 1.01821i
\(497\) 4.90552 5.40091i 0.220043 0.242264i
\(498\) 3.27151 13.8201i 0.146600 0.619295i
\(499\) 0.886056 + 5.02507i 0.0396653 + 0.224953i 0.998196 0.0600353i \(-0.0191213\pi\)
−0.958531 + 0.284988i \(0.908010\pi\)
\(500\) 7.75967 6.51114i 0.347023 0.291187i
\(501\) −9.12931 30.4642i −0.407867 1.36104i
\(502\) −8.52393 23.4193i −0.380442 1.04525i
\(503\) 12.9688 + 22.4626i 0.578251 + 1.00156i 0.995680 + 0.0928501i \(0.0295977\pi\)
−0.417429 + 0.908709i \(0.637069\pi\)
\(504\) −15.1365 + 0.294884i −0.674234 + 0.0131352i
\(505\) 3.16873 5.48841i 0.141007 0.244231i
\(506\) 1.41130 + 0.248851i 0.0627401 + 0.0110628i
\(507\) 17.6168 + 11.5800i 0.782389 + 0.514284i
\(508\) 0.929323 + 0.338246i 0.0412321 + 0.0150072i
\(509\) −25.9098 9.43040i −1.14843 0.417995i −0.303480 0.952838i \(-0.598149\pi\)
−0.844952 + 0.534843i \(0.820371\pi\)
\(510\) −2.85835 24.3978i −0.126570 1.08035i
\(511\) −14.2709 + 15.7121i −0.631309 + 0.695063i
\(512\) 4.09759i 0.181090i
\(513\) 0.170943 + 0.468484i 0.00754731 + 0.0206841i
\(514\) 20.7372 + 11.9726i 0.914680 + 0.528091i
\(515\) −5.92995 1.04561i −0.261305 0.0460751i
\(516\) −11.9614 + 1.40135i −0.526573 + 0.0616912i
\(517\) 1.05068 + 1.25216i 0.0462090 + 0.0550697i
\(518\) 9.47629 + 12.2380i 0.416364 + 0.537705i
\(519\) −5.01772 + 2.52168i −0.220253 + 0.110690i
\(520\) 0.447651 2.53875i 0.0196308 0.111332i
\(521\) −6.28697 10.8894i −0.275437 0.477071i 0.694808 0.719195i \(-0.255489\pi\)
−0.970245 + 0.242124i \(0.922156\pi\)
\(522\) −3.52954 0.410618i −0.154484 0.0179723i
\(523\) 2.96092 + 1.70949i 0.129472 + 0.0747507i 0.563337 0.826227i \(-0.309517\pi\)
−0.433865 + 0.900978i \(0.642851\pi\)
\(524\) 0.994539 5.64031i 0.0434467 0.246398i
\(525\) 3.19244 + 12.4032i 0.139330 + 0.541320i
\(526\) −24.9192 9.06984i −1.08653 0.395464i
\(527\) 50.4714 8.89946i 2.19857 0.387667i
\(528\) −0.258770 + 1.09315i −0.0112615 + 0.0475731i
\(529\) −14.6993 12.3342i −0.639099 0.536268i
\(530\) −1.84132 + 3.18927i −0.0799820 + 0.138533i
\(531\) 18.9244 + 2.20162i 0.821250 + 0.0955423i
\(532\) 0.196650 0.103471i 0.00852588 0.00448604i
\(533\) 1.27339 1.51756i 0.0551565 0.0657330i
\(534\) −25.7656 + 39.1977i −1.11499 + 1.69625i
\(535\) −5.27662 + 14.4974i −0.228128 + 0.626777i
\(536\) 27.0416 4.76816i 1.16802 0.205953i
\(537\) 3.96535 + 33.8467i 0.171118 + 1.46059i
\(538\) −2.50019 6.86922i −0.107791 0.296153i
\(539\) −0.0714035 + 0.908038i −0.00307557 + 0.0391120i
\(540\) −6.34714 2.30437i −0.273138 0.0991643i
\(541\) −1.35102 2.34004i −0.0580850 0.100606i 0.835521 0.549459i \(-0.185166\pi\)
−0.893606 + 0.448853i \(0.851833\pi\)
