Properties

Label 189.2.ba.a.101.21
Level $189$
Weight $2$
Character 189.101
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 101.21
Character \(\chi\) \(=\) 189.101
Dual form 189.2.ba.a.131.21

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.61592 - 1.92578i) q^{2} +(-1.49261 - 0.878707i) q^{3} +(-0.750127 - 4.25418i) q^{4} +(-2.10349 + 1.76504i) q^{5} +(-4.10412 + 1.45451i) q^{6} +(-0.122508 - 2.64291i) q^{7} +(-5.05050 - 2.91591i) q^{8} +(1.45575 + 2.62313i) q^{9} +O(q^{10})\) \(q+(1.61592 - 1.92578i) q^{2} +(-1.49261 - 0.878707i) q^{3} +(-0.750127 - 4.25418i) q^{4} +(-2.10349 + 1.76504i) q^{5} +(-4.10412 + 1.45451i) q^{6} +(-0.122508 - 2.64291i) q^{7} +(-5.05050 - 2.91591i) q^{8} +(1.45575 + 2.62313i) q^{9} +6.90302i q^{10} +(2.69072 - 3.20668i) q^{11} +(-2.61854 + 7.00896i) q^{12} +(-0.0398496 + 0.109486i) q^{13} +(-5.28762 - 4.03481i) q^{14} +(4.69064 - 0.786155i) q^{15} +(-5.65800 + 2.05934i) q^{16} +5.14689 q^{17} +(7.40393 + 1.43532i) q^{18} -5.21844i q^{19} +(9.08669 + 7.62463i) q^{20} +(-2.13949 + 4.05248i) q^{21} +(-1.82736 - 10.3635i) q^{22} +(-2.56763 + 7.05452i) q^{23} +(4.97618 + 8.79022i) q^{24} +(0.441075 - 2.50146i) q^{25} +(0.146452 + 0.253662i) q^{26} +(0.132107 - 5.19447i) q^{27} +(-11.1515 + 2.50369i) q^{28} +(1.21597 + 3.34086i) q^{29} +(6.06573 - 10.3035i) q^{30} +(-0.305335 + 0.0538389i) q^{31} +(-1.18784 + 3.26355i) q^{32} +(-6.83392 + 2.42195i) q^{33} +(8.31695 - 9.91175i) q^{34} +(4.92254 + 5.34312i) q^{35} +(10.0673 - 8.16068i) q^{36} +(-0.959970 + 1.66272i) q^{37} +(-10.0496 - 8.43258i) q^{38} +(0.155686 - 0.128403i) q^{39} +(15.7704 - 2.78075i) q^{40} +(6.29347 + 2.29063i) q^{41} +(4.34692 + 10.6687i) q^{42} +(0.411100 - 2.33146i) q^{43} +(-15.6602 - 9.04140i) q^{44} +(-7.69208 - 2.94828i) q^{45} +(9.43633 + 16.3442i) q^{46} +(-0.876823 + 4.97271i) q^{47} +(10.2547 + 1.89794i) q^{48} +(-6.96998 + 0.647559i) q^{49} +(-4.10452 - 4.89157i) q^{50} +(-7.68227 - 4.52261i) q^{51} +(0.495665 + 0.0873991i) q^{52} +(-3.76047 - 2.17111i) q^{53} +(-9.78992 - 8.64825i) q^{54} +11.4945i q^{55} +(-7.08776 + 13.7053i) q^{56} +(-4.58549 + 7.78908i) q^{57} +(8.39867 + 3.05687i) q^{58} +(9.84174 + 3.58210i) q^{59} +(-6.86302 - 19.3651i) q^{60} +(-1.13841 - 0.200732i) q^{61} +(-0.389715 + 0.675007i) q^{62} +(6.75436 - 4.16877i) q^{63} +(-1.65570 - 2.86775i) q^{64} +(-0.109424 - 0.300639i) q^{65} +(-6.37893 + 17.0743i) q^{66} +(8.49204 - 7.12567i) q^{67} +(-3.86082 - 21.8958i) q^{68} +(10.0313 - 8.27342i) q^{69} +(18.2441 - 0.845678i) q^{70} +(-5.47124 + 3.15882i) q^{71} +(0.296553 - 17.4929i) q^{72} +(-2.23588 + 1.29089i) q^{73} +(1.65079 + 4.53550i) q^{74} +(-2.85640 + 3.34612i) q^{75} +(-22.2002 + 3.91449i) q^{76} +(-8.80461 - 6.71850i) q^{77} +(0.00429980 - 0.507305i) q^{78} +(12.0963 + 10.1500i) q^{79} +(8.26674 - 14.3184i) q^{80} +(-4.76161 + 7.63722i) q^{81} +(14.5810 - 8.41833i) q^{82} +(-10.6778 + 3.88640i) q^{83} +(18.8449 + 6.06191i) q^{84} +(-10.8264 + 9.08446i) q^{85} +(-3.82557 - 4.55914i) q^{86} +(1.12067 - 6.05508i) q^{87} +(-22.9399 + 8.34943i) q^{88} -0.913664 q^{89} +(-18.1075 + 10.0490i) q^{90} +(0.294244 + 0.0919061i) q^{91} +(31.9372 + 5.63140i) q^{92} +(0.503054 + 0.187940i) q^{93} +(8.15946 + 9.72406i) q^{94} +(9.21076 + 10.9770i) q^{95} +(4.64068 - 3.82744i) q^{96} +(-5.88114 - 1.03700i) q^{97} +(-10.0159 + 14.4690i) q^{98} +(12.3285 + 2.39000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61592 1.92578i 1.14263 1.36173i 0.220248 0.975444i \(-0.429313\pi\)
0.922379 0.386286i \(-0.126242\pi\)
\(3\) −1.49261 0.878707i −0.861757 0.507322i
\(4\) −0.750127 4.25418i −0.375063 2.12709i
\(5\) −2.10349 + 1.76504i −0.940711 + 0.789350i −0.977709 0.209965i \(-0.932665\pi\)
0.0369981 + 0.999315i \(0.488220\pi\)
\(6\) −4.10412 + 1.45451i −1.67550 + 0.593800i
\(7\) −0.122508 2.64291i −0.0463038 0.998927i
\(8\) −5.05050 2.91591i −1.78562 1.03093i
\(9\) 1.45575 + 2.62313i 0.485249 + 0.874376i
\(10\) 6.90302i 2.18293i
\(11\) 2.69072 3.20668i 0.811283 0.966850i −0.188601 0.982054i \(-0.560395\pi\)
0.999884 + 0.0152039i \(0.00483974\pi\)
\(12\) −2.61854 + 7.00896i −0.755906 + 2.02331i
\(13\) −0.0398496 + 0.109486i −0.0110523 + 0.0303659i −0.945096 0.326793i \(-0.894032\pi\)
0.934044 + 0.357158i \(0.116254\pi\)
\(14\) −5.28762 4.03481i −1.41318 1.07835i
\(15\) 4.69064 0.786155i 1.21112 0.202984i
\(16\) −5.65800 + 2.05934i −1.41450 + 0.514836i
\(17\) 5.14689 1.24830 0.624152 0.781303i \(-0.285445\pi\)
0.624152 + 0.781303i \(0.285445\pi\)
\(18\) 7.40393 + 1.43532i 1.74512 + 0.338308i
\(19\) 5.21844i 1.19719i −0.801051 0.598597i \(-0.795725\pi\)
0.801051 0.598597i \(-0.204275\pi\)
\(20\) 9.08669 + 7.62463i 2.03184 + 1.70492i
\(21\) −2.13949 + 4.05248i −0.466875 + 0.884323i
