Properties

Label 189.2.ba.a.101.4
Level $189$
Weight $2$
Character 189.101
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 101.4
Character \(\chi\) \(=\) 189.101
Dual form 189.2.ba.a.131.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22264 + 1.45709i) q^{2} +(-1.12031 + 1.32095i) q^{3} +(-0.280959 - 1.59339i) q^{4} +(-0.691544 + 0.580274i) q^{5} +(-0.555004 - 3.24744i) q^{6} +(-0.448602 + 2.60744i) q^{7} +(-0.629295 - 0.363324i) q^{8} +(-0.489815 - 2.95974i) q^{9} +O(q^{10})\) \(q+(-1.22264 + 1.45709i) q^{2} +(-1.12031 + 1.32095i) q^{3} +(-0.280959 - 1.59339i) q^{4} +(-0.691544 + 0.580274i) q^{5} +(-0.555004 - 3.24744i) q^{6} +(-0.448602 + 2.60744i) q^{7} +(-0.629295 - 0.363324i) q^{8} +(-0.489815 - 2.95974i) q^{9} -1.71711i q^{10} +(-2.24705 + 2.67793i) q^{11} +(2.41955 + 1.41396i) q^{12} +(1.35464 - 3.72184i) q^{13} +(-3.25080 - 3.84163i) q^{14} +(0.00822998 - 1.56358i) q^{15} +(4.33960 - 1.57949i) q^{16} -0.467865 q^{17} +(4.91149 + 2.90501i) q^{18} -3.62874i q^{19} +(1.11890 + 0.938869i) q^{20} +(-2.94173 - 3.51372i) q^{21} +(-1.15465 - 6.54832i) q^{22} +(-1.19589 + 3.28569i) q^{23} +(1.18494 - 0.424232i) q^{24} +(-0.726726 + 4.12147i) q^{25} +(3.76682 + 6.52432i) q^{26} +(4.45842 + 2.66881i) q^{27} +(4.28072 - 0.0177830i) q^{28} +(-1.79273 - 4.92550i) q^{29} +(2.26822 + 1.92370i) q^{30} +(-6.86071 + 1.20973i) q^{31} +(-2.50728 + 6.88869i) q^{32} +(-1.02002 - 5.96836i) q^{33} +(0.572032 - 0.681722i) q^{34} +(-1.20280 - 2.06347i) q^{35} +(-4.57842 + 1.61203i) q^{36} +(-4.92689 + 8.53362i) q^{37} +(5.28741 + 4.43666i) q^{38} +(3.39875 + 5.95902i) q^{39} +(0.646012 - 0.113909i) q^{40} +(-2.71326 - 0.987547i) q^{41} +(8.71650 + 0.00966928i) q^{42} +(-1.54504 + 8.76238i) q^{43} +(4.89833 + 2.82805i) q^{44} +(2.05619 + 1.76256i) q^{45} +(-3.32540 - 5.75976i) q^{46} +(-0.579339 + 3.28560i) q^{47} +(-2.77527 + 7.50190i) q^{48} +(-6.59751 - 2.33941i) q^{49} +(-5.11683 - 6.09800i) q^{50} +(0.524153 - 0.618026i) q^{51} +(-6.31096 - 1.11279i) q^{52} +(8.75304 + 5.05357i) q^{53} +(-9.33975 + 3.23332i) q^{54} -3.15581i q^{55} +(1.22965 - 1.47786i) q^{56} +(4.79338 + 4.06531i) q^{57} +(9.36878 + 3.40996i) q^{58} +(-3.04590 - 1.10862i) q^{59} +(-2.49371 + 0.426188i) q^{60} +(0.0601824 + 0.0106118i) q^{61} +(6.62553 - 11.4757i) q^{62} +(7.93709 + 0.0505822i) q^{63} +(-2.35384 - 4.07697i) q^{64} +(1.22290 + 3.35988i) q^{65} +(9.94356 + 5.81092i) q^{66} +(7.85348 - 6.58985i) q^{67} +(0.131451 + 0.745493i) q^{68} +(-3.00046 - 5.26070i) q^{69} +(4.47727 + 0.770299i) q^{70} +(-2.19935 + 1.26979i) q^{71} +(-0.767107 + 2.04051i) q^{72} +(-7.24870 + 4.18504i) q^{73} +(-6.41043 - 17.6125i) q^{74} +(-4.63009 - 5.57729i) q^{75} +(-5.78202 + 1.01953i) q^{76} +(-5.97452 - 7.06039i) q^{77} +(-12.8383 - 2.33348i) q^{78} +(7.23876 + 6.07404i) q^{79} +(-2.08449 + 3.61044i) q^{80} +(-8.52016 + 2.89945i) q^{81} +(4.75630 - 2.74605i) q^{82} +(10.6153 - 3.86367i) q^{83} +(-4.77224 + 5.67454i) q^{84} +(0.323549 - 0.271490i) q^{85} +(-10.8786 - 12.9646i) q^{86} +(8.51475 + 3.14997i) q^{87} +(2.38702 - 0.868803i) q^{88} -3.03736 q^{89} +(-5.08221 + 0.841067i) q^{90} +(9.09679 + 5.20177i) q^{91} +(5.57140 + 0.982388i) q^{92} +(6.08813 - 10.4179i) q^{93} +(-4.07909 - 4.86127i) q^{94} +(2.10566 + 2.50943i) q^{95} +(-6.29069 - 11.0295i) q^{96} +(-5.02929 - 0.886800i) q^{97} +(11.4751 - 6.75291i) q^{98} +(9.02664 + 5.33901i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22264 + 1.45709i −0.864540 + 1.03032i 0.134682 + 0.990889i \(0.456999\pi\)
−0.999222 + 0.0394303i \(0.987446\pi\)
\(3\) −1.12031 + 1.32095i −0.646811 + 0.762651i
\(4\) −0.280959 1.59339i −0.140479 0.796697i
\(5\) −0.691544 + 0.580274i −0.309268 + 0.259506i −0.784189 0.620522i \(-0.786921\pi\)
0.474922 + 0.880028i \(0.342476\pi\)
\(6\) −0.555004 3.24744i −0.226579 1.32576i
\(7\) −0.448602 + 2.60744i −0.169556 + 0.985521i
\(8\) −0.629295 0.363324i −0.222489 0.128454i
\(9\) −0.489815 2.95974i −0.163272 0.986581i
\(10\) 1.71711i 0.542998i
\(11\) −2.24705 + 2.67793i −0.677512 + 0.807427i −0.989785 0.142565i \(-0.954465\pi\)
0.312274 + 0.949992i \(0.398909\pi\)
\(12\) 2.41955 + 1.41396i 0.698465 + 0.408176i
\(13\) 1.35464 3.72184i 0.375709 1.03225i −0.597407 0.801938i \(-0.703802\pi\)
0.973116 0.230315i \(-0.0739755\pi\)
\(14\) −3.25080 3.84163i −0.868813 1.02672i
\(15\) 0.00822998 1.56358i 0.00212497 0.403715i
\(16\) 4.33960 1.57949i 1.08490 0.394871i
\(17\) −0.467865 −0.113474 −0.0567369 0.998389i \(-0.518070\pi\)
−0.0567369 + 0.998389i \(0.518070\pi\)
\(18\) 4.91149 + 2.90501i 1.15765 + 0.684717i
\(19\) 3.62874i 0.832490i −0.909252 0.416245i \(-0.863346\pi\)
0.909252 0.416245i \(-0.136654\pi\)
\(20\) 1.11890 + 0.938869i 0.250194 + 0.209938i
\(21\) −2.94173 3.51372i −0.641937 0.766757i
\(22\) −1.15465 6.54832i −0.246171 1.39611i
\(23\) −1.19589 + 3.28569i −0.249361 + 0.685114i 0.750349 + 0.661042i \(0.229885\pi\)
−0.999710 + 0.0240721i \(0.992337\pi\)
\(24\) 1.18494 0.424232i 0.241874 0.0865961i
\(25\) −0.726726 + 4.12147i −0.145345 + 0.824294i
\(26\) 3.76682 + 6.52432i 0.738734 + 1.27953i
\(27\) 4.45842 + 2.66881i 0.858023 + 0.513612i
\(28\) 4.28072 0.0177830i 0.808981 0.00336068i
\(29\) −1.79273 4.92550i −0.332902 0.914642i −0.987353 0.158537i \(-0.949322\pi\)
0.654451 0.756105i \(-0.272900\pi\)
\(30\) 2.26822 + 1.92370i 0.414118 + 0.351217i
\(31\) −6.86071 + 1.20973i −1.23222 + 0.217274i −0.751579 0.659644i \(-0.770707\pi\)
−0.480641 + 0.876917i \(0.659596\pi\)
\(32\) −2.50728 + 6.88869i −0.443229 + 1.21776i
\(33\) −1.02002 5.96836i −0.177563 1.03896i
\(34\) 0.572032 0.681722i 0.0981027 0.116914i
\(35\) −1.20280 2.06347i −0.203311 0.348790i
\(36\) −4.57842 + 1.61203i −0.763070 + 0.268672i
\(37\) −4.92689 + 8.53362i −0.809975 + 1.40292i 0.102905 + 0.994691i \(0.467186\pi\)
−0.912881 + 0.408227i \(0.866147\pi\)
\(38\) 5.28741 + 4.43666i 0.857731 + 0.719721i
\(39\) 3.39875 + 5.95902i 0.544235 + 0.954207i
\(40\) 0.646012 0.113909i 0.102144 0.0180107i
\(41\) −2.71326 0.987547i −0.423741 0.154229i 0.121343 0.992611i \(-0.461280\pi\)
−0.545084 + 0.838382i \(0.683502\pi\)
\(42\) 8.71650 + 0.00966928i 1.34499 + 0.00149200i