\(542\) −5.50332 + 31.2109i −0.236388 + 1.34062i
\(543\) 27.5211 + 11.8626i 1.18104 + 0.509075i
\(544\) 8.93255 24.5420i 0.382980 1.05223i
\(545\) −1.33717 7.58347i −0.0572781 0.324840i
\(546\) −5.75273 4.11339i −0.246194 0.176037i
\(547\) 23.8134 + 19.9818i 1.01819 + 0.854362i 0.989399 0.145224i \(-0.0463903\pi\)
0.0287897 + 0.999585i \(0.490835\pi\)
\(548\) 4.06918i 0.173827i
\(549\) −23.3857 + 1.37469i −0.998079 + 0.0586705i
\(550\) 0.616631 0.0262932
\(551\) −0.0629985 + 0.0229296i −0.00268383 + 0.000976833i
\(552\) 14.7214 15.6122i 0.626585 0.664499i
\(553\) 0.991708 + 0.405680i 0.0421717 + 0.0172513i
\(554\) 5.45060 14.9754i 0.231574 0.636244i
\(555\) −2.54739 8.50055i −0.108131 0.360828i
\(556\) −7.23252 + 8.61938i −0.306727 + 0.365543i
\(557\) 31.1769i 1.32101i −0.750822 0.660504i \(-0.770343\pi\)
0.750822 0.660504i \(-0.229657\pi\)
\(558\) 13.2509 44.3478i 0.560954 1.87739i
\(559\) 6.26269 + 3.61577i 0.264884 + 0.152931i
\(560\) 4.15449 19.1375i 0.175559 0.808706i
\(561\) 0.697272 1.06077i 0.0294389 0.0447859i
\(562\) −35.6700 + 29.9307i −1.50465 + 1.26255i
\(563\) 4.71848 + 26.7598i 0.198860 + 1.12779i 0.906813 + 0.421533i \(0.138508\pi\)
−0.707953 + 0.706260i \(0.750381\pi\)
\(564\) −18.9113 + 2.21557i −0.796309 + 0.0932924i
\(565\) −14.7267 + 17.5506i −0.619556 + 0.738358i
\(566\) 36.7745 1.54575
\(567\) 16.9895 16.6840i 0.713492 0.700663i
\(568\) −5.25997 −0.220704
\(569\) −10.4176 + 12.4152i −0.436729 + 0.520473i −0.938851 0.344324i \(-0.888108\pi\)
0.502122 + 0.864797i \(0.332553\pi\)
\(570\) −0.415724 + 0.0487045i −0.0174127 + 0.00204001i
\(571\) 6.42712 + 36.4500i 0.268967 + 1.52539i 0.757497 + 0.652839i \(0.226422\pi\)
−0.488530 + 0.872547i \(0.662467\pi\)
\(572\) −0.0793905 + 0.0666165i −0.00331948 + 0.00278538i
\(573\) 5.03499 7.65982i 0.210340 0.319994i
\(574\) 6.56524 7.22825i 0.274028 0.301701i
\(575\) −15.7210 9.07655i −0.655613 0.378518i
\(576\) 4.33916 + 4.59429i 0.180798 + 0.191429i
\(577\) 43.3528i 1.80480i −0.430899 0.902400i \(-0.641804\pi\)
0.430899 0.902400i \(-0.358196\pi\)
\(578\) −16.0490 + 19.1264i −0.667550 + 0.795555i
\(579\) 8.78479 + 29.3145i 0.365083 + 1.21827i
\(580\) 0.310473 0.853018i 0.0128917 0.0354196i
\(581\) −10.1160 + 7.83317i −0.419682 + 0.324975i
\(582\) −21.0499 + 22.3236i −0.872546 + 0.925343i
\(583\) −0.178830 + 0.0650889i −0.00740639 + 0.00269571i
\(584\) 15.3021 0.633205
\(585\) 2.22988 + 3.38640i 0.0921944 + 0.140011i
\(586\) 16.0029i 0.661073i
\(587\) 26.0768 + 21.8811i 1.07631 + 0.903128i 0.995609 0.0936106i \(-0.0298409\pi\)
0.0806972 + 0.996739i \(0.474285\pi\)
\(588\) −8.38203 6.50507i −0.345669 0.268265i