\(22\) −1.82736 10.3635i −0.389594 2.20950i
\(23\) −2.56763 + 7.05452i −0.535389 + 1.47097i 0.317186 + 0.948363i \(0.397262\pi\)
−0.852575 + 0.522605i \(0.824960\pi\)
\(24\) 4.97618 + 8.79022i 1.01576 + 1.79430i
\(25\) 0.441075 2.50146i 0.0882150 0.500292i
\(26\) 0.146452 + 0.253662i 0.0287215 + 0.0497472i
\(27\) 0.132107 5.19447i 0.0254240 0.999677i
\(28\) −11.1515 + 2.50369i −2.10744 + 0.473153i
\(29\) 1.21597 + 3.34086i 0.225801 + 0.620383i 0.999920 0.0126573i \(-0.00402906\pi\)
−0.774119 + 0.633040i \(0.781807\pi\)
\(30\) 6.06573 10.3035i 1.10745 1.88115i
\(31\) −0.305335 + 0.0538389i −0.0548398 + 0.00966974i −0.201001 0.979591i \(-0.564419\pi\)
0.146161 + 0.989261i \(0.453308\pi\)
\(32\) −1.18784 + 3.26355i −0.209982 + 0.576920i
\(33\) −6.83392 + 2.42195i −1.18963 + 0.421607i
\(34\) 8.31695 9.91175i 1.42634 1.69985i
\(35\) 4.92254 + 5.34312i 0.832062 + 0.903152i
\(36\) 10.0673 8.16068i 1.67788 1.36011i
\(37\) −0.959970 + 1.66272i −0.157818 + 0.273349i −0.934082 0.357060i \(-0.883779\pi\)
0.776264 + 0.630409i \(0.217113\pi\)
\(38\) −10.0496 8.43258i −1.63025 1.36795i
\(39\) 0.155686 0.128403i 0.0249297 0.0205610i
\(40\) 15.7704 2.78075i 2.49352 0.439674i
\(41\) 6.29347 + 2.29063i 0.982874 + 0.357737i 0.782957 0.622076i \(-0.213710\pi\)
0.199917 + 0.979813i \(0.435933\pi\)
\(42\) 4.34692 + 10.6687i 0.670745 + 1.64621i
\(43\) 0.411100 2.33146i 0.0626921 0.355545i −0.937284 0.348568i \(-0.886668\pi\)
0.999976 0.00697673i \(-0.00222078\pi\)
\(44\) −15.6602 9.04140i −2.36086 1.36304i
\(45\) −7.69208 2.94828i −1.14667 0.439504i
\(46\) 9.43633 + 16.3442i 1.39131 + 2.40982i
\(47\) −0.876823 + 4.97271i −0.127898 + 0.725345i 0.851647 + 0.524117i \(0.175604\pi\)
−0.979544 + 0.201228i \(0.935507\pi\)
\(48\) 10.2547 + 1.89794i 1.48014 + 0.273944i
\(49\) −6.96998 + 0.647559i −0.995712 + 0.0925084i
\(50\) −4.10452 4.89157i −0.580466 0.691773i
\(51\) −7.68227 4.52261i −1.07573 0.633292i
\(52\) 0.495665 + 0.0873991i 0.0687364 + 0.0121201i
\(53\) −3.76047 2.17111i −0.516541 0.298225i 0.218977 0.975730i \(-0.429728\pi\)
−0.735518 + 0.677505i \(0.763061\pi\)
\(54\) −9.78992 8.64825i −1.33224 1.17688i
\(55\) 11.4945i 1.54991i
\(56\) −7.08776 + 13.7053i −0.947142 + 1.83144i
\(57\) −4.58549 + 7.78908i −0.607362 + 1.03169i
\(58\) 8.39867 + 3.05687i 1.10280 + 0.401386i
\(59\) 9.84174 + 3.58210i 1.28128 + 0.466350i 0.890857 0.454284i \(-0.150105\pi\)
0.390428 + 0.920634i \(0.372327\pi\)
\(60\) −6.86302 19.3651i −0.886012 2.50003i
\(61\) −1.13841 0.200732i −0.145758 0.0257011i 0.100293 0.994958i \(-0.468022\pi\)
−0.246051 + 0.969257i \(0.579133\pi\)
\(62\) −0.389715 + 0.675007i −0.0494939 + 0.0857260i
\(63\) 6.75436 4.16877i 0.850969 0.525215i
\(64\) −1.65570 2.86775i −0.206962 0.358469i
\(65\) −0.109424 0.300639i −0.0135723 0.0372897i
\(66\) −6.37893 + 17.0743i −0.785191 + 2.10170i
\(67\) 8.49204 7.12567i 1.03747 0.870539i 0.0457477 0.998953i \(-0.485433\pi\)
0.991721 + 0.128414i \(0.0409885\pi\)
\(68\) −3.86082 21.8958i −0.468193 2.65525i
\(69\) 10.0313 8.27342i 1.20763 0.996002i
\(70\) 18.2441 0.845678i 2.18058 0.101078i
\(71\) −5.47124 + 3.15882i −0.649317 + 0.374883i −0.788194 0.615426i \(-0.788984\pi\)
0.138878 + 0.990310i \(0.455650\pi\)
\(72\) 0.296553 17.4929i 0.0349492 2.06156i
\(73\) −2.23588 + 1.29089i −0.261690 + 0.151087i −0.625105 0.780541i \(-0.714944\pi\)
0.363415 + 0.931627i \(0.381611\pi\)
\(74\) 1.65079 + 4.53550i 0.191900 + 0.527241i
\(75\) −2.85640 + 3.34612i −0.329829 + 0.386377i
\(76\) −22.2002 + 3.91449i −2.54654 + 0.449023i
\(77\) −8.80461 6.71850i −1.00338 0.765644i
\(78\) 0.00429980 0.507305i 0.000486857 0.0574410i
\(79\) 12.0963 + 10.1500i 1.36094 + 1.14197i 0.975690 + 0.219155i \(0.0703299\pi\)
0.385252 + 0.922811i \(0.374115\pi\)
\(80\) 8.26674 14.3184i 0.924250 1.60085i
\(81\) −4.76161 + 7.63722i −0.529067 + 0.848580i
\(82\) 14.5810 8.41833i 1.61020 0.929649i
\(83\) −10.6778 + 3.88640i −1.17204 + 0.426588i −0.853384 0.521282i \(-0.825454\pi\)
−0.318657 + 0.947870i \(0.603232\pi\)
\(84\) 18.8449 + 6.06191i 2.05614 + 0.661408i
\(85\) −10.8264 + 9.08446i −1.17429 + 0.985348i
\(86\) −3.82557 4.55914i −0.412522 0.491624i
\(87\) 1.12067 6.05508i 0.120148 0.649173i
\(88\) −22.9399 + 8.34943i −2.44540 + 0.890052i
\(89\) −0.913664 −0.0968482 −0.0484241 0.998827i \(-0.515420\pi\)
−0.0484241 + 0.998827i \(0.515420\pi\)
\(90\) −18.1075 + 10.0490i −1.90870 + 1.05926i
\(91\) 0.294244 + 0.0919061i 0.0308451 + 0.00963438i
\(92\) 31.9372 + 5.63140i 3.32969 + 0.587114i
\(93\) 0.503054 + 0.187940i 0.0521643 + 0.0194885i
\(94\) 8.15946 + 9.72406i 0.841584 + 1.00296i
\(95\) 9.21076 + 10.9770i 0.945005 + 1.12621i
\(96\) 4.64068 3.82744i 0.473637 0.390636i