\(43\) −1.54504 + 8.76238i −0.235617 + 1.33625i 0.605693 + 0.795698i \(0.292896\pi\)
−0.841310 + 0.540553i \(0.818215\pi\)
\(44\) 4.89833 + 2.82805i 0.738452 + 0.426345i
\(45\) 2.05619 + 1.76256i 0.306519 + 0.262748i
\(46\) −3.32540 5.75976i −0.490303 0.849230i
\(47\) −0.579339 + 3.28560i −0.0845053 + 0.479253i 0.912957 + 0.408056i \(0.133793\pi\)
−0.997462 + 0.0711975i \(0.977318\pi\)
\(48\) −2.77527 + 7.50190i −0.400576 + 1.08281i
\(49\) −6.59751 2.33941i −0.942502 0.334201i
\(50\) −5.11683 6.09800i −0.723629 0.862387i
\(51\) 0.524153 0.618026i 0.0733961 0.0865409i
\(52\) −6.31096 1.11279i −0.875173 0.154317i
\(53\) 8.75304 + 5.05357i 1.20232 + 0.694161i 0.961071 0.276302i \(-0.0891090\pi\)
0.241251 + 0.970463i \(0.422442\pi\)
\(54\) −9.33975 + 3.23332i −1.27098 + 0.439999i
\(55\) 3.15581i 0.425530i
\(56\) 1.22965 1.47786i 0.164319 0.197488i
\(57\) 4.79338 + 4.06531i 0.634899 + 0.538464i
\(58\) 9.36878 + 3.40996i 1.23018 + 0.447749i
\(59\) −3.04590 1.10862i −0.396543 0.144330i 0.136049 0.990702i \(-0.456560\pi\)
−0.532592 + 0.846372i \(0.678782\pi\)
\(60\) −2.49371 + 0.426188i −0.321937 + 0.0550206i
\(61\) 0.0601824 + 0.0106118i 0.00770557 + 0.00135870i 0.177500 0.984121i \(-0.443199\pi\)
−0.169794 + 0.985480i \(0.554310\pi\)
\(62\) 6.62553 11.4757i 0.841443 1.45742i
\(63\) 7.93709 + 0.0505822i 0.999980 + 0.00637276i
\(64\) −2.35384 4.07697i −0.294230 0.509621i
\(65\) 1.22290 + 3.35988i 0.151681 + 0.416741i
\(66\) 9.94356 + 5.81092i 1.22397 + 0.715274i
\(67\) 7.85348 6.58985i 0.959455 0.805078i −0.0214094 0.999771i \(-0.506815\pi\)
0.980864 + 0.194693i \(0.0623709\pi\)
\(68\) 0.131451 + 0.745493i 0.0159407 + 0.0904043i
\(69\) −3.00046 5.26070i −0.361213 0.633314i
\(70\) 4.47727 + 0.770299i 0.535136 + 0.0920684i
\(71\) −2.19935 + 1.26979i −0.261014 + 0.150697i −0.624797 0.780787i \(-0.714818\pi\)
0.363783 + 0.931484i \(0.381485\pi\)
\(72\) −0.767107 + 2.04051i −0.0904044 + 0.240477i
\(73\) −7.24870 + 4.18504i −0.848396 + 0.489822i −0.860109 0.510110i \(-0.829605\pi\)
0.0117134 + 0.999931i \(0.496271\pi\)
\(74\) −6.41043 17.6125i −0.745197 2.04741i
\(75\) −4.63009 5.57729i −0.534637 0.644010i
\(76\) −5.78202 + 1.01953i −0.663243 + 0.116948i
\(77\) −5.97452 7.06039i −0.680860 0.804606i
\(78\) −12.8383 2.33348i −1.45365 0.264215i
\(79\) 7.23876 + 6.07404i 0.814424 + 0.683383i 0.951659 0.307156i \(-0.0993773\pi\)
−0.137236 + 0.990538i \(0.543822\pi\)
\(80\) −2.08449 + 3.61044i −0.233053 + 0.403659i
\(81\) −8.52016 + 2.89945i −0.946685 + 0.322162i
\(82\) 4.75630 2.74605i 0.525246 0.303251i
\(83\) 10.6153 3.86367i 1.16518 0.424092i 0.314237 0.949344i \(-0.398251\pi\)
0.850947 + 0.525252i \(0.176029\pi\)
\(84\) −4.77224 + 5.67454i −0.520694 + 0.619143i
\(85\) 0.323549 0.271490i 0.0350938 0.0294472i
\(86\) −10.8786 12.9646i −1.17306 1.39800i
\(87\) 8.51475 + 3.14997i 0.912877 + 0.337712i
\(88\) 2.38702 0.868803i 0.254457 0.0926147i
\(89\) −3.03736 −0.321959 −0.160980 0.986958i \(-0.551465\pi\)
−0.160980 + 0.986958i \(0.551465\pi\)
\(90\) −5.08221 + 0.841067i −0.535712 + 0.0886562i
\(91\) 9.09679 + 5.20177i 0.953603 + 0.545294i
\(92\) 5.57140 + 0.982388i 0.580858 + 0.102421i
\(93\) 6.08813 10.4179i 0.631309 1.08029i
\(94\) −4.07909 4.86127i −0.420726 0.501401i
\(95\) 2.10566 + 2.50943i 0.216036 + 0.257462i
\(96\) −6.29069 11.0295i −0.642041 1.12569i
\(97\) −5.02929 0.886800i −0.510647 0.0900409i −0.0876131 0.996155i \(-0.527924\pi\)
−0.423034 + 0.906114i \(0.639035\pi\)
\(98\) 11.4751 6.75291i 1.15916 0.682147i
\(99\) 9.02664 + 5.33901i 0.907211 + 0.536590i
\(100\) 6.77131 0.677131
\(101\) 12.6062 4.58829i 1.25436 0.456552i 0.372491 0.928036i \(-0.378504\pi\)
0.881874 + 0.471484i \(0.156282\pi\)
\(102\) 0.259667 + 1.51936i 0.0257108 + 0.150440i
\(103\) −9.69011 11.5482i −0.954795 1.13788i −0.990361 0.138513i \(-0.955768\pi\)
0.0355656 0.999367i \(-0.488677\pi\)
\(104\) −2.20470 + 1.84996i −0.216189 + 0.181404i
\(105\) 4.07325 + 0.722884i 0.397509 + 0.0705463i
\(106\) −18.0654 + 6.57525i −1.75466 + 0.638645i
\(107\) −12.8332 + 7.40924i −1.24063 + 0.716278i −0.969222 0.246187i \(-0.920822\pi\)
−0.271407 + 0.962465i \(0.587489\pi\)
\(108\) 2.99983 7.85384i 0.288659 0.755736i
\(109\) −1.48332 + 2.56918i −0.142076 + 0.246083i −0.928278 0.371886i \(-0.878711\pi\)
0.786202 + 0.617969i \(0.212044\pi\)
\(110\) 4.59831 + 3.85844i 0.438431 + 0.367888i
\(111\) −5.75284 16.0685i −0.546036 1.52515i
\(112\) 2.17166 + 12.0238i 0.205203 + 1.13614i
\(113\) 12.0005 2.11601i 1.12891 0.199058i 0.422162 0.906520i \(-0.361271\pi\)
0.706751 + 0.707463i \(0.250160\pi\)
\(114\) −11.7841 + 2.01397i −1.10369 + 0.188625i
\(115\) −1.07959 2.96614i −0.100672 0.276594i
\(116\) −7.34458 + 4.24039i −0.681927 + 0.393711i
\(117\) −11.6792 2.18637i −1.07974 0.202130i
\(118\) 5.33942 3.08271i 0.491533 0.283787i
\(119\) 0.209885 1.21993i 0.0192401 0.111831i
\(120\) −0.573265 + 0.980963i −0.0523317 + 0.0895493i
\(121\) −0.211950 1.20203i −0.0192682 0.109275i
\(122\) −0.0890440 + 0.0747168i −0.00806167 + 0.00676454i
\(123\) 4.34419 2.47773i 0.391703 0.223409i
\(124\) 3.85515 + 10.5919i 0.346203 + 0.951184i
\(125\) −4.14588 7.18088i −0.370819 0.642277i
\(126\) −9.77795 + 11.5032i −0.871089 + 1.02479i
\(127\) −4.12812 + 7.15011i −0.366311 + 0.634469i −0.988986 0.148012i \(-0.952713\pi\)
0.622675 + 0.782481i \(0.286046\pi\)
\(128\) −5.62043 0.991033i −0.496780 0.0875958i
\(129\) −9.84374 11.8575i −0.866693 1.04400i
\(130\) −6.39081 2.32607i −0.560511 0.204009i
\(131\) 19.4938 + 7.09515i 1.70318 + 0.619906i 0.996181 0.0873113i \(-0.0278275\pi\)
0.706996 + 0.707217i \(0.250050\pi\)
\(132\) −9.22336 + 3.30216i −0.802791 + 0.287416i
\(133\) 9.46173 + 1.62786i 0.820436 + 0.141153i
\(134\) 19.5003i 1.68457i
\(135\) −4.63183 + 0.741506i −0.398644 + 0.0638187i
\(136\) 0.294425 + 0.169986i 0.0252467 + 0.0145762i
\(137\) −12.0168 2.11888i −1.02666 0.181028i −0.365138 0.930953i \(-0.618978\pi\)
−0.661522 + 0.749925i \(0.730089\pi\)
\(138\) 11.3338 + 2.06003i 0.964799 + 0.175361i
\(139\) 11.5620 + 13.7791i 0.980677 + 1.16873i 0.985661 + 0.168738i \(0.0539691\pi\)
−0.00498385 + 0.999988i \(0.501586\pi\)