\(589\) −0.151642 0.860003i −0.00624829 0.0354358i
\(590\) −5.46917 + 15.0264i −0.225162 + 0.618628i
\(591\) 32.9068 + 14.1841i 1.35360 + 0.583455i
\(592\) 2.98622 16.9357i 0.122733 0.696053i
\(593\) 1.09399 + 1.89484i 0.0449246 + 0.0778118i 0.887613 0.460589i \(-0.152362\pi\)
−0.842689 + 0.538401i \(0.819029\pi\)
\(594\) −0.574024 0.992388i −0.0235525 0.0407182i
\(595\) −11.8080 + 18.7159i −0.484081 + 0.767278i
\(596\) −6.12306 16.8230i −0.250810 0.689095i
\(597\) −2.57480 21.9776i −0.105380 0.899482i
\(598\) 9.87153 1.74062i 0.403677 0.0711791i
\(599\) 0.819728 2.25218i 0.0334932 0.0920217i −0.921819 0.387621i \(-0.873297\pi\)
0.955312 + 0.295599i \(0.0955192\pi\)
\(600\) 5.07165 7.71560i 0.207049 0.314988i
\(601\) −9.51673 + 11.3416i −0.388196 + 0.462634i −0.924383 0.381465i \(-0.875420\pi\)
0.536187 + 0.844099i \(0.319864\pi\)
\(602\) 30.1465 + 19.0197i 1.22868 + 0.775183i
\(603\) −25.7715 + 34.6560i −1.04949 + 1.41130i
\(604\) −5.96276 + 10.3278i −0.242621 + 0.420232i
\(605\) 12.4940 + 10.4837i 0.507951 + 0.426222i
\(606\) −2.88720 + 12.1967i −0.117284 + 0.495456i
\(607\) 1.02359 0.180486i 0.0415461 0.00732570i −0.152836 0.988251i \(-0.548841\pi\)
0.194383 + 0.980926i \(0.437730\pi\)
\(608\) −0.418181 0.152205i −0.0169595 0.00617274i
\(609\) 2.24105 + 2.28577i 0.0908118 + 0.0926240i
\(610\) 3.41427 19.3633i 0.138240 0.783997i
\(611\) 9.90146 + 5.71661i 0.400570 + 0.231269i
\(612\) 5.86417 + 13.5746i 0.237045 + 0.548720i
\(613\) −12.0184 20.8164i −0.485417 0.840768i 0.514442 0.857525i \(-0.327999\pi\)
−0.999860 + 0.0167574i \(0.994666\pi\)
\(614\) 1.65458 9.38360i 0.0667735 0.378691i
\(615\) −5.00227 + 2.51392i −0.201711 + 0.101371i
\(616\) 0.519190 0.402028i 0.0209188 0.0161982i
\(617\) −10.4252 12.4243i −0.419702 0.500182i 0.514220 0.857659i \(-0.328082\pi\)
−0.933922 + 0.357477i \(0.883637\pi\)
\(618\) 11.8278 1.38570i 0.475785 0.0557410i
\(619\) 2.85812 + 0.503964i 0.114878 + 0.0202560i 0.230791 0.973003i \(-0.425869\pi\)
−0.115914 + 0.993259i \(0.536980\pi\)
\(620\) 10.2402 + 5.91216i 0.411255 + 0.237438i
\(621\) 0.0272492 + 33.7504i 0.00109347 + 1.35436i
\(622\) 29.5968i 1.18672i
\(623\) 40.2455 12.8842i 1.61240 0.516193i
\(624\) 0.914296 + 7.80409i 0.0366011 + 0.312414i
\(625\) 3.02102 + 1.09956i 0.120841 + 0.0439825i
\(626\) −0.795704 0.289612i −0.0318027 0.0115752i
\(627\) −0.0180750 0.0118811i −0.000721844 0.000474486i
\(628\) −3.43359 0.605435i −0.137015 0.0241595i
\(629\) −9.71647 + 16.8294i −0.387421 + 0.671033i
\(630\) 10.3281 + 17.1102i 0.411481 + 0.681687i
\(631\) −23.7928 41.2104i −0.947177 1.64056i −0.751333 0.659923i \(-0.770589\pi\)