\(97\) −5.88114 1.03700i −0.597140 0.105292i −0.133094 0.991103i \(-0.542491\pi\)
−0.464045 + 0.885812i \(0.653602\pi\)
\(98\) −10.0159 + 14.4690i −1.01176 + 1.46159i
\(99\) 12.3285 + 2.39000i 1.23906 + 0.240204i
\(100\) −10.9725 −1.09725
\(101\) 7.74151 2.81768i 0.770309 0.280370i 0.0731835 0.997318i \(-0.476684\pi\)
0.697126 + 0.716949i \(0.254462\pi\)
\(102\) −21.1235 + 7.48618i −2.09153 + 0.741242i
\(103\) 0.633698 + 0.755211i 0.0624401 + 0.0744132i 0.796360 0.604822i \(-0.206756\pi\)
−0.733920 + 0.679236i \(0.762311\pi\)
\(104\) 0.520511 0.436761i 0.0510403 0.0428279i
\(105\) −2.65238 12.3006i −0.258846 1.20042i
\(106\) −10.2577 + 3.73349i −0.996315 + 0.362629i
\(107\) −11.2050 + 6.46919i −1.08322 + 0.625400i −0.931764 0.363064i \(-0.881731\pi\)
−0.151460 + 0.988463i \(0.548397\pi\)
\(108\) −22.1973 + 3.33451i −2.13594 + 0.320863i
\(109\) 1.89554 3.28318i 0.181560 0.314471i −0.760852 0.648926i \(-0.775219\pi\)
0.942412 + 0.334454i \(0.108552\pi\)
\(110\) 22.1358 + 18.5741i 2.11056 + 1.77097i
\(111\) 2.89390 1.63825i 0.274677 0.155496i
\(112\) 6.13582 + 14.7013i 0.579781 + 1.38914i
\(113\) 2.66007 0.469041i 0.250238 0.0441237i −0.0471221 0.998889i \(-0.515005\pi\)
0.297360 + 0.954765i \(0.403894\pi\)
\(114\) 7.59026 + 21.4171i 0.710893 + 2.00590i
\(115\) −7.05051 19.3711i −0.657463 1.80636i
\(116\) 13.3005 7.67905i 1.23492 0.712981i
\(117\) −0.345207 + 0.0548531i −0.0319144 + 0.00507117i
\(118\) 22.8018 13.1646i 2.09907 1.21190i
\(119\) −0.630537 13.6028i −0.0578012 1.24696i
\(120\) −25.9824 9.70700i −2.37186 0.886124i
\(121\) −1.13267 6.42368i −0.102970 0.583971i
\(122\) −2.22614 + 1.86795i −0.201545 + 0.169117i
\(123\) −7.38087 8.94913i −0.665510 0.806916i
\(124\) 0.458080 + 1.25857i 0.0411368 + 0.113023i
\(125\) −3.37741 5.84984i −0.302084 0.523225i
\(126\) 2.88638 19.7438i 0.257139 1.75892i
\(127\) 0.619432 1.07289i 0.0549657 0.0952034i −0.837233 0.546846i \(-0.815828\pi\)
0.892199 + 0.451642i \(0.149162\pi\)
\(128\) −15.0386 2.65171i −1.32924 0.234380i
\(129\) −2.66228 + 3.11872i −0.234401 + 0.274588i
\(130\) −0.755783 0.275083i −0.0662866 0.0241263i
\(131\) 7.04031 + 2.56246i 0.615114 + 0.223883i 0.630740 0.775995i \(-0.282752\pi\)
−0.0156252 + 0.999878i \(0.504974\pi\)
\(132\) 15.4297 + 27.2560i 1.34298 + 2.37233i
\(133\) −13.7919 + 0.639304i −1.19591 + 0.0554346i
\(134\) 27.8683i 2.40745i
\(135\) 8.89057 + 11.1597i 0.765178 + 0.960475i
\(136\) −25.9943 15.0078i −2.22900 1.28691i
\(137\) −16.0387 2.82805i −1.37027 0.241616i −0.560401 0.828221i \(-0.689353\pi\)
−0.809873 + 0.586605i \(0.800464\pi\)
\(138\) 0.277050 32.6872i 0.0235840 2.78252i
\(139\) −6.25623 7.45589i −0.530647 0.632400i 0.432417 0.901674i \(-0.357661\pi\)
−0.963064 + 0.269274i \(0.913216\pi\)
\(140\) 19.0381 24.9494i 1.60901 2.10861i
\(141\) 5.67831 6.65183i 0.478200 0.560185i
\(142\) −2.75789 + 15.6408i −0.231437 + 1.31255i
\(143\) 0.243862 + 0.422381i 0.0203928 + 0.0353213i
\(144\) −13.6385 11.8438i −1.13654 0.986982i
\(145\) −8.45455 4.88124i −0.702112 0.405365i
\(146\) −1.12704 + 6.39177i −0.0932746 + 0.528987i
\(147\) 10.9725 + 5.15803i 0.904993 + 0.425427i
\(148\) 7.79359 + 2.83664i 0.640630 + 0.233170i
\(149\) 16.5016 2.90967i 1.35186 0.238370i 0.549642 0.835400i \(-0.314764\pi\)
0.802219 + 0.597030i \(0.203653\pi\)
\(150\) 1.82816 + 10.9079i 0.149269 + 0.890623i
\(151\) −11.4658 9.62098i −0.933077 0.782944i 0.0432907 0.999063i \(-0.486216\pi\)
−0.976367 + 0.216118i \(0.930660\pi\)
\(152\) −15.2165 + 26.3558i −1.23422 + 2.13773i
\(153\) 7.49256 + 13.5009i 0.605738 + 1.09149i
\(154\) −27.1659 + 6.09916i −2.18909 + 0.491484i
\(155\) 0.547243 0.652179i 0.0439556 0.0523843i
\(156\) −0.663034 0.565997i −0.0530852 0.0453160i
\(157\) 1.10483 3.03550i 0.0881752 0.242259i −0.887765 0.460296i \(-0.847743\pi\)
0.975940 + 0.218037i \(0.0699654\pi\)
\(158\) 39.0933 6.89321i 3.11010 0.548394i
\(159\) 3.70513 + 6.54497i 0.293836 + 0.519050i
\(160\) −3.26169 8.96143i −0.257860 0.708464i
\(161\) 18.9590 + 5.92180i 1.49418 + 0.466703i
\(162\) 7.01321 + 21.5109i 0.551010 + 1.69006i
\(163\) 3.85622 + 6.67918i 0.302043 + 0.523153i 0.976599 0.215070i \(-0.0689981\pi\)
−0.674556 + 0.738224i \(0.735665\pi\)
\(164\) 5.02387 28.4918i 0.392299 2.22484i
\(165\) 10.1003 17.1567i 0.786305 1.33565i
\(166\) −9.77011 + 26.8432i −0.758308 + 2.08343i
\(167\) −0.286318 1.62379i −0.0221559 0.125652i 0.971724 0.236121i \(-0.0758761\pi\)
−0.993880 + 0.110468i \(0.964765\pi\)
\(168\) 22.6222 14.2285i 1.74534 1.09775i
\(169\) 9.94818 + 8.34751i 0.765245 + 0.642116i
\(170\) 35.5290i 2.72495i
\(171\) 13.6886 7.59673i 1.04680 0.580937i
\(172\) −10.2268 −0.779789
\(173\) −17.1792 + 6.25273i −1.30611 + 0.475386i −0.898983 0.437984i \(-0.855693\pi\)
−0.407130 + 0.913370i \(0.633470\pi\)