\(140\) −2.94999 + 2.49629i −0.249319 + 0.210975i
\(141\) −3.69107 4.44616i −0.310844 0.374434i
\(142\) 0.838815 4.75716i 0.0703918 0.399212i
\(143\) 6.92290 + 11.9908i 0.578922 + 1.00272i
\(144\) −6.80047 12.0704i −0.566706 1.00587i
\(145\) 4.09789 + 2.36592i 0.340311 + 0.196479i
\(146\) 2.76460 15.6788i 0.228800 1.29759i
\(147\) 10.4815 6.09412i 0.864499 0.502635i
\(148\) 14.9817 + 5.45288i 1.23149 + 0.448224i
\(149\) 11.0919 1.95580i 0.908685 0.160226i 0.300279 0.953852i \(-0.402920\pi\)
0.608406 + 0.793626i \(0.291809\pi\)
\(150\) 13.7876 + 0.0725716i 1.12575 + 0.00592544i
\(151\) −4.66440 3.91390i −0.379583 0.318508i 0.432955 0.901415i \(-0.357471\pi\)
−0.812539 + 0.582907i \(0.801915\pi\)
\(152\) −1.31841 + 2.28355i −0.106937 + 0.185220i
\(153\) 0.229167 + 1.38476i 0.0185271 + 0.111951i
\(154\) 17.5924 0.0730824i 1.41763 0.00588915i
\(155\) 4.04251 4.81767i 0.324702 0.386965i
\(156\) 8.54017 7.08979i 0.683761 0.567637i
\(157\) −1.63498 + 4.49206i −0.130485 + 0.358505i −0.987680 0.156487i \(-0.949983\pi\)
0.857195 + 0.514992i \(0.172205\pi\)
\(158\) −17.7009 + 3.12114i −1.40820 + 0.248304i
\(159\) −16.4816 + 5.90076i −1.30708 + 0.467961i
\(160\) −2.26344 6.21874i −0.178940 0.491635i
\(161\) −8.03077 4.59219i −0.632913 0.361915i
\(162\) 6.19236 15.9597i 0.486518 1.25391i
\(163\) 3.98040 + 6.89426i 0.311769 + 0.540000i 0.978745 0.205079i \(-0.0657451\pi\)
−0.666976 + 0.745079i \(0.732412\pi\)
\(164\) −0.811238 + 4.60076i −0.0633471 + 0.359259i
\(165\) 4.16867 + 3.53549i 0.324531 + 0.275237i
\(166\) −7.34907 + 20.1914i −0.570398 + 1.56716i
\(167\) 3.90196 + 22.1291i 0.301943 + 1.71240i 0.637556 + 0.770404i \(0.279945\pi\)
−0.335613 + 0.942000i \(0.608943\pi\)
\(168\) 0.574596 + 3.27997i 0.0443310 + 0.253055i
\(169\) −2.05848 1.72727i −0.158344 0.132867i
\(170\) 0.803376i 0.0616161i
\(171\) −10.7401 + 1.77741i −0.821319 + 0.135922i
\(172\) 14.3960 1.09769
\(173\) 7.27776 2.64889i 0.553317 0.201391i −0.0502024 0.998739i \(-0.515987\pi\)
0.603520 + 0.797348i \(0.293764\pi\)
\(174\) −15.0003 + 8.55548i −1.13717 + 0.648589i
\(175\) −10.4205 3.74380i −0.787715 0.283004i
\(176\) −5.52155 + 15.1703i −0.416203 + 1.14351i
\(177\) 4.87678 2.78149i 0.366561 0.209070i
\(178\) 3.71361 4.42571i 0.278347 0.331721i
\(179\) 1.87108i 0.139851i −0.997552 0.0699256i \(-0.977724\pi\)
0.997552 0.0699256i \(-0.0222762\pi\)
\(180\) 2.23076 3.77153i 0.166271 0.281113i
\(181\) 18.1786 + 10.4954i 1.35121 + 0.780121i 0.988419 0.151751i \(-0.0484910\pi\)
0.362790 + 0.931871i \(0.381824\pi\)
\(182\) −18.7016 + 6.89494i −1.38625 + 0.511087i
\(183\) −0.0814405 + 0.0676094i −0.00602026 + 0.00499783i
\(184\) 1.94634 1.63317i 0.143486 0.120399i
\(185\) −1.54468 8.76031i −0.113567 0.644071i
\(186\) 7.73625 + 21.6084i 0.567249 + 1.58440i
\(187\) 1.05132 1.25291i 0.0768799 0.0916219i
\(188\) 5.39802 0.393691
\(189\) −8.95881 + 10.4278i −0.651658 + 0.758513i
\(190\) −6.23095 −0.452041
\(191\) −6.58893 + 7.85238i −0.476758 + 0.568178i −0.949798 0.312862i \(-0.898712\pi\)
0.473040 + 0.881041i \(0.343157\pi\)
\(192\) 8.02249 + 1.45816i 0.578973 + 0.105234i
\(193\) −1.75083 9.92947i −0.126028 0.714739i −0.980692 0.195558i \(-0.937348\pi\)
0.854664 0.519181i \(-0.173763\pi\)
\(194\) 7.44119 6.24390i 0.534246 0.448286i
\(195\) −5.80825 2.14872i −0.415937 0.153873i
\(196\) −1.87397 + 11.1697i −0.133855 + 0.797837i
\(197\) −23.0223 13.2919i −1.64027 0.947010i −0.980737 0.195334i \(-0.937421\pi\)
−0.659533 0.751676i \(-0.729246\pi\)
\(198\) −18.8158 + 6.62492i −1.33718 + 0.470813i
\(199\) 19.4827i 1.38109i −0.723288 0.690546i \(-0.757370\pi\)
0.723288 0.690546i \(-0.242630\pi\)
\(200\) 1.95475 2.32958i 0.138222 0.164726i
\(201\) −0.0934633 + 17.7567i −0.00659239 + 1.25246i
\(202\) −8.72737 + 23.9782i −0.614055 + 1.68710i
\(203\) 13.6472 2.46486i 0.957844 0.173000i
\(204\) −1.13202 0.661543i −0.0792575 0.0463173i
\(205\) 2.44939 0.891504i 0.171073 0.0622654i
\(206\) 28.6744 1.99784
\(207\) 10.3106 + 1.93016i 0.716634 + 0.134155i
\(208\) 18.2909i 1.26825i
\(209\) 9.71752 + 8.15397i 0.672175 + 0.564022i
\(210\) −6.03345 + 5.05127i −0.416348 + 0.348571i
\(211\) −0.926175 5.25260i −0.0637605 0.361604i −0.999949 0.0101053i \(-0.996783\pi\)
0.936188 0.351499i \(-0.114328\pi\)
\(212\) 5.59309 15.3669i 0.384135 1.05540i
\(213\) 0.786615 4.32779i 0.0538980 0.296535i
\(214\) 4.89448 27.7580i 0.334580 1.89750i
\(215\) −4.01612 6.95612i −0.273897 0.474403i
\(216\) −1.83602 3.29932i −0.124925 0.224490i
\(217\) −0.0765688 18.4316i −0.00519783 1.25122i
\(218\) −1.92996 5.30253i −0.130713 0.359132i
\(219\) 2.59256 14.2637i 0.175189 0.963851i
\(220\) −5.02846 + 0.886653i −0.339019 + 0.0597781i
\(221\) −0.633788 + 1.74132i −0.0426332 + 0.117134i
\(222\) 30.4469 + 11.2636i 2.04346 + 0.755963i
\(223\) −5.44697 + 6.49144i −0.364756 + 0.434699i −0.916941 0.399022i \(-0.869350\pi\)
0.552185 + 0.833721i \(0.313794\pi\)
\(224\) −16.8371 9.62787i −1.12498 0.643289i
\(225\) 12.5545 + 0.132166i 0.836964 + 0.00881104i
\(226\) −11.5891 + 20.0730i −0.770898 + 1.33523i
\(227\) −17.2296 14.4573i −1.14357 0.959567i −0.144017 0.989575i \(-0.546002\pi\)
−0.999550 + 0.0300086i \(0.990447\pi\)
\(228\) 5.13090 8.77994i 0.339802 0.581465i
\(229\) 0.780937 0.137700i 0.0516057 0.00909948i −0.147786 0.989019i \(-0.547215\pi\)
0.199391 + 0.979920i \(0.436103\pi\)
\(230\) 5.64189 + 2.05348i 0.372015 + 0.135403i
\(231\) 16.0197 + 0.0177708i 1.05402 + 0.00116923i
\(232\) −0.661391 + 3.75093i −0.0434224 + 0.246261i
\(233\) 7.51477 + 4.33866i 0.492309 + 0.284235i 0.725532 0.688189i \(-0.241594\pi\)
−0.233223 + 0.972423i \(0.574927\pi\)
\(234\) 17.4653 14.3445i 1.14174 0.937731i
\(235\) −1.50591 2.60831i −0.0982346 0.170147i
\(236\) −0.910694 + 5.16480i −0.0592812 + 0.336200i
\(237\) −16.1331 + 2.75723i −1.04796 + 0.179101i
\(238\) 1.52093 + 1.79736i 0.0985876 + 0.116506i
\(239\) 14.4054 + 17.1677i 0.931810 + 1.11049i 0.993663 + 0.112403i \(0.0358546\pi\)
−0.0618527 + 0.998085i \(0.519701\pi\)
\(240\) −2.43394 6.79831i −0.157110 0.438829i
\(241\) 10.3548 + 1.82584i 0.667014 + 0.117613i 0.496895 0.867811i \(-0.334474\pi\)
0.170119 + 0.985423i \(0.445585\pi\)