−0.195844 0.980635i \(-0.562745\pi\)
\(632\) −0.264194 0.725868i −0.0105091 0.0288735i
\(633\) 10.2147 + 34.0862i 0.406000 + 1.35481i
\(634\) −10.1461 + 8.51355i −0.402951 + 0.338116i
\(635\) 0.291415 + 1.65270i 0.0115645 + 0.0655854i
\(636\) 0.510656 2.15721i 0.0202488 0.0855391i
\(637\) 1.70298 + 6.13917i 0.0674745 + 0.243243i
\(638\) 0.133472 0.0770603i 0.00528422 0.00305085i
\(639\) 6.01456 5.68056i 0.237932 0.224720i
\(640\) −16.5198 + 9.53769i −0.653001 + 0.377010i
\(641\) −13.3093 36.5671i −0.525687 1.44431i −0.864103 0.503315i \(-0.832113\pi\)
0.338416 0.940997i \(-0.390109\pi\)
\(642\) 1.76591 30.4608i 0.0696950 1.20219i
\(643\) −11.9667 + 2.11005i −0.471919 + 0.0832121i −0.404550 0.914516i \(-0.632572\pi\)
−0.0673696 + 0.997728i \(0.521461\pi\)
\(644\) 14.9012 2.02846i 0.587188 0.0799326i
\(645\) −12.2082 16.3892i −0.480697 0.645326i
\(646\) 0.702160 + 0.589183i 0.0276261 + 0.0231811i
\(647\) 1.58605 2.74713i 0.0623542 0.108001i −0.833163 0.553027i \(-0.813472\pi\)
0.895517 + 0.445027i \(0.146806\pi\)
\(648\) −17.1385 0.979692i −0.673263 0.0384859i
\(649\) −0.715642 + 0.413176i −0.0280914 + 0.0162186i
\(650\) 4.05299 1.47517i 0.158971 0.0578608i
\(651\) −34.3906 + 23.5777i −1.34788 + 0.924084i
\(652\) −16.4941 + 13.8402i −0.645958 + 0.542023i
\(653\) −0.976148 1.16333i −0.0381996 0.0455246i 0.746606 0.665266i \(-0.231682\pi\)
−0.784806 + 0.619742i \(0.787237\pi\)
\(654\) 6.83859 + 13.6076i 0.267410 + 0.532100i
\(655\) 9.13269 3.32403i 0.356844 0.129881i
\(656\) −10.8492 −0.423590
\(657\) −17.4973 + 16.5257i −0.682635 + 0.644727i
\(658\) 47.6624 + 30.0705i 1.85807 + 1.17227i
\(659\) −37.4050 6.59551i −1.45709 0.256925i −0.611708 0.791083i \(-0.709517\pi\)
−0.845384 + 0.534159i \(0.820628\pi\)
\(660\) 0.280552 0.0840742i 0.0109205 0.00327258i
\(661\) 16.6985 + 19.9005i 0.649495 + 0.774038i 0.985838 0.167701i \(-0.0536344\pi\)
−0.336342 + 0.941740i \(0.609190\pi\)
\(662\) −34.4538 41.0604i −1.33909 1.59586i
\(663\) 2.04534 8.64033i 0.0794344 0.335563i
\(664\) 9.08352 + 1.60167i 0.352509 + 0.0621568i
\(665\) 0.318908 + 0.201201i 0.0123667 + 0.00780226i
\(666\) 9.65198 + 14.6579i 0.374007 + 0.567984i
\(667\) −4.53718 −0.175680
\(668\) −15.0991 + 5.49561i −0.584200 + 0.212631i
\(669\) 18.7224 28.4827i 0.723850 1.10121i
\(670\) −23.3002 27.7680i −0.900164 1.07277i
\(671\) 0.778354 0.653117i 0.0300480 0.0252133i
\(672\) 1.64275 + 21.1851i 0.0633704 + 0.817234i
\(673\) −27.9585 + 10.1760i −1.07772 + 0.392258i −0.819058 0.573710i \(-0.805503\pi\)
−0.258661 + 0.965968i \(0.583281\pi\)
\(674\) 10.2982 5.94568i 0.396672 0.229019i