\(174\) −9.84982 11.9427i −0.746713 0.905372i
\(175\) −6.66518 0.859273i −0.503840 0.0649550i
\(176\) −8.62046 + 23.6845i −0.649792 + 1.78529i
\(177\) −11.5422 13.9947i −0.867566 1.05190i
\(178\) −1.47641 + 1.75951i −0.110661 + 0.131881i
\(179\) 4.22041i 0.315448i −0.987483 0.157724i \(-0.949584\pi\)
0.987483 0.157724i \(-0.0504156\pi\)
\(180\) −6.77249 + 34.9351i −0.504791 + 2.60391i
\(181\) 9.51249 + 5.49204i 0.707058 + 0.408220i 0.809971 0.586470i \(-0.199483\pi\)
−0.102913 + 0.994690i \(0.532816\pi\)
\(182\) 0.652465 0.418135i 0.0483639 0.0309942i
\(183\) 1.52281 + 1.29994i 0.112569 + 0.0960946i
\(184\) 33.5382 28.1419i 2.47247 2.07465i
\(185\) −0.915472 5.19190i −0.0673068 0.381716i
\(186\) 1.17483 0.665074i 0.0861424 0.0487656i
\(187\) 13.8488 16.5044i 1.01273 1.20692i
\(188\) 21.8125 1.59084
\(189\) −13.7447 + 0.287220i −0.999782 + 0.0208922i
\(190\) 36.0230 2.61338
\(191\) 6.52972 7.78182i 0.472474 0.563073i −0.476196 0.879339i \(-0.657985\pi\)
0.948670 + 0.316266i \(0.102429\pi\)
\(192\) −0.0486110 + 5.73529i −0.00350820 + 0.413909i
\(193\) 1.50063 + 8.51052i 0.108018 + 0.612600i 0.989972 + 0.141265i \(0.0451168\pi\)
−0.881954 + 0.471336i \(0.843772\pi\)
\(194\) −11.5005 + 9.65005i −0.825687 + 0.692833i
\(195\) −0.100847 + 0.544887i −0.00722183 + 0.0390202i
\(196\) 7.98320 + 29.1658i 0.570229 + 2.08327i
\(197\) 0.625155 + 0.360933i 0.0445405 + 0.0257154i 0.522105 0.852881i \(-0.325147\pi\)
−0.477564 + 0.878597i \(0.658480\pi\)
\(198\) 24.5245 19.8800i 1.74288 1.41281i
\(199\) 21.7780i 1.54380i 0.635745 + 0.771899i \(0.280693\pi\)
−0.635745 + 0.771899i \(0.719307\pi\)
\(200\) −9.52168 + 11.3475i −0.673285 + 0.802389i
\(201\) −18.9367 + 3.17380i −1.33569 + 0.223862i
\(202\) 7.08343 19.4616i 0.498388 1.36931i
\(203\) 8.68065 3.62300i 0.609262 0.254285i
\(204\) −13.4773 + 36.0743i −0.943600 + 2.52571i
\(205\) −17.2813 + 6.28989i −1.20698 + 0.439305i
\(206\) 2.47837 0.172676
\(207\) −22.2427 + 3.53435i −1.54598 + 0.245654i
\(208\) 0.701536i 0.0486427i
\(209\) −16.7339 14.0414i −1.15751 0.971263i
\(210\) −27.9743 14.7689i −1.93041 1.01915i
\(211\) 1.68157 + 9.53668i 0.115764 + 0.656532i 0.986369 + 0.164549i \(0.0526168\pi\)
−0.870605 + 0.491983i \(0.836272\pi\)
\(212\) −6.41546 + 17.6263i −0.440616 + 1.21058i
\(213\) 10.9421 + 0.0927426i 0.749739 + 0.00635462i
\(214\) −5.64809 + 32.0319i −0.386096 + 2.18966i
\(215\) 3.25038 + 5.62982i 0.221674 + 0.383951i
\(216\) −15.8138 + 25.8495i −1.07599 + 1.75883i
\(217\) 0.179698 + 0.800379i 0.0121987 + 0.0543333i
\(218\) −3.25962 8.95574i −0.220769 0.606559i
\(219\) 4.47160 + 0.0379002i 0.302163 + 0.00256106i
\(220\) 48.8995 8.62230i 3.29680 0.581315i
\(221\) −0.205101 + 0.563512i −0.0137966 + 0.0379059i
\(222\) 1.52140 8.22028i 0.102110 0.551709i
\(223\) 18.0896 21.5583i 1.21137 1.44365i 0.349183 0.937055i \(-0.386459\pi\)
0.862184 0.506596i \(-0.169096\pi\)
\(224\) 8.77080 + 2.73953i 0.586024 + 0.183043i
\(225\) 7.20375 2.48450i 0.480250 0.165633i
\(226\) 3.39518 5.88062i 0.225844 0.391173i
\(227\) −5.86912 4.92477i −0.389547 0.326869i 0.426890 0.904304i \(-0.359609\pi\)
−0.816437 + 0.577435i \(0.804054\pi\)
\(228\) 36.5758 + 13.6647i 2.42229 + 0.904966i
\(229\) 14.0021 2.46895i 0.925285 0.163153i 0.309349 0.950949i \(-0.399889\pi\)
0.615936 + 0.787796i \(0.288778\pi\)
\(230\) −48.6975 17.7244i −3.21102 1.16871i
\(231\) 7.23822 + 17.7648i 0.476240 + 1.16883i
\(232\) 3.60037 20.4187i 0.236376 1.34055i
\(233\) 19.4777 + 11.2455i 1.27603 + 0.736714i 0.976115 0.217253i \(-0.0697097\pi\)
0.299911 + 0.953967i \(0.403043\pi\)
\(234\) −0.452191 + 0.753429i −0.0295606 + 0.0492532i
\(235\) −6.93265 12.0077i −0.452236 0.783296i
\(236\) 7.85634 44.5555i 0.511404 2.90032i
\(237\) −9.13614 25.7791i −0.593456 1.67453i
\(238\) −27.2148 20.7667i −1.76407 1.34611i
\(239\) −15.3178 18.2550i −0.990825 1.18082i −0.983511 0.180846i \(-0.942116\pi\)
−0.00731345 0.999973i \(-0.502328\pi\)
\(240\) −24.9207 + 14.1077i −1.60862 + 0.910649i
\(241\) 13.3567 + 2.35515i 0.860381 + 0.151708i 0.586395 0.810025i \(-0.300547\pi\)
0.273986 + 0.961734i \(0.411658\pi\)
\(242\) −14.2009 8.19887i −0.912866 0.527044i
\(243\) 13.8181 7.21530i 0.886430 0.462862i
\(244\) 4.99357i 0.319681i
\(245\) 13.5183 13.6644i 0.863655 0.872989i
\(246\) −29.1609 0.247161i −1.85923 0.0157584i
\(247\) 0.571346 + 0.207953i 0.0363539 + 0.0132317i
\(248\) 1.69909 + 0.618417i 0.107892 + 0.0392695i
\(249\) 19.3528 + 3.58180i 1.22643 + 0.226987i
\(250\) −16.7231 2.94873i −1.05766 0.186494i
\(251\) −4.77251 + 8.26623i −0.301238 + 0.521760i −0.976417 0.215895i \(-0.930733\pi\)
0.675179 + 0.737654i \(0.264067\pi\)
\(252\) −22.8013 25.6072i −1.43635 1.61310i
\(253\) 15.7128 + 27.2153i 0.987854 + 1.71101i