\(242\) 2.01061 + 1.16082i 0.129247 + 0.0746206i
\(243\) 5.71518 14.5030i 0.366629 0.930367i
\(244\) 0.0988758i 0.00632987i
\(245\) 5.91996 2.21056i 0.378213 0.141228i
\(246\) −1.70113 + 9.35927i −0.108460 + 0.596725i
\(247\) −13.5056 4.91563i −0.859340 0.312774i
\(248\) 4.75694 + 1.73138i 0.302066 + 0.109943i
\(249\) −6.78875 + 18.3508i −0.430219 + 1.16294i
\(250\) 15.5321 + 2.73874i 0.982339 + 0.173213i
\(251\) 4.71175 8.16098i 0.297403 0.515117i −0.678138 0.734934i \(-0.737213\pi\)
0.975541 + 0.219818i \(0.0705463\pi\)
\(252\) −2.14940 12.6611i −0.135399 0.797577i
\(253\) −6.11162 10.5856i −0.384234 0.665514i
\(254\) −5.37114 14.7571i −0.337015 0.925942i
\(255\) −0.00385051 + 0.731544i −0.000241129 + 0.0458111i
\(256\) 15.5284 13.0299i 0.970524 0.814367i
\(257\) −2.04743 11.6115i −0.127715 0.724308i −0.979658 0.200673i \(-0.935687\pi\)
0.851943 0.523634i \(-0.175424\pi\)
\(258\) 29.3129 + 0.154290i 1.82494 + 0.00960565i
\(259\) −20.0407 16.6748i −1.24527 1.03612i
\(260\) 5.01003 2.89254i 0.310709 0.179388i
\(261\) −13.7001 + 7.71862i −0.848015 + 0.477770i
\(262\) −34.1722 + 19.7293i −2.11117 + 1.21888i
\(263\) 1.58821 + 4.36356i 0.0979331 + 0.269069i 0.978979 0.203962i \(-0.0653820\pi\)
−0.881046 + 0.473031i \(0.843160\pi\)
\(264\) −1.52655 + 4.12646i −0.0939528 + 0.253966i
\(265\) −8.98556 + 1.58440i −0.551978 + 0.0973287i
\(266\) −13.9403 + 11.7963i −0.854733 + 0.723278i
\(267\) 3.40278 4.01220i 0.208247 0.245542i
\(268\) −12.7067 10.6622i −0.776187 0.651299i
\(269\) −13.5452 + 23.4609i −0.825864 + 1.43044i 0.0753937 + 0.997154i \(0.475979\pi\)
−0.901257 + 0.433284i \(0.857355\pi\)
\(270\) 4.58264 7.65559i 0.278890 0.465905i
\(271\) −3.93162 + 2.26992i −0.238829 + 0.137888i −0.614638 0.788809i \(-0.710698\pi\)
0.375810 + 0.926697i \(0.377365\pi\)
\(272\) −2.03035 + 0.738985i −0.123108 + 0.0448076i
\(273\) −17.0625 + 6.18881i −1.03267 + 0.374564i
\(274\) 17.7796 14.9189i 1.07411 0.901282i
\(275\) −9.40403 11.2073i −0.567084 0.675825i
\(276\) −7.53937 + 6.25896i −0.453817 + 0.376745i
\(277\) −7.49116 + 2.72656i −0.450100 + 0.163823i −0.557117 0.830434i \(-0.688092\pi\)
0.107016 + 0.994257i \(0.465870\pi\)
\(278\) −34.2136 −2.05200
\(279\) 6.94096 + 19.7134i 0.415545 + 1.18021i
\(280\) 0.00720981 + 1.73554i 0.000430868 + 0.103718i
\(281\) 6.05459 + 1.06759i 0.361187 + 0.0636870i 0.351297 0.936264i \(-0.385741\pi\)
0.00988990 + 0.999951i \(0.496852\pi\)
\(282\) 10.9913 + 0.0578534i 0.654524 + 0.00344512i
\(283\) −7.37481 8.78895i −0.438387 0.522449i 0.500936 0.865484i \(-0.332989\pi\)
−0.939322 + 0.343036i \(0.888545\pi\)
\(284\) 2.64121 + 3.14767i 0.156727 + 0.186780i
\(285\) −5.67383 0.0298644i −0.336088 0.00176902i
\(286\) −25.9359 4.57321i −1.53362 0.270419i
\(287\) 3.79215 6.63166i 0.223843 0.391455i
\(288\) 21.6169 + 4.04672i 1.27379 + 0.238455i
\(289\) −16.7811 −0.987124
\(290\) −8.45762 + 3.07832i −0.496649 + 0.180765i
\(291\) 6.80578 5.64995i 0.398962 0.331206i
\(292\) 8.70500 + 10.3742i 0.509422 + 0.607105i
\(293\) 0.840836 0.705545i 0.0491222 0.0412184i −0.617896 0.786260i \(-0.712015\pi\)
0.667018 + 0.745041i \(0.267570\pi\)
\(294\) −3.93545 + 22.7234i −0.229520 + 1.32526i
\(295\) 2.74968 1.00080i 0.160092 0.0582689i
\(296\) 6.20093 3.58011i 0.360422 0.208090i
\(297\) −17.1652 + 5.94239i −0.996025 + 0.344812i
\(298\) −10.7117 + 18.5532i −0.620511 + 1.07476i
\(299\) 10.6088 + 8.90185i 0.613523 + 0.514807i
\(300\) −7.58596 + 8.94456i −0.437976 + 0.516414i
\(301\) −22.1543 7.95944i −1.27695 0.458774i
\(302\) 11.4058 2.01115i 0.656331 0.115729i
\(303\) −8.06196 + 21.7925i −0.463147 + 1.25194i
\(304\) −5.73154 15.7473i −0.328726 0.903169i
\(305\) −0.0477765 + 0.0275838i −0.00273567 + 0.00157944i
\(306\) −2.29791 1.35915i −0.131363 0.0776975i
\(307\) 5.93612 3.42722i 0.338792 0.195602i −0.320945 0.947098i \(-0.604001\pi\)
0.659738 + 0.751496i \(0.270667\pi\)
\(308\) −9.57139 + 11.5035i −0.545381 + 0.655470i
\(309\) 26.1105 + 0.137434i 1.48538 + 0.00781835i
\(310\) 2.07724 + 11.7806i 0.117979 + 0.669093i
\(311\) −17.1024 + 14.3506i −0.969788 + 0.813749i −0.982517 0.186170i \(-0.940392\pi\)
0.0127297 + 0.999919i \(0.495948\pi\)
\(312\) 0.0262379 4.98483i 0.00148543 0.282211i
\(313\) −0.345892 0.950332i −0.0195510 0.0537159i 0.929533 0.368738i \(-0.120210\pi\)
−0.949084 + 0.315022i \(0.897988\pi\)
\(314\) −4.54635 7.87450i −0.256565 0.444384i
\(315\) −5.51820 + 4.57071i −0.310915 + 0.257530i
\(316\) 7.64455 13.2408i 0.430040 0.744850i
\(317\) 24.4774 + 4.31603i 1.37479 + 0.242412i 0.811743 0.584015i \(-0.198519\pi\)
0.563044 + 0.826427i \(0.309630\pi\)
\(318\) 11.5532 31.2298i 0.647872 1.75128i
\(319\) 17.2185 + 6.26703i 0.964052 + 0.350886i
\(320\) 3.99354 + 1.45353i 0.223246 + 0.0812547i
\(321\) 4.58989 25.2526i 0.256183 1.40946i
\(322\) 16.5100 6.08694i 0.920067 0.339212i
\(323\) 1.69776i 0.0944659i
\(324\) 7.01379 + 12.7614i 0.389655 + 0.708964i
\(325\) 14.3550 + 8.28786i 0.796272 + 0.459728i
\(326\) −14.9122 2.62942i −0.825910 0.145630i
\(327\) −1.73198 4.83766i −0.0957790 0.267523i
\(328\) 1.34864 + 1.60725i 0.0744664 + 0.0887457i
\(329\) −8.30711 2.98452i −0.457986 0.164542i
\(330\) −10.2483 + 1.75149i −0.564152 + 0.0964163i
\(331\) 4.60947 26.1416i 0.253360 1.43687i −0.546889 0.837205i \(-0.684188\pi\)
0.800248 0.599669i \(-0.204701\pi\)
\(332\) −9.13881 15.8289i −0.501558 0.868723i
\(333\) 27.6706 + 10.4024i 1.51634 + 0.570049i
\(334\) −37.0149 21.3706i −2.02536 1.16934i
\(335\) −1.60710 + 9.11434i −0.0878054 + 0.497969i
\(336\) −18.3158 10.6017i −0.999208 0.578372i
\(337\) 23.2967 + 8.47930i 1.26905 + 0.461897i 0.886796 0.462161i \(-0.152926\pi\)
0.382254 + 0.924057i \(0.375148\pi\)
\(338\) 5.03357 0.887554i 0.273790 0.0482766i
\(339\) −10.6491 + 18.2227i −0.578381 + 0.989719i
\(340\) −0.523494 0.439264i −0.0283904 0.0238224i
\(341\) 12.1768 21.0908i 0.659411 1.14213i
\(342\) 10.5415 17.8225i 0.570020 0.963731i
\(343\) 9.05953 16.1532i 0.489169 0.872189i
\(344\) 4.15587 4.95278i 0.224070 0.267036i
\(345\) 5.12760 + 1.89692i 0.276061 + 0.102127i
\(346\) −5.03844 + 13.8430i −0.270868 + 0.744204i
\(347\) 18.4568 3.25443i 0.990813 0.174707i 0.345330 0.938481i \(-0.387767\pi\)