\(675\) 2.53332 + 14.2996i 0.0975074 + 0.550393i
\(676\) 5.32574 9.22446i 0.204836 0.354787i
\(677\) −13.8303 11.6050i −0.531543 0.446018i 0.337091 0.941472i \(-0.390557\pi\)
−0.868634 + 0.495455i \(0.835002\pi\)
\(678\) 17.9355 41.6100i 0.688810 1.59802i
\(679\) 27.3887 3.72836i 1.05108 0.143081i
\(680\) 15.7113 2.77033i 0.602501 0.106237i
\(681\) −0.461240 0.303184i −0.0176748 0.0116181i
\(682\) 0.686620 + 1.88647i 0.0262920 + 0.0722368i
\(683\) 5.53793 3.19733i 0.211903 0.122342i −0.390292 0.920691i \(-0.627626\pi\)
0.602195 + 0.798349i \(0.294293\pi\)
\(684\) 0.231303 0.0999221i 0.00884409 0.00382062i
\(685\) 5.97996 3.45253i 0.228483 0.131915i
\(686\) 7.20067 + 30.5665i 0.274923 + 1.16704i
\(687\) 14.3693 4.30611i 0.548224 0.164288i
\(688\) −6.87710 39.0019i −0.262187 1.48694i
\(689\) −1.01970 + 0.855632i −0.0388476 + 0.0325970i
\(690\) −27.5656 6.52533i −1.04940 0.248415i
\(691\) 8.16206 + 22.4251i 0.310500 + 0.853091i 0.992556 + 0.121791i \(0.0388637\pi\)
−0.682056 + 0.731300i \(0.738914\pi\)
\(692\) 1.41865 + 2.45718i 0.0539291 + 0.0934080i
\(693\) −0.159498 + 1.02041i −0.00605883 + 0.0387620i
\(694\) 9.01139 15.6082i 0.342068 0.592478i
\(695\) −18.8033 3.31553i −0.713251 0.125765i
\(696\) 0.133563 2.30388i 0.00506271 0.0873283i
\(697\) 11.5205 + 4.19311i 0.436369 + 0.158825i
\(698\) 11.7585 + 4.27975i 0.445066 + 0.161991i
\(699\) −11.6792 5.03420i −0.441749 0.190411i
\(700\) 6.16278 1.97295i 0.232931 0.0745703i
\(701\) 7.66638i 0.289555i −0.989464 0.144778i \(-0.953753\pi\)
0.989464 0.144778i \(-0.0462467\pi\)
\(702\) −6.14703 5.14952i −0.232005 0.194356i
\(703\) 0.286764 + 0.165563i 0.0108155 + 0.00624433i
\(704\) −0.269933 0.0475965i −0.0101735 0.00179386i
\(705\) −19.3014 25.9117i −0.726934 0.975893i
\(706\) 18.1511 + 21.6316i 0.683124 + 0.814116i
\(707\) 8.92765 6.91300i 0.335759 0.259990i
\(708\) 0.557112 9.60979i 0.0209375 0.361158i
\(709\) −2.85710 + 16.2034i −0.107301 + 0.608533i 0.882976 + 0.469419i \(0.155537\pi\)
−0.990276 + 0.139114i \(0.955575\pi\)
\(710\) 3.47188 + 6.01347i 0.130297 + 0.225682i
\(711\) 1.08600 + 0.544680i 0.0407283 + 0.0204271i
\(712\) −26.3830 15.2323i −0.988746 0.570853i
\(713\) 10.2627 58.2025i 0.384340 2.17970i
\(714\) 11.7445 42.1608i 0.439528 1.57783i
\(715\) −0.165258 0.0601488i −0.00618028 0.00224944i
\(716\) 16.9562 2.98984i 0.633684 0.111736i
\(717\) −5.92956 5.59124i −0.221444 0.208809i
\(718\) 22.5229 + 18.8990i 0.840549 + 0.705304i
\(719\) 23.3674 40.4735i 0.871457 1.50941i 0.0109676 0.999940i \(-0.496509\pi\)
0.860490 0.509468i \(-0.170158\pi\)
\(720\) 6.35710 21.2759i 0.236915 0.792905i