\(254\) −1.06519 2.92659i −0.0668360 0.183630i
\(255\) 24.1422 4.04625i 1.51184 0.253386i
\(256\) −24.3344 + 20.4190i −1.52090 + 1.27619i
\(257\) 0.960437 + 5.44691i 0.0599104 + 0.339769i 0.999999 0.00116059i \(-0.000369428\pi\)
−0.940089 + 0.340929i \(0.889258\pi\)
\(258\) 1.70392 + 10.1666i 0.106082 + 0.632942i
\(259\) 4.51202 + 2.33342i 0.280363 + 0.144992i
\(260\) −1.19689 + 0.691025i −0.0742280 + 0.0428556i
\(261\) −6.99336 + 8.05311i −0.432878 + 0.498475i
\(262\) 16.3113 9.41733i 1.00771 0.581804i
\(263\) 2.86165 + 7.86232i 0.176457 + 0.484811i 0.996117 0.0880387i \(-0.0280599\pi\)
−0.819660 + 0.572850i \(0.805838\pi\)
\(264\) 41.5769 + 7.69503i 2.55888 + 0.473596i
\(265\) 11.7422 2.07047i 0.721319 0.127188i
\(266\) −21.0554 + 27.5932i −1.29099 + 1.69185i
\(267\) 1.36374 + 0.802844i 0.0834596 + 0.0491332i
\(268\) −36.6840 30.7815i −2.24083 1.88028i
\(269\) −9.52435 + 16.4967i −0.580710 + 1.00582i 0.414685 + 0.909965i \(0.363892\pi\)
−0.995395 + 0.0958542i \(0.969442\pi\)
\(270\) 35.8575 + 0.911936i 2.18222 + 0.0554986i
\(271\) −21.6453 + 12.4969i −1.31486 + 0.759134i −0.982896 0.184159i \(-0.941044\pi\)
−0.331962 + 0.943293i \(0.607710\pi\)
\(272\) −29.1211 + 10.5992i −1.76573 + 0.642671i
\(273\) −0.358431 0.395734i −0.0216933 0.0239509i
\(274\) −31.3633 + 26.3170i −1.89473 + 1.58987i
\(275\) −6.83457 8.14513i −0.412140 0.491170i
\(276\) −42.7214 36.4689i −2.57152 2.19517i
\(277\) −20.9786 + 7.63560i −1.26048 + 0.458778i −0.883931 0.467617i \(-0.845113\pi\)
−0.376552 + 0.926395i \(0.622890\pi\)
\(278\) −24.4679 −1.46749
\(279\) −0.585717 0.722558i −0.0350660 0.0432584i
\(280\) −9.28127 41.3391i −0.554662 2.47048i
\(281\) 11.7375 + 2.06964i 0.700200 + 0.123464i 0.512405 0.858744i \(-0.328755\pi\)
0.187795 + 0.982208i \(0.439866\pi\)
\(282\) −3.63425 21.6840i −0.216416 1.29126i
\(283\) −2.59842 3.09667i −0.154460 0.184078i 0.683265 0.730170i \(-0.260559\pi\)
−0.837725 + 0.546092i \(0.816115\pi\)
\(284\) 17.5423 + 20.9061i 1.04094 + 1.24055i
\(285\) −4.10251 24.4778i −0.243011 1.44994i
\(286\) 1.20747 + 0.212910i 0.0713994 + 0.0125896i
\(287\) 5.28295 16.9137i 0.311842 0.998385i
\(288\) −10.2899 + 1.63506i −0.606338 + 0.0963467i
\(289\) 9.49043 0.558261
\(290\) −23.0620 + 8.39390i −1.35425 + 0.492907i
\(291\) 7.86701 + 6.71564i 0.461172 + 0.393678i
\(292\) 7.16885 + 8.54350i 0.419525 + 0.499971i
\(293\) 1.36115 1.14214i 0.0795192 0.0667245i −0.602162 0.798374i \(-0.705694\pi\)
0.681681 + 0.731650i \(0.261249\pi\)
\(294\) 27.6638 12.7955i 1.61339 0.746251i
\(295\) −27.0246 + 9.83614i −1.57343 + 0.572682i
\(296\) 9.69666 5.59837i 0.563607 0.325399i
\(297\) −16.3015 14.4005i −0.945911 0.835602i
\(298\) 21.0618 36.4801i 1.22008 2.11324i
\(299\) −0.670051 0.562240i −0.0387501 0.0325152i
\(300\) 16.3777 + 9.64165i 0.945565 + 0.556661i
\(301\) −6.21221 0.800877i −0.358066 0.0461618i
\(302\) −37.0557 + 6.53392i −2.13232 + 0.375985i
\(303\) −14.0309 2.59684i −0.806057 0.149184i
\(304\) 10.7466 + 29.5260i 0.616358 + 1.69343i
\(305\) 2.74894 1.58710i 0.157404 0.0908770i
\(306\) 38.1072 + 7.38742i 2.17844 + 0.422311i
\(307\) −17.0250 + 9.82941i −0.971670 + 0.560994i −0.899745 0.436416i \(-0.856248\pi\)
−0.0719253 + 0.997410i \(0.522914\pi\)
\(308\) −21.9771 + 42.4961i −1.25226 + 2.42144i
\(309\) −0.282251 1.68407i −0.0160567 0.0958033i
\(310\) −0.371651 2.10774i −0.0211083 0.119711i
\(311\) −20.2815 + 17.0182i −1.15006 + 0.965014i −0.999721 0.0236210i \(-0.992480\pi\)
−0.150338 + 0.988635i \(0.548036\pi\)
\(312\) −1.16070 + 0.194535i −0.0657119 + 0.0110134i
\(313\) −1.72420 4.73721i −0.0974577 0.267763i 0.881378 0.472413i \(-0.156617\pi\)
−0.978835 + 0.204650i \(0.934395\pi\)
\(314\) −4.06038 7.03278i −0.229140 0.396883i
\(315\) −6.84971 + 20.6907i −0.385937 + 1.16579i
\(316\) 34.1062 59.0737i 1.91862 3.32316i
\(317\) −30.4363 5.36674i −1.70947 0.301426i −0.768486 0.639866i \(-0.778990\pi\)
−0.940988 + 0.338440i \(0.890101\pi\)
\(318\) 18.5913 + 3.44087i 1.04255 + 0.192955i
\(319\) 13.9849 + 5.09010i 0.783005 + 0.284991i
\(320\) 8.54444 + 3.10992i 0.477649 + 0.173850i
\(321\) 22.4091 + 0.189934i 1.25075 + 0.0106011i
\(322\) 42.0403 26.9417i 2.34281 1.50140i
\(323\) 26.8587i 1.49446i
\(324\) 36.0619 + 14.5278i 2.00344 + 0.807102i
\(325\) 0.256298 + 0.147974i 0.0142169 + 0.00820811i
\(326\) 19.0939 + 3.36678i 1.05752 + 0.186469i
\(327\) −5.71425 + 3.23486i −0.315999 + 0.178888i
\(328\) −25.1059 29.9200i −1.38624 1.65206i
\(329\) 13.2499 + 1.70817i 0.730489 + 0.0941744i
\(330\) −16.7188 47.1747i −0.920338 2.59688i
\(331\) 2.84820 16.1530i 0.156551 0.887847i −0.800802 0.598929i \(-0.795593\pi\)
0.957354 0.288918i \(-0.0932956\pi\)
\(332\) 24.5432 + 42.5100i 1.34698 + 2.33304i