0.645483 + 0.763774i \(0.276656\pi\)
\(348\) 2.62685 14.4524i 0.140814 0.774728i
\(349\) 8.31455 + 22.8440i 0.445067 + 1.22281i 0.936119 + 0.351682i \(0.114390\pi\)
−0.491052 + 0.871130i \(0.663387\pi\)
\(350\) 18.1956 10.6063i 0.972596 0.566929i
\(351\) 15.9724 12.9782i 0.852545 0.692727i
\(352\) −12.8135 22.1936i −0.682960 1.18292i
\(353\) −3.97293 + 22.5316i −0.211458 + 1.19924i 0.675490 + 0.737369i \(0.263932\pi\)
−0.886948 + 0.461869i \(0.847179\pi\)
\(354\) −1.90969 + 10.5067i −0.101499 + 0.558424i
\(355\) 0.784116 2.15434i 0.0416166 0.114341i
\(356\) 0.853371 + 4.83971i 0.0452286 + 0.256504i
\(357\) 1.37633 + 1.64395i 0.0728431 + 0.0870069i
\(358\) 2.72634 + 2.28767i 0.144091 + 0.120907i
\(359\) 8.35250i 0.440828i 0.975406 + 0.220414i \(0.0707409\pi\)
−0.975406 + 0.220414i \(0.929259\pi\)
\(360\) −0.653569 1.85624i −0.0344461 0.0978322i
\(361\) 5.83224 0.306960
\(362\) −37.5189 + 13.6557i −1.97195 + 0.717730i
\(363\) 1.82527 + 1.06667i 0.0958018 + 0.0559856i
\(364\) 5.73265 15.9563i 0.300473 0.836336i
\(365\) 2.58432 7.10037i 0.135270 0.371650i
\(366\) 0.00105970 0.201329i 5.53915e−5 0.0105236i
\(367\) −6.27438 + 7.47752i −0.327520 + 0.390323i −0.904527 0.426416i \(-0.859776\pi\)
0.577007 + 0.816739i \(0.304220\pi\)
\(368\) 16.1475i 0.841745i
\(369\) −1.59389 + 8.51428i −0.0829746 + 0.443236i
\(370\) 14.6532 + 8.46001i 0.761782 + 0.439815i
\(371\) −17.1035 + 20.5560i −0.887970 + 1.06721i
\(372\) −18.3104 6.77379i −0.949349 0.351204i
\(373\) 8.11869 6.81239i 0.420370 0.352732i −0.407934 0.913012i \(-0.633751\pi\)
0.828304 + 0.560279i \(0.189306\pi\)
\(374\) 0.540218 + 3.06373i 0.0279340 + 0.158422i
\(375\) 14.1303 + 2.56830i 0.729683 + 0.132627i
\(376\) 1.55831 1.85712i 0.0803637 0.0957738i
\(377\) −20.7604 −1.06922
\(378\) −4.24085 25.8033i −0.218126 1.32718i
\(379\) −6.26462 −0.321792 −0.160896 0.986971i \(-0.551438\pi\)
−0.160896 + 0.986971i \(0.551438\pi\)
\(380\) 3.40691 4.06020i 0.174771 0.208284i
\(381\) −4.82016 13.4634i −0.246944 0.689749i
\(382\) −3.38572 19.2013i −0.173228 0.982427i
\(383\) 6.40797 5.37692i 0.327432 0.274748i −0.464221 0.885720i \(-0.653666\pi\)
0.791652 + 0.610972i \(0.209221\pi\)
\(384\) 7.60572 6.31404i 0.388128 0.322212i
\(385\) 8.22860 + 1.41570i 0.419368 + 0.0721510i
\(386\) 16.6088 + 9.58909i 0.845365 + 0.488072i
\(387\) 26.6912 + 0.280988i 1.35679 + 0.0142834i
\(388\) 8.26281i 0.419480i
\(389\) −12.4908 + 14.8860i −0.633309 + 0.754748i −0.983297 0.182006i \(-0.941741\pi\)
0.349989 + 0.936754i \(0.386185\pi\)
\(390\) 10.2323 5.83603i 0.518133 0.295519i
\(391\) 0.559516 1.53726i 0.0282960 0.0777425i
\(392\) 3.30182 + 3.86921i 0.166767 + 0.195425i
\(393\) −31.2114 + 17.8015i −1.57441 + 0.897967i
\(394\) 47.5156 17.2943i 2.39380 0.871273i
\(395\) −8.53052 −0.429217
\(396\) 5.97104 15.8830i 0.300056 0.798153i
\(397\) 28.3683i 1.42376i 0.702299 + 0.711882i \(0.252157\pi\)
−0.702299 + 0.711882i \(0.747843\pi\)
\(398\) 28.3881 + 23.8204i 1.42297 + 1.19401i
\(399\) −12.7504 + 10.6748i −0.638318 + 0.534407i
\(400\) 3.35610 + 19.0334i 0.167805 + 0.951669i
\(401\) 6.67751 18.3463i 0.333459 0.916171i −0.653746 0.756714i \(-0.726803\pi\)
0.987205 0.159457i \(-0.0509743\pi\)
\(402\) −25.7589 21.8463i −1.28474 1.08960i
\(403\) −4.79137 + 27.1732i −0.238675 + 1.35359i
\(404\) −10.8528 18.7976i −0.539946 0.935213i
\(405\) 4.20959 6.94913i 0.209176 0.345305i
\(406\) −13.0941 + 22.8988i −0.649850 + 1.13645i
\(407\) −11.7815 32.3694i −0.583986 1.60449i
\(408\) −0.554390 + 0.198483i −0.0274464 + 0.00982639i
\(409\) 34.4362 6.07202i 1.70276 0.300242i 0.764102 0.645096i \(-0.223183\pi\)
0.938657 + 0.344854i \(0.112071\pi\)
\(410\) −1.69573 + 4.65897i −0.0837460 + 0.230090i
\(411\) 16.2614 13.4997i 0.802116 0.665893i
\(412\) −15.6784 + 18.6847i −0.772418 + 0.920531i
\(413\) 4.25706 7.44469i 0.209476 0.366329i
\(414\) −15.4186 + 12.6635i −0.757782 + 0.622379i
\(415\) −5.09898 + 8.83169i −0.250299 + 0.433531i
\(416\) 22.2422 + 18.6634i 1.09051 + 0.915048i
\(417\) −31.1545 0.163983i −1.52564 0.00803028i
\(418\) −23.7622 + 4.18991i −1.16225 + 0.204935i
\(419\) −38.1160 13.8731i −1.86209 0.677745i −0.977340 0.211674i \(-0.932108\pi\)
−0.884748 0.466070i \(-0.845669\pi\)
\(420\) 0.00742504 6.69340i 0.000362305 0.326605i
\(421\) 2.74861 15.5881i 0.133959 0.759718i −0.841620 0.540070i \(-0.818398\pi\)
0.975579 0.219649i \(-0.0704911\pi\)
\(422\) 8.78590 + 5.07254i 0.427691 + 0.246927i
\(423\) 10.0083 + 0.105361i 0.486620 + 0.00512283i
\(424\) −3.67216 6.36037i −0.178336 0.308887i
\(425\) 0.340010 1.92829i 0.0164929 0.0935358i
\(426\) 5.34423 + 6.43752i 0.258929 + 0.311899i
\(427\) −0.0546675 + 0.152162i −0.00264555 + 0.00736362i
\(428\) 15.4114 + 18.3666i 0.744939 + 0.887784i
\(429\) −23.5950 4.28861i −1.13918 0.207056i
\(430\) 15.0460 + 2.65301i 0.725582 + 0.127940i
\(431\) 6.88208 + 3.97337i 0.331498 + 0.191391i 0.656506 0.754321i \(-0.272034\pi\)
−0.325008 + 0.945711i \(0.605367\pi\)
\(432\) 23.5631 + 4.53955i 1.13368 + 0.218409i
\(433\) 16.4757i 0.791770i −0.918300 0.395885i \(-0.870438\pi\)
0.918300 0.395885i \(-0.129562\pi\)
\(434\) 26.9501 + 22.4237i 1.29365 + 1.07637i
\(435\) −7.71616 + 2.76255i −0.369962 + 0.132454i
\(436\) 4.51047 + 1.64168i 0.216012 + 0.0786221i
\(437\) 11.9229 + 4.33959i 0.570350 + 0.207591i
\(438\) 17.6137 + 21.2170i 0.841617 + 1.01379i
\(439\) 6.00878 + 1.05951i 0.286783 + 0.0505677i 0.315189 0.949029i \(-0.397932\pi\)
−0.0284059 + 0.999596i \(0.509043\pi\)
\(440\) −1.14658 + 1.98594i −0.0546612 + 0.0946759i
\(441\) −3.69249 + 20.6728i −0.175833 + 0.984420i
\(442\) −1.76236 3.05250i −0.0838270 0.145193i
\(443\) 6.80864 + 18.7066i 0.323488 + 0.888776i 0.989718 + 0.143030i \(0.0456846\pi\)
−0.666230 + 0.745746i \(0.732093\pi\)
\(444\) −23.9871 + 13.6811i −1.13838 + 0.649277i
\(445\) 2.10046 1.76250i 0.0995716 0.0835505i
\(446\) −2.79892 15.8735i −0.132533 0.751630i
\(447\) −9.84285 + 16.8430i −0.465551 + 0.796645i
\(448\) 11.6864 4.30856i 0.552130 0.203560i
\(449\) −0.412263 + 0.238020i −0.0194559 + 0.0112329i −0.509696 0.860354i \(-0.670242\pi\)
0.490241 + 0.871587i \(0.336909\pi\)