\(721\) −9.07331 5.72441i −0.337908 0.213188i
\(722\) −20.6984 + 24.6674i −0.770316 + 0.918027i
\(723\) −11.4668 0.664767i −0.426454 0.0247230i
\(724\) 5.17871 14.2284i 0.192465 0.528794i
\(725\) −1.92262 + 0.339010i −0.0714044 + 0.0125905i
\(726\) −29.6215 12.7680i −1.09936 0.473865i
\(727\) −2.15305 5.91545i −0.0798522 0.219392i 0.893342 0.449378i \(-0.148354\pi\)
−0.973194 + 0.229986i \(0.926132\pi\)
\(728\) 2.45076 3.88451i 0.0908312 0.143969i
\(729\) 20.6551 17.3886i 0.765006 0.644024i
\(730\) −10.1002 17.4941i −0.373827 0.647487i
\(731\) −7.77128 + 44.0731i −0.287431 + 1.63010i
\(732\) 1.37723 + 11.7555i 0.0509037 + 0.434495i
\(733\) 4.65518 12.7900i 0.171943 0.472409i −0.823550 0.567243i \(-0.808010\pi\)
0.995493 + 0.0948343i \(0.0302321\pi\)
\(734\) 7.86881 + 44.6262i 0.290443 + 1.64718i
\(735\) 2.44788 17.8373i 0.0902916 0.657939i
\(736\) −23.0714 19.3592i −0.850424 0.713590i
\(737\) 1.87321i 0.0690006i
\(738\) 8.04951 7.60251i 0.296306 0.279852i
\(739\) 25.3280 0.931705 0.465852 0.884863i \(-0.345748\pi\)
0.465852 + 0.884863i \(0.345748\pi\)
\(740\) −4.21316 + 1.53346i −0.154879 + 0.0563712i
\(741\) −0.147226 0.0348514i −0.00540849 0.00128030i
\(742\) −5.18778 + 4.01708i −0.190449 + 0.147472i
\(743\) 7.84457 21.5528i 0.287789 0.790695i −0.708586 0.705625i \(-0.750666\pi\)
0.996375 0.0850699i \(-0.0271114\pi\)
\(744\) 29.2518 + 6.92449i 1.07242 + 0.253864i
\(745\) 19.5274 23.2719i 0.715430 0.852616i
\(746\) 31.3907i 1.14930i
\(747\) −12.1164 + 7.97840i −0.443314 + 0.291914i
\(748\) −0.555439 0.320683i −0.0203089 0.0117253i
\(749\) −18.4808 + 20.3471i −0.675274 + 0.743469i
\(750\) −33.9381 1.96750i −1.23924 0.0718431i
\(751\) 0.154318 0.129489i 0.00563116 0.00472510i −0.639968 0.768402i \(-0.721052\pi\)
0.645599 + 0.763677i \(0.276608\pi\)
\(752\) −10.8728 61.6629i −0.396492 2.24862i
\(753\) −10.0770 + 23.3785i −0.367228 + 0.851961i
\(754\) 0.692935 0.825808i 0.0252352 0.0300741i
\(755\) −20.2366 −0.736486
\(756\) −8.91216 8.08157i −0.324132 0.293924i
\(757\) −32.2011 −1.17037 −0.585184 0.810901i \(-0.698978\pi\)
−0.585184 + 0.810901i \(0.698978\pi\)
\(758\) −38.3989 + 45.7620i −1.39471 + 1.66215i
\(759\) −0.874478 1.17397i −0.0317415 0.0426124i
\(760\) −0.0472048 0.267712i −0.00171230 0.00971092i
\(761\) −40.6980 + 34.1497i −1.47530 + 1.23792i −0.564269 + 0.825591i \(0.690842\pi\)
−0.911033 + 0.412334i \(0.864714\pi\)
\(762\) −1.49036 2.96557i −0.0539902 0.107431i
\(763\) 2.91056 13.4074i 0.105369 0.485380i
\(764\) −4.01082 2.31565i −0.145106 0.0837772i
\(765\) −14.9734 + 20.1353i −0.541363 + 0.727994i
\(766\) 28.3312i 1.02365i
\(767\) −3.71533 + 4.42776i