\(333\) −5.75899 0.0976308i −0.315591 0.00535014i
\(334\) −3.58972 2.07252i −0.196421 0.113403i
\(335\) −5.28586 + 29.9776i −0.288797 + 1.63785i
\(336\) 3.75980 27.3349i 0.205114 1.49124i
\(337\) −1.34897 0.490985i −0.0734831 0.0267457i 0.305017 0.952347i \(-0.401338\pi\)
−0.378500 + 0.925601i \(0.623560\pi\)
\(338\) 32.1509 5.66907i 1.74878 0.308357i
\(339\) −4.38258 1.63733i −0.238029 0.0889273i
\(340\) 46.7681 + 39.2431i 2.53636 + 2.12826i
\(341\) −0.648929 + 1.12398i −0.0351415 + 0.0608668i
\(342\) 7.49013 38.6370i 0.405020 2.08925i
\(343\) 2.56532 + 18.3417i 0.138514 + 0.990360i
\(344\) −8.87459 + 10.5763i −0.478486 + 0.570237i
\(345\) −6.49791 + 35.1088i −0.349836 + 1.89019i
\(346\) −15.7189 + 43.1872i −0.845052 + 2.32176i
\(347\) −6.26965 + 1.10551i −0.336573 + 0.0593468i −0.339380 0.940649i \(-0.610217\pi\)
0.00280775 + 0.999996i \(0.499106\pi\)
\(348\) −26.6000 0.225456i −1.42591 0.0120857i
\(349\) 2.99689 + 8.23388i 0.160420 + 0.440749i 0.993696 0.112107i \(-0.0357600\pi\)
−0.833276 + 0.552856i \(0.813538\pi\)
\(350\) −12.4252 + 11.4471i −0.664153 + 0.611875i
\(351\) 0.563457 + 0.221462i 0.0300751 + 0.0118207i
\(352\) 7.26902 + 12.5903i 0.387440 + 0.671066i
\(353\) 0.381468 2.16341i 0.0203035 0.115147i −0.972972 0.230925i \(-0.925825\pi\)
0.993275 + 0.115778i \(0.0369360\pi\)
\(354\) −45.6019 0.386511i −2.42371 0.0205428i
\(355\) 5.93327 16.3015i 0.314905 0.865195i
\(356\) 0.685364 + 3.88689i 0.0363242 + 0.206005i
\(357\) −11.0117 + 20.8576i −0.582802 + 1.10390i
\(358\) −8.12756 6.81983i −0.429555 0.360439i
\(359\) 13.3206i 0.703036i −0.936181 0.351518i \(-0.885666\pi\)
0.936181 0.351518i \(-0.114334\pi\)
\(360\) 30.2519 + 37.3197i 1.59442 + 1.96692i
\(361\) −8.23216 −0.433272
\(362\) 25.9479 9.44425i 1.36379 0.496379i
\(363\) −3.95391 + 10.5833i −0.207526 + 0.555479i
\(364\) 0.170265 1.32071i 0.00892432 0.0692239i
\(365\) 2.42469 6.66179i 0.126914 0.348694i
\(366\) 4.96414 0.831993i 0.259480 0.0434890i
\(367\) 6.85361 8.16781i 0.357755 0.426356i −0.556907 0.830575i \(-0.688012\pi\)
0.914662 + 0.404219i \(0.132457\pi\)
\(368\) 45.2021i 2.35632i
\(369\) 3.15306 + 19.8432i 0.164142 + 1.03299i
\(370\) −11.4778 6.62669i −0.596701 0.344505i
\(371\) −5.27737 + 10.2046i −0.273987 + 0.529796i
\(372\) 0.422177 2.28106i 0.0218889 0.118268i
\(373\) −10.7249 + 8.99930i −0.555317 + 0.465966i −0.876737 0.480971i \(-0.840284\pi\)
0.321420 + 0.946937i \(0.395840\pi\)
\(374\) −9.40520 53.3395i −0.486331 2.75812i
\(375\) −0.0991602 + 11.6993i −0.00512061 + 0.604147i
\(376\) 18.9284 22.5580i 0.976156 1.16334i
\(377\) −0.414234 −0.0213341
\(378\) −21.6572 + 26.9334i −1.11393 + 1.38530i
\(379\) −34.6102 −1.77781 −0.888903 0.458095i \(-0.848532\pi\)
−0.888903 + 0.458095i \(0.848532\pi\)
\(380\) 39.7887 47.4184i 2.04112 2.43251i
\(381\) −1.86732 + 1.05710i −0.0956659 + 0.0541569i
\(382\) −4.43455 25.1496i −0.226891 1.28676i
\(383\) −12.9643 + 10.8783i −0.662443 + 0.555856i −0.910818 0.412808i \(-0.864548\pi\)
0.248375 + 0.968664i \(0.420104\pi\)
\(384\) 20.1166 + 17.1725i 1.02657 + 0.876329i
\(385\) 30.3789 1.40817i 1.54825 0.0717669i
\(386\) 18.8143 + 10.8624i 0.957620 + 0.552882i
\(387\) 6.71418 2.31565i 0.341301 0.117711i
\(388\) 25.7973i 1.30966i
\(389\) 2.81103 3.35005i 0.142525 0.169855i −0.690060 0.723752i \(-0.742416\pi\)
0.832585 + 0.553898i \(0.186860\pi\)
\(390\) 0.886370 + 1.07470i 0.0448831 + 0.0544197i
\(391\) −13.2153 + 36.3088i −0.668327 + 1.83621i
\(392\) 37.0901 + 17.0533i 1.87333 + 0.861323i
\(393\) −8.25675 10.0111i −0.416498 0.504994i
\(394\) 1.70528 0.620670i 0.0859106 0.0312689i
\(395\) −43.3597 −2.18166
\(396\) 0.919528 54.2406i 0.0462080 2.72569i
\(397\) 10.8300i 0.543542i −0.962362 0.271771i \(-0.912391\pi\)
0.962362 0.271771i \(-0.0876094\pi\)
\(398\) 41.9395 + 35.1914i 2.10224 + 1.76399i
\(399\) 21.1476 + 11.1648i 1.05871 + 0.558940i
\(400\) 2.65577 + 15.0616i 0.132788 + 0.753080i
\(401\) −2.22180 + 6.10435i −0.110952 + 0.304837i −0.982725 0.185073i \(-0.940748\pi\)
0.871773 + 0.489909i \(0.162970\pi\)
\(402\) −24.4881 + 41.5964i −1.22135 + 2.07464i
\(403\) 0.00627290 0.0355754i 0.000312475 0.00177214i
\(404\) −17.7940 30.8202i −0.885286 1.53336i
\(405\) −3.46399 24.4693i −0.172127 1.21589i
\(406\) 7.05013 22.5715i 0.349892 1.12020i
\(407\) 2.74878 + 7.55222i 0.136252 + 0.374350i
\(408\) 25.6118 + 45.2422i 1.26797 + 2.23982i
\(409\) −15.2552 + 2.68991i −0.754323 + 0.133007i −0.537570 0.843219i \(-0.680658\pi\)
−0.216753 + 0.976227i \(0.569547\pi\)
\(410\) −15.8123 + 43.4439i −0.780913 + 2.14554i
\(411\) 21.4544 + 18.3144i 1.05827 + 0.903385i
\(412\) 2.73745 3.26237i 0.134865 0.160725i
\(413\) 8.26148 26.4497i 0.406521 1.30150i
\(414\) −29.1361 + 48.5457i −1.43196 + 2.38589i