\(450\) −15.5422 + 18.1314i −0.732667 + 0.854722i
\(451\) 8.74143 5.04687i 0.411618 0.237648i
\(452\) −6.74329 18.5270i −0.317178 0.871438i
\(453\) 10.3956 1.77666i 0.488429 0.0834749i
\(454\) 42.1313 7.42888i 1.97732 0.348655i
\(455\) −9.30928 + 1.68138i −0.436426 + 0.0788244i
\(456\) −1.53943 4.29983i −0.0720904 0.201358i
\(457\) 8.85251 + 7.42814i 0.414103 + 0.347474i 0.825914 0.563795i \(-0.190659\pi\)
−0.411812 + 0.911269i \(0.635104\pi\)
\(458\) −0.754166 + 1.30625i −0.0352399 + 0.0610373i
\(459\) −2.08594 1.24864i −0.0973631 0.0582815i
\(460\) −4.42292 + 2.55357i −0.206220 + 0.119061i
\(461\) −19.0273 + 6.92536i −0.886189 + 0.322546i −0.744705 0.667394i \(-0.767410\pi\)
−0.141484 + 0.989941i \(0.545187\pi\)
\(462\) −19.6123 + 23.3205i −0.912448 + 1.08497i
\(463\) −4.74389 + 3.98059i −0.220467 + 0.184994i −0.746331 0.665575i \(-0.768186\pi\)
0.525864 + 0.850569i \(0.323742\pi\)
\(464\) −15.5595 18.5431i −0.722332 0.860841i
\(465\) 1.83504 + 10.7372i 0.0850981 + 0.497927i
\(466\) −15.5097 + 5.64507i −0.718474 + 0.261503i
\(467\) 3.80696 0.176165 0.0880826 0.996113i \(-0.471926\pi\)
0.0880826 + 0.996113i \(0.471926\pi\)
\(468\) −0.202377 + 19.2239i −0.00935489 + 0.888624i
\(469\) 13.6596 + 23.4337i 0.630740 + 1.08207i
\(470\) 5.64173 + 0.994790i 0.260234 + 0.0458862i
\(471\) −4.10211 7.19222i −0.189015 0.331400i
\(472\) 1.51399 + 1.80430i 0.0696868 + 0.0830495i
\(473\) −19.9933 23.8271i −0.919292 1.09557i
\(474\) 15.7076 26.8786i 0.721472 1.23457i
\(475\) 14.9557 + 2.63710i 0.686217 + 0.120998i
\(476\) −2.00280 + 0.00832006i −0.0917982 + 0.000381349i
\(477\) 10.6699 28.3821i 0.488541 1.29952i
\(478\) −42.6277 −1.94974
\(479\) −28.2447 + 10.2802i −1.29053 + 0.469716i −0.893902 0.448262i \(-0.852043\pi\)
−0.396632 + 0.917978i \(0.629821\pi\)
\(480\) 10.7504 + 3.97703i 0.490686 + 0.181526i
\(481\) 25.0866 + 29.8971i 1.14385 + 1.36319i
\(482\) −15.3207 + 12.8556i −0.697839 + 0.585556i
\(483\) 15.0630 5.46357i 0.685390 0.248601i
\(484\) −1.85576 + 0.675440i −0.0843526 + 0.0307018i
\(485\) 3.99256 2.30511i 0.181293 0.104670i
\(486\) 14.1445 + 26.0595i 0.641609 + 1.18209i
\(487\) −18.9944 + 32.8993i −0.860720 + 1.49081i 0.0105150 + 0.999945i \(0.496653\pi\)
−0.871235 + 0.490866i \(0.836680\pi\)
\(488\) −0.0340170 0.0285436i −0.00153988 0.00129211i
\(489\) −13.5663 2.46579i −0.613487 0.111507i
\(490\) −4.01702 + 11.3287i −0.181471 + 0.511777i
\(491\) −31.0131 + 5.46844i −1.39960 + 0.246787i −0.821979 0.569517i \(-0.807130\pi\)
−0.577622 + 0.816305i \(0.696019\pi\)
\(492\) −5.16853 6.22588i −0.233016 0.280684i
\(493\) 0.838757 + 2.30447i 0.0377757 + 0.103788i
\(494\) 23.6751 13.6688i 1.06519 0.614989i
\(495\) −9.34040 + 1.54576i −0.419820 + 0.0694770i
\(496\) −27.8620 + 16.0861i −1.25104 + 0.722288i
\(497\) −2.32428 6.30430i −0.104258 0.282787i
\(498\) −18.4386 32.3284i −0.826253 1.44867i
\(499\) −3.26628 18.5240i −0.146219 0.829247i −0.966381 0.257116i \(-0.917228\pi\)
0.820162 0.572131i \(-0.193883\pi\)
\(500\) −10.2772 + 8.62356i −0.459608 + 0.385657i
\(501\) −33.6029 19.6372i −1.50127 0.877324i
\(502\) 6.13051 + 16.8434i 0.273618 + 0.751759i
\(503\) −3.04934 5.28161i −0.135963 0.235495i 0.790002 0.613105i \(-0.210080\pi\)
−0.925965 + 0.377609i \(0.876746\pi\)
\(504\) −4.97640 2.91557i −0.221666 0.129870i
\(505\) −6.05528 + 10.4881i −0.269456 + 0.466712i
\(506\) 22.8966 + 4.03729i 1.01788 + 0.179479i
\(507\) 4.58776 0.784070i 0.203750 0.0348218i
\(508\) 12.5528 + 4.56884i 0.556939 + 0.202709i
\(509\) 40.6536 + 14.7967i 1.80194 + 0.655852i 0.998141 + 0.0609481i \(0.0194124\pi\)
0.803797 + 0.594904i \(0.202810\pi\)
\(510\) −1.06122 0.900029i −0.0469915 0.0398539i
\(511\) −7.66046 20.7780i −0.338879 0.919164i
\(512\) 27.1429i 1.19956i
\(513\) 9.68441 16.1784i 0.427577 0.714295i
\(514\) 19.4223 + 11.2135i 0.856683 + 0.494606i
\(515\) 13.4023 + 2.36318i 0.590574 + 0.104134i
\(516\) −16.1280 + 19.0164i −0.709996 + 0.837152i
\(517\) −7.49680 8.93434i −0.329709 0.392932i
\(518\) 48.7993 8.81382i 2.14412 0.387257i
\(519\) −4.65429 + 12.5811i −0.204301 + 0.552250i
\(520\) 0.451161 2.55866i 0.0197847 0.112205i
\(521\) −10.0216 17.3579i −0.439053 0.760462i 0.558564 0.829461i \(-0.311353\pi\)
−0.997617 + 0.0689999i \(0.978019\pi\)
\(522\) 5.50363 29.3994i 0.240887 1.28678i
\(523\) −23.1000 13.3368i −1.01009 0.583177i −0.0988740 0.995100i \(-0.531524\pi\)
−0.911219 + 0.411923i \(0.864857\pi\)
\(524\) 5.82843 33.0547i 0.254616 1.44400i
\(525\) 16.6195 9.57072i 0.725336 0.417701i
\(526\) −8.29992 3.02093i −0.361894 0.131719i
\(527\) 3.20988 0.565989i 0.139825 0.0246549i
\(528\) −13.8534 24.2892i −0.602892 1.05705i
\(529\) 8.25343 + 6.92545i 0.358845 + 0.301106i
\(530\) 8.67754 15.0299i 0.376928 0.652859i
\(531\) −1.78930 + 9.55811i −0.0776489 + 0.414787i
\(532\) −0.0645301 15.5336i −0.00279773 0.673469i
\(533\) −7.35099 + 8.76057i −0.318407 + 0.379462i
\(534\) 1.68575 + 9.86365i 0.0729493 + 0.426842i
\(535\) 4.57531 12.5706i 0.197808 0.543473i
\(536\) −7.33641 + 1.29361i −0.316884 + 0.0558753i
\(537\) 2.47160 + 2.09619i 0.106658 + 0.0904573i
\(538\) −17.6238 48.4209i −0.759815 2.08757i
\(539\) 21.0897 12.4109i 0.908399 0.534576i
\(540\) 2.48286 + 7.17200i 0.106845 + 0.308634i
\(541\) −5.16825 8.95167i −0.222200 0.384862i 0.733275 0.679932i \(-0.237991\pi\)
−0.955476 + 0.295069i \(0.904657\pi\)
\(542\) 1.49949 8.50404i 0.0644086 0.365280i
\(543\) −34.2297 + 12.2549i −1.46894 + 0.525909i
\(544\) 1.17307 3.22298i 0.0502948 0.138184i
\(545\) −0.465050 2.63743i −0.0199206 0.112975i
\(546\) 11.8437 32.4283i 0.506864 1.38780i
\(547\) 2.39360 + 2.00847i 0.102343 + 0.0858758i 0.692523 0.721396i \(-0.256499\pi\)
−0.590181 + 0.807271i \(0.700943\pi\)
\(548\) 19.7428i 0.843369i
\(549\) 0.00192990 0.183322i 8.23663e−5 0.00782400i
\(550\) 27.8278 1.18658
\(551\) −17.8733 + 6.50537i −0.761430 + 0.277138i
\(552\) −0.0231632 + 4.40067i −0.000985889 + 0.187305i
\(553\) −19.0850 + 16.1498i −0.811578 + 0.686760i
\(554\) 5.18618 14.2489i 0.220340 0.605379i
\(555\) 13.3024 + 7.77381i 0.564657 + 0.329980i
\(556\) 18.7071 22.2942i 0.793356 0.945485i
\(557\) 14.1576i 0.599878i −0.953958 0.299939i \(-0.903034\pi\)