\(415\) 15.6010 27.0218i 0.765824 1.32645i
\(416\) −0.309978 0.260102i −0.0151979 0.0127526i
\(417\) 2.78655 + 16.6261i 0.136458 + 0.814184i
\(418\) −54.0811 + 9.53596i −2.64519 + 0.466419i
\(419\) −14.7586 5.37170i −0.721006 0.262425i −0.0446532 0.999003i \(-0.514218\pi\)
−0.676353 + 0.736578i \(0.736441\pi\)
\(420\) −50.3395 + 20.5108i −2.45632 + 1.00082i
\(421\) −2.01941 + 11.4527i −0.0984202 + 0.558168i 0.895225 + 0.445614i \(0.147014\pi\)
−0.993646 + 0.112555i \(0.964097\pi\)
\(422\) 21.0828 + 12.1722i 1.02629 + 0.592531i
\(423\) −14.3205 + 4.93899i −0.696286 + 0.240142i
\(424\) 12.6615 + 21.9304i 0.614898 + 1.06503i
\(425\) 2.27016 12.8747i 0.110119 0.624517i
\(426\) 17.8601 20.9221i 0.865325 1.01368i
\(427\) −0.391053 + 3.03331i −0.0189244 + 0.146792i
\(428\) 35.9262 + 42.8152i 1.73656 + 2.06955i
\(429\) 0.00715975 0.844732i 0.000345676 0.0407840i
\(430\) 16.0941 + 2.83783i 0.776127 + 0.136852i
\(431\) 12.5999 + 7.27456i 0.606916 + 0.350403i 0.771758 0.635917i \(-0.219378\pi\)
−0.164841 + 0.986320i \(0.552711\pi\)
\(432\) 9.94975 + 29.6624i 0.478707 + 1.42713i
\(433\) 12.8056i 0.615396i 0.951484 + 0.307698i \(0.0995587\pi\)
−0.951484 + 0.307698i \(0.900441\pi\)
\(434\) 1.83173 + 0.947290i 0.0879258 + 0.0454714i
\(435\) 8.33014 + 14.7148i 0.399400 + 0.705523i
\(436\) −15.3891 5.60118i −0.737005 0.268248i
\(437\) 36.8136 + 13.3991i 1.76103 + 0.640964i
\(438\) 7.29872 8.55005i 0.348747 0.408537i
\(439\) 29.7539 + 5.24641i 1.42008 + 0.250398i 0.830366 0.557218i \(-0.188131\pi\)
0.589709 + 0.807616i \(0.299242\pi\)
\(440\) 33.5168 58.0528i 1.59785 2.76756i
\(441\) −11.8452 17.3405i −0.564055 0.825737i
\(442\) 0.753770 + 1.30557i 0.0358532 + 0.0620995i
\(443\) −8.87386 24.3807i −0.421610 1.15836i −0.950785 0.309851i \(-0.899721\pi\)
0.529176 0.848512i \(-0.322501\pi\)
\(444\) −9.14019 11.0823i −0.433774 0.525941i
\(445\) 1.92189 1.61265i 0.0911062 0.0764471i
\(446\) −12.2852 69.6729i −0.581722 3.29911i
\(447\) −27.1871 10.1571i −1.28591 0.480412i
\(448\) −7.37638 + 4.72718i −0.348501 + 0.223338i
\(449\) 4.52779 2.61412i 0.213680 0.123368i −0.389341 0.921094i \(-0.627297\pi\)
0.603020 + 0.797726i \(0.293964\pi\)
\(450\) 6.85609 17.8876i 0.323199 0.843227i
\(451\) 24.2793 14.0177i 1.14327 0.660066i
\(452\) −3.99077 10.9646i −0.187710 0.515729i
\(453\) 8.65995 + 24.4354i 0.406880 + 1.14808i
\(454\) −18.9680 + 3.34458i −0.890214 + 0.156969i
\(455\) −0.781158 + 0.326028i −0.0366212 + 0.0152844i
\(456\) 45.8712 25.9679i 2.14812 1.21606i
\(457\) 29.5854 + 24.8251i 1.38395 + 1.16127i 0.967726 + 0.252006i \(0.0810902\pi\)
0.416221 + 0.909263i \(0.363354\pi\)
\(458\) 17.8716 30.9545i 0.835085 1.44641i
\(459\) 0.679939 26.7354i 0.0317368 1.24790i
\(460\) −77.1194 + 44.5249i −3.59571 + 2.07598i
\(461\) −15.4949 + 5.63970i −0.721671 + 0.262667i −0.676635 0.736318i \(-0.736563\pi\)
−0.0450362 + 0.998985i \(0.514340\pi\)
\(462\) 45.9073 + 14.7672i 2.13580 + 0.687032i
\(463\) 31.2960 26.2605i 1.45445 1.22043i 0.525198 0.850980i \(-0.323991\pi\)
0.929251 0.369448i \(-0.120453\pi\)
\(464\) −13.7600 16.3985i −0.638791 0.761281i
\(465\) −1.38989 + 0.492580i −0.0644547 + 0.0228428i
\(466\) 53.1306 19.3380i 2.46123 0.895813i
\(467\) 38.7005 1.79085 0.895424 0.445215i \(-0.146873\pi\)
0.895424 + 0.445215i \(0.146873\pi\)
\(468\) 0.492303 + 1.42742i 0.0227567 + 0.0659827i
\(469\) −19.8729 21.5708i −0.917644 0.996046i
\(470\) −34.3267 6.05273i −1.58337 0.279192i
\(471\) −4.31640 + 3.55998i −0.198889 + 0.164035i
\(472\) −39.2606 46.7890i −1.80712 2.15364i
\(473\) −6.37009 7.59158i −0.292897 0.349061i
\(474\) −64.4080 24.0628i −2.95836 1.10524i
\(475\) −13.0537 2.30173i −0.598947 0.105610i
\(476\) −57.3957 + 12.8862i −2.63073 + 0.590639i
\(477\) 0.220806 13.0248i 0.0101100 0.596364i
\(478\) −59.9074 −2.74010
\(479\) 27.1347 9.87621i 1.23982 0.451256i 0.362867 0.931841i \(-0.381798\pi\)
0.876948 + 0.480585i \(0.159576\pi\)
\(480\) −3.00605 + 16.2420i −0.137207 + 0.741341i
\(481\) −0.143790 0.171362i −0.00655624 0.00781343i
\(482\) 26.1188 21.9163i 1.18968 0.998260i
\(483\) −23.0948 25.4984i −1.05085 1.16022i
\(484\) −26.4778 + 9.63714i −1.20354 + 0.438052i
\(485\) 14.2013 8.19912i 0.644848 0.372303i
\(486\) 8.43384 38.2699i 0.382567 1.73596i
\(487\) 10.6879 18.5119i 0.484313 0.838854i −0.515525 0.856875i \(-0.672403\pi\)
0.999838 + 0.0180204i \(0.00573637\pi\)
\(488\) 5.16422 + 4.33330i 0.233773 + 0.196159i
\(489\) 0.113218 13.3579i 0.00511991 0.604064i
\(490\) −4.47011 48.1139i −0.201939 2.17357i
\(491\) −17.7129 + 3.12326i −0.799372 + 0.140951i −0.558390 0.829579i \(-0.688581\pi\)
−0.240982 + 0.970530i \(0.577469\pi\)
\(492\) −32.5346 + 38.1125i −1.46677 + 1.71825i
\(493\) 6.25848 + 17.1950i 0.281868 + 0.774426i