0.953958 0.299939i \(-0.0969663\pi\)
\(558\) −37.2106 13.9889i −1.57525 0.592196i
\(559\) 30.5192 + 17.6203i 1.29083 + 0.745259i
\(560\) −8.47891 7.05483i −0.358299 0.298121i
\(561\) 0.477232 + 2.79238i 0.0201487 + 0.117894i
\(562\) −8.95819 + 7.51681i −0.377878 + 0.317078i
\(563\) −3.90078 22.1224i −0.164398 0.932348i −0.949683 0.313213i \(-0.898595\pi\)
0.785285 0.619135i \(-0.212517\pi\)
\(564\) −6.04745 + 7.13051i −0.254644 + 0.300249i
\(565\) −7.07101 + 8.42690i −0.297479 + 0.354522i
\(566\) 21.8231 0.917292
\(567\) −3.73800 23.5165i −0.156981 0.987602i
\(568\) 1.84539 0.0774306
\(569\) 12.0098 14.3127i 0.503478 0.600021i −0.453114 0.891453i \(-0.649687\pi\)
0.956592 + 0.291431i \(0.0941314\pi\)
\(570\) 6.98059 8.23077i 0.292385 0.344749i
\(571\) −6.32831 35.8896i −0.264832 1.50193i −0.769514 0.638630i \(-0.779502\pi\)
0.504683 0.863305i \(-0.331610\pi\)
\(572\) 17.1610 14.3998i 0.717539 0.602087i
\(573\) −2.99096 17.5007i −0.124949 0.731104i
\(574\) 5.02649 + 13.6337i 0.209802 + 0.569059i
\(575\) −12.6728 7.31663i −0.528492 0.305125i
\(576\) −10.9138 + 8.96371i −0.454743 + 0.373488i
\(577\) 28.9410i 1.20483i −0.798183 0.602416i \(-0.794205\pi\)
0.798183 0.602416i \(-0.205795\pi\)
\(578\) 20.5173 24.4516i 0.853408 1.01705i
\(579\) 15.0778 + 8.81131i 0.626612 + 0.366186i
\(580\) 2.61850 7.19428i 0.108728 0.298726i
\(581\) 5.31223 + 29.4121i 0.220388 + 1.22022i
\(582\) −0.0885567 + 16.8245i −0.00367079 + 0.697399i
\(583\) −33.2016 + 12.0844i −1.37507 + 0.500485i
\(584\) 6.08210 0.251679
\(585\) 9.34538 5.26517i 0.386384 0.217688i
\(586\) 2.08781i 0.0862465i
\(587\) −24.4251 20.4951i −1.00813 0.845924i −0.0200431 0.999799i \(-0.506380\pi\)
−0.988090 + 0.153875i \(0.950825\pi\)
\(588\) −12.6552 14.9890i −0.521892 0.618134i
\(589\) 4.38979 + 24.8957i 0.180878 + 1.02581i
\(590\) −1.90362 + 5.23016i −0.0783708 + 0.215322i
\(591\) 43.3500 15.5202i 1.78318 0.638416i
\(592\) −7.90199 + 44.8144i −0.324770 + 1.84186i
\(593\) −2.99491 5.18734i −0.122986 0.213018i 0.797958 0.602713i \(-0.205914\pi\)
−0.920944 + 0.389695i \(0.872580\pi\)
\(594\) 12.3283 32.2767i 0.505837 1.32433i
\(595\) 0.562749 + 0.965426i 0.0230705 + 0.0395786i
\(596\) −6.23273 17.1243i −0.255303 0.701438i
\(597\) 25.7357 + 21.8267i 1.05329 + 0.893306i
\(598\) −25.9416 + 4.57421i −1.06083 + 0.187053i
\(599\) 2.80083 7.69521i 0.114439 0.314418i −0.869230 0.494409i \(-0.835385\pi\)
0.983668 + 0.179991i \(0.0576068\pi\)
\(600\) 0.887335 + 5.19199i 0.0362253 + 0.211962i
\(601\) 11.1245 13.2576i 0.453777 0.540791i −0.489847 0.871808i \(-0.662948\pi\)
0.943625 + 0.331018i \(0.107392\pi\)
\(602\) 38.6845 22.5493i 1.57666 0.919040i
\(603\) −23.3510 20.0165i −0.950927 0.815134i
\(604\) −4.92588 + 8.53187i −0.200431 + 0.347157i
\(605\) 0.844079 + 0.708266i 0.0343167 + 0.0287951i
\(606\) −21.8967 38.3915i −0.889493 1.55955i
\(607\) −19.3178 + 3.40626i −0.784087 + 0.138256i −0.551339 0.834281i \(-0.685883\pi\)
−0.232748 + 0.972537i \(0.574772\pi\)
\(608\) 24.9973 + 9.09826i 1.01377 + 0.368983i
\(609\) −12.0331 + 20.7886i −0.487605 + 0.842398i
\(610\) 0.0182216 0.103340i 0.000737771 0.00418411i
\(611\) 11.4437 + 6.60701i 0.462961 + 0.267291i
\(612\) 2.14208 0.754214i 0.0865885 0.0304873i
\(613\) −13.9117 24.0958i −0.561889 0.973220i −0.997332 0.0730039i \(-0.976741\pi\)
0.435443 0.900216i \(-0.356592\pi\)
\(614\) −2.26399 + 12.8397i −0.0913674 + 0.518170i
\(615\) −1.56644 + 4.23428i −0.0631649 + 0.170743i
\(616\) 1.19453 + 6.61376i 0.0481291 + 0.266476i
\(617\) −18.1901 21.6782i −0.732308 0.872730i 0.263457 0.964671i \(-0.415137\pi\)
−0.995764 + 0.0919408i \(0.970693\pi\)
\(618\) −32.1242 + 37.8774i −1.29222 + 1.52365i
\(619\) −28.6553 5.05271i −1.15176 0.203086i −0.435014 0.900424i \(-0.643256\pi\)
−0.716742 + 0.697338i \(0.754368\pi\)
\(620\) −8.81223 5.08774i −0.353908 0.204329i
\(621\) −14.1007 + 11.4574i −0.565840 + 0.459768i
\(622\) 42.4655i 1.70271i
\(623\) 1.36256 7.91973i 0.0545900 0.317297i
\(624\) 24.1614 + 20.4915i 0.967230 + 0.820317i
\(625\) −12.6294 4.59671i −0.505175 0.183869i
\(626\) 1.80762 + 0.657921i 0.0722472 + 0.0262958i
\(627\) −21.6576 + 3.70139i −0.864922 + 0.147819i
\(628\) 7.61699 + 1.34308i 0.303951 + 0.0535947i
\(629\) 2.30512 3.99258i 0.0919110 0.159194i
\(630\) 0.0868553 13.6289i 0.00346040 0.542987i
\(631\) 3.11061 + 5.38773i 0.123831 + 0.214482i 0.921275 0.388911i \(-0.127149\pi\)
−0.797444 + 0.603393i \(0.793815\pi\)
\(632\) −2.34847 6.45238i −0.0934172 0.256662i
\(633\) 7.97602 + 4.66110i 0.317018 + 0.185262i
\(634\) −36.2160 + 30.3888i −1.43832 + 1.20689i
\(635\) −1.29425 7.34005i −0.0513607 0.291281i
\(636\) 14.0329 + 24.6039i 0.556440 + 0.975606i
\(637\) −17.6442 + 21.3858i −0.699087 + 0.847338i
\(638\) −30.1838 + 17.4266i −1.19499 + 0.689926i
\(639\) 4.83554 + 5.88754i 0.191291 + 0.232907i
\(640\) 4.46184 2.57605i 0.176370 0.101827i
\(641\) −2.18684 6.00829i −0.0863749 0.237313i 0.888984 0.457939i \(-0.151412\pi\)
−0.975359 + 0.220626i \(0.929190\pi\)
\(642\) 31.1835 + 37.5629i 1.23072 + 1.48249i
\(643\) −2.20568 + 0.388920i −0.0869834 + 0.0153375i −0.216970 0.976178i \(-0.569618\pi\)
0.129987 + 0.991516i \(0.458506\pi\)
\(644\) −5.06086 + 14.0864i −0.199426 + 0.555082i
\(645\) 13.6880 + 2.48792i 0.538964 + 0.0979616i
\(646\) −2.47379 2.07576i −0.0973300 0.0816696i
\(647\) 13.4891 23.3638i 0.530311 0.918525i −0.469064 0.883164i \(-0.655409\pi\)
0.999375 0.0353609i \(-0.0112581\pi\)
\(648\) 6.41514 + 1.27097i 0.252010 + 0.0499282i
\(649\) 9.81311 5.66560i 0.385198 0.222394i
\(650\) −29.6272 + 10.7834i −1.16208 + 0.422961i
\(651\) 24.4330 + 20.5479i 0.957604 + 0.805337i
\(652\) 9.86695 8.27936i 0.386420 0.324245i
\(653\) −14.6649 17.4769i −0.573880 0.683924i 0.398542 0.917150i \(-0.369516\pi\)
−0.972423 + 0.233226i \(0.925072\pi\)
\(654\) 9.16652 + 3.39109i 0.358439 + 0.132602i
\(655\) −17.5979 + 6.40512i −0.687607 + 0.250269i
\(656\) −13.3343 −0.520617
\(657\) 15.9372 + 19.4044i 0.621768 + 0.757037i
\(658\) 14.5054 8.45521i 0.565478 0.329618i
\(659\) 21.2918 + 3.75431i 0.829409 + 0.146247i 0.572206 0.820110i \(-0.306088\pi\)
0.257203 + 0.966357i \(0.417199\pi\)
\(660\) 4.46220 7.63566i 0.173691 0.297218i
\(661\) 18.7716 + 22.3711i 0.730130 + 0.870135i 0.995573 0.0939915i \(-0.0299627\pi\)
−0.265443 + 0.964127i \(0.585518\pi\)
\(662\) 32.4550 + 38.6784i 1.26140 + 1.50328i
\(663\) −1.59015 2.78802i −0.0617565 0.108278i
\(664\) −8.08394 1.42542i −0.313718 0.0553169i
\(665\) −7.48780 + 4.36466i −0.290365 + 0.169254i
\(666\) −48.9886 + 27.6001i −1.89827 + 1.06948i
\(667\) 18.3276 0.709646
\(668\) 34.1642 12.4347i 1.32185 0.481114i
\(669\) −2.47258 14.4676i −0.0955955 0.559349i
\(670\) −11.3155 13.4853i −0.437156 0.520982i
\(671\) −0.163651 + 0.137319i −0.00631766 + 0.00530115i
\(672\) 31.5807 11.4548i 1.21825 0.441877i
\(673\) 22.4647 8.17648i 0.865950 0.315180i 0.129424 0.991589i \(-0.458687\pi\)
0.736526 + 0.676409i \(0.236465\pi\)
\(674\) −40.8387 + 23.5782i −1.57305 + 0.908199i
\(675\) −14.2395 + 16.4357i −0.548077 + 0.632612i
\(676\) −2.17387 + 3.76525i −0.0836104 + 0.144817i
\(677\) 23.7257 + 19.9082i 0.911852 + 0.765135i 0.972470 0.233026i \(-0.0748628\pi\)
−0.0606183 + 0.998161i \(0.519307\pi\)
\(678\) −13.5320 37.7966i −0.519692 1.45157i
\(679\) 4.56843 12.7158i 0.175320 0.487987i
\(680\) −0.302246 + 0.0532942i −0.0115906 + 0.00204374i
\(681\) 38.3998 6.56272i 1.47149 0.251484i
\(682\) 15.8434 + 43.5293i 0.606674 + 1.66682i
\(683\) −3.31809 + 1.91570i −0.126963 + 0.0733022i −0.562136 0.827044i \(-0.690020\pi\)
0.435173 + 0.900347i \(0.356687\pi\)
\(684\) 5.84965 + 16.6139i 0.223667 + 0.635249i
\(685\) 9.53964 5.50771i 0.364491 0.210439i
\(686\) 12.4601 + 32.9502i 0.475727 + 1.25804i
\(687\) −0.692995 + 1.18584i −0.0264394 + 0.0452428i
\(688\) 7.13518 + 40.4656i 0.272026 + 1.54274i
\(689\) 30.6658 25.7316i 1.16827 0.980298i
\(690\) −9.03321 + 5.15212i −0.343888 + 0.196138i
\(691\) 2.82846 + 7.77112i 0.107600 + 0.295627i 0.981794 0.189949i \(-0.0608321\pi\)
−0.874194 + 0.485576i \(0.838610\pi\)
\(692\) −6.26547 10.8521i −0.238177 0.412535i
\(693\) −17.9705 + 21.1413i −0.682644 + 0.803093i
\(694\) −17.8241 + 30.8723i −0.676594 + 1.17190i
\(695\) −15.9913 2.81969i −0.606583 0.106957i
\(696\) −4.21383 5.07587i −0.159725 0.192400i
\(697\) 1.26944 + 0.462038i 0.0480835 + 0.0175010i
\(698\) −43.4516 15.8151i −1.64467 0.598609i
\(699\) −14.1500 + 5.06600i −0.535203 + 0.191614i
\(700\) −3.03762 + 17.6558i −0.114811 + 0.667326i
\(701\) 19.8898i 0.751226i −0.926777 0.375613i \(-0.877432\pi\)
0.926777 0.375613i \(-0.122568\pi\)
\(702\) −0.618108 + 39.1411i −0.0233290 + 1.47728i
\(703\) 30.9663 + 17.8784i 1.16792 + 0.674296i
\(704\) 16.2070 + 2.85774i 0.610826 + 0.107705i
\(705\) 5.13252 + 0.932884i 0.193302 + 0.0351344i
\(706\) −27.9732 33.3371i −1.05278 1.25466i
\(707\) 6.30852 + 34.9283i 0.237256 + 1.31361i
\(708\) −5.80219 6.98916i −0.218060 0.262669i
\(709\) 2.42708 13.7647i 0.0911511 0.516943i −0.904708 0.426032i \(-0.859911\pi\)
0.995859 0.0909111i \(-0.0289779\pi\)
\(710\) 2.18038 + 3.77652i 0.0818281 + 0.141730i
\(711\) 14.4319 24.4000i 0.541240 0.915072i
\(712\) 1.91139 + 1.10354i 0.0716325 + 0.0413571i
\(713\) 4.22989 23.9889i 0.158410 0.898390i
\(714\) −4.07814 0.00452391i −0.152621 0.000169303i
\(715\) −11.7454 4.27499i −0.439254 0.159876i
\(716\) −2.98137 + 0.525696i −0.111419 + 0.0196462i
\(717\) −38.8162 0.204311i −1.44962 0.00763014i
\(718\) −12.1704 10.2121i −0.454194 0.381114i
\(719\) −15.7165 + 27.2219i −0.586128 + 1.01520i 0.408606 + 0.912711i \(0.366015\pi\)
−0.994734 + 0.102493i \(0.967318\pi\)
\(720\) 11.7070 + 4.40110i 0.436294 + 0.164019i
\(721\) 34.4583 20.0859i 1.28330 0.748036i
\(722\) −7.13076 + 8.49811i −0.265380 + 0.316267i
\(723\) −14.0125 + 11.6327i −0.521129 + 0.432625i
\(724\) 11.6159 31.9146i 0.431703 1.18610i
\(725\) 21.6031 3.80921i 0.802319 0.141471i
\(726\) −3.78589 + 1.35543i −0.140508 + 0.0503046i
\(727\) 9.57818 + 26.3158i 0.355235 + 0.976000i 0.980661 + 0.195716i \(0.0627031\pi\)
−0.625426 + 0.780284i \(0.715075\pi\)
\(728\) −3.83464 6.57853i −0.142121 0.243817i
\(729\) 12.7549 + 23.7973i 0.472405 + 0.881381i
\(730\) 7.18617 + 12.4468i 0.265972 + 0.460677i
\(731\) 0.722872 4.09961i 0.0267364 0.151630i
\(732\) 0.130610 + 0.110771i 0.00482748 + 0.00409423i
\(733\) −8.51889 + 23.4055i −0.314653 + 0.864501i 0.677049 + 0.735938i \(0.263259\pi\)
−0.991701 + 0.128563i \(0.958964\pi\)
\(734\) −3.22409 18.2847i −0.119003 0.674900i
\(735\) −3.71215 + 10.2965i −0.136925 + 0.379792i
\(736\) −19.6357 16.4763i −0.723780 0.607324i
\(737\) 35.8388i 1.32014i
\(738\) −10.4573 12.7324i −0.384939 0.468685i
\(739\) 46.5319 1.71170 0.855851 0.517222i \(-0.173034\pi\)
0.855851 + 0.517222i \(0.173034\pi\)
\(740\) −13.5246 + 4.92257i −0.497176 + 0.180957i
\(741\) 21.6237 12.3332i 0.794368 0.453071i
\(742\) −9.04044 50.0541i −0.331885 1.83754i
\(743\) −11.9890 + 32.9395i −0.439834 + 1.20843i 0.499767 + 0.866160i \(0.333419\pi\)
−0.939600 + 0.342273i \(0.888803\pi\)
\(744\) −7.61631 + 4.34399i −0.279227 + 0.159258i
\(745\) −6.53564 + 7.78887i −0.239447 + 0.285362i
\(746\) 20.1588i 0.738067i
\(747\) −16.6350 29.5262i −0.608643 1.08031i
\(748\) −2.29176 1.32315i −0.0837949 0.0483790i
\(749\) −13.5622 36.7856i −0.495551 1.34411i
\(750\) −21.0185 + 17.4489i −0.767488 + 0.637145i
\(751\) 3.14628 2.64004i 0.114809 0.0963364i −0.583576 0.812059i \(-0.698347\pi\)
0.698385 + 0.715722i \(0.253902\pi\)
\(752\) 2.67545 + 15.1732i 0.0975636 + 0.553311i
\(753\) 5.50163 + 15.3668i 0.200491 + 0.559997i
\(754\) 25.3826 30.2498i 0.924381 1.10163i
\(755\) 5.49677 0.200048
\(756\) 19.1327 + 11.3451i 0.695850 + 0.412619i
\(757\) −15.6872 −0.570161 −0.285081 0.958504i \(-0.592020\pi\)
−0.285081 + 0.958504i \(0.592020\pi\)
\(758\) 7.65941 9.12813i 0.278202 0.331549i
\(759\) 20.8300 + 3.78605i 0.756081 + 0.137425i
\(760\) −0.413348 2.34421i −0.0149937 0.0850335i
\(761\) −21.5384 + 18.0728i −0.780766 + 0.655140i −0.943441 0.331539i \(-0.892432\pi\)
0.162676 + 0.986680i \(0.447988\pi\)
\(762\) 25.5107 + 9.43749i 0.924155 + 0.341884i
\(763\) −6.03357 5.02020i −0.218430 0.181744i
\(764\) 14.3632 + 8.29258i 0.519641 + 0.300015i
\(765\) −0.962019 0.824642i −0.0347819 0.0298150i
\(766\) 15.9111i 0.574890i
\(767\) −8.25220 + 9.83459i −0.297970 + 0.355107i