\(494\) 1.32372 0.764250i 0.0595570 0.0343852i
\(495\) −30.1514 + 16.7330i −1.35521 + 0.752093i
\(496\) 1.61672 0.933411i 0.0725927 0.0419114i
\(497\) 9.01876 + 14.0730i 0.404547 + 0.631262i
\(498\) 38.1702 31.4812i 1.71045 1.41071i
\(499\) −1.85083 10.4966i −0.0828545 0.469891i −0.997799 0.0663114i \(-0.978877\pi\)
0.914944 0.403580i \(-0.132234\pi\)
\(500\) −22.3528 + 18.7562i −0.999647 + 0.838803i
\(501\) −0.999475 + 2.67526i −0.0446532 + 0.119522i
\(502\) 8.20692 + 22.5483i 0.366293 + 1.00638i
\(503\) −1.68293 2.91493i −0.0750383 0.129970i 0.826065 0.563575i \(-0.190575\pi\)
−0.901103 + 0.433605i \(0.857241\pi\)
\(504\) −46.2686 + 1.35927i −2.06097 + 0.0605466i
\(505\) −11.3109 + 19.5911i −0.503328 + 0.871790i
\(506\) 77.8012 + 13.7184i 3.45868 + 0.609859i
\(507\) −7.51369 21.2011i −0.333695 0.941573i
\(508\) −5.02891 1.83037i −0.223122 0.0812097i
\(509\) 7.87029 + 2.86455i 0.348844 + 0.126969i 0.510499 0.859878i \(-0.329461\pi\)
−0.161654 + 0.986847i \(0.551683\pi\)
\(510\) 31.2196 53.0309i 1.38243 2.34825i
\(511\) 3.68561 + 5.75109i 0.163042 + 0.254413i
\(512\) 49.3168i 2.17951i
\(513\) −27.1071 0.689392i −1.19681 0.0304374i
\(514\) 12.0415 + 6.95217i 0.531128 + 0.306647i
\(515\) −2.66596 0.470080i −0.117476 0.0207142i
\(516\) 15.2646 + 8.98639i 0.671988 + 0.395604i
\(517\) 13.5866 + 16.1919i 0.597538 + 0.712118i
\(518\) 11.7847 4.91853i 0.517790 0.216108i
\(519\) 31.1361 + 5.76266i 1.36672 + 0.252953i
\(520\) −0.323992 + 1.83745i −0.0142080 + 0.0805774i
\(521\) −8.12400 14.0712i −0.355919 0.616470i 0.631356 0.775493i \(-0.282499\pi\)
−0.987275 + 0.159024i \(0.949165\pi\)
\(522\) 4.20778 + 26.4808i 0.184170 + 1.15903i
\(523\) 24.4735 + 14.1298i 1.07015 + 0.617853i 0.928223 0.372024i \(-0.121336\pi\)
0.141929 + 0.989877i \(0.454669\pi\)
\(524\) 5.62005 31.8729i 0.245513 1.39237i
\(525\) 9.19344 + 7.13930i 0.401235 + 0.311585i
\(526\) 19.7653 + 7.19397i 0.861806 + 0.313672i
\(527\) −1.57153 + 0.277102i −0.0684568 + 0.0120708i
\(528\) 33.6787 27.7768i 1.46568 1.20883i
\(529\) −25.5544 21.4427i −1.11106 0.932292i
\(530\) 14.9872 25.9586i 0.651003 1.12757i
\(531\) 4.93076 + 31.0308i 0.213977 + 1.34662i
\(532\) 13.0654 + 58.1936i 0.566456 + 2.52301i
\(533\) −0.501584 + 0.597765i −0.0217260 + 0.0258921i
\(534\) 3.74979 1.32893i 0.162269 0.0575084i
\(535\) 12.1512 33.3851i 0.525341 1.44336i
\(536\) −63.6669 + 11.2262i −2.74999 + 0.484897i
\(537\) −3.70850 + 6.29940i −0.160034 + 0.271839i
\(538\) 16.3783 + 44.9990i 0.706119 + 1.94005i
\(539\) −16.6778 + 24.0929i −0.718363 + 1.03775i
\(540\) 40.8064 46.1933i 1.75603 1.98784i
\(541\) 3.36773 + 5.83309i 0.144790 + 0.250784i 0.929295 0.369339i \(-0.120416\pi\)
−0.784504 + 0.620123i \(0.787083\pi\)
\(542\) −10.9108 + 61.8780i −0.468657 + 2.65789i
\(543\) −9.37251 16.5562i −0.402213 0.710493i
\(544\) −6.11365 + 16.7971i −0.262121 + 0.720171i
\(545\) 1.80768 + 10.2518i 0.0774324 + 0.439141i
\(546\) −1.34129 + 0.0507852i −0.0574020 + 0.00217341i
\(547\) −31.5987 26.5144i −1.35106 1.13368i −0.978633 0.205615i \(-0.934080\pi\)
−0.372429 0.928061i \(-0.621475\pi\)
\(548\) 70.3527i 3.00532i
\(549\) −1.13069 3.27841i −0.0482566 0.139919i
\(550\) −26.7298 −1.13976
\(551\) 17.4341 6.34550i 0.742718 0.270327i
\(552\) −74.7877 + 12.5345i −3.18318 + 0.533503i
\(553\) 25.3437 33.2130i 1.07772 1.41236i
\(554\) −19.1953 + 52.7386i −0.815530 + 2.24065i
\(555\) −3.19572 + 8.55389i −0.135651 + 0.363093i
\(556\) −27.0257 + 32.2080i −1.14615 + 1.36592i
\(557\) 6.51677i 0.276124i 0.990424 + 0.138062i \(0.0440874\pi\)
−0.990424 + 0.138062i \(0.955913\pi\)
\(558\) −2.33796 0.0396348i −0.0989736 0.00167788i
\(559\) 0.238880 + 0.137917i 0.0101036 + 0.00583329i
\(560\) −38.8551 20.0942i −1.64193 0.849133i
\(561\) −35.1734 + 12.4655i −1.48502 + 0.526294i
\(562\) 22.9525 19.2594i 0.968192 0.812409i
\(563\) 4.74872 + 26.9313i 0.200135 + 1.13502i 0.904914 + 0.425594i \(0.139935\pi\)
−0.704780 + 0.709426i \(0.748954\pi\)
\(564\) −32.5575 19.1668i −1.37092 0.807070i
\(565\) −4.76755 + 5.68175i −0.200572 + 0.239033i
\(566\) −10.1623 −0.427155
\(567\) 20.7678 + 11.6489i 0.872168 + 0.489207i
\(568\) 36.8433 1.54591
\(569\) −18.6968 + 22.2820i −0.783813 + 0.934111i −0.999099 0.0424395i \(-0.986487\pi\)
0.215286 + 0.976551i \(0.430931\pi\)
\(570\) −53.7682 31.6537i −2.25210 1.32583i
\(571\) 3.02630 + 17.1630i 0.126647 + 0.718250i 0.980316 + 0.197434i \(0.0632609\pi\)
−0.853669 + 0.520815i \(0.825628\pi\)
\(572\) 1.61396 1.35427i 0.0674830 0.0566249i
\(573\) −16.5842 + 5.87748i −0.692817 + 0.245535i
\(574\) −24.0352 37.5049i −1.00321 1.56543i
\(575\) 16.5141 + 9.53441i 0.688685 + 0.397612i
\(576\) 5.11220 8.51782i 0.213008 0.354909i
\(577\) 22.7151i 0.945641i −0.881159 0.472821i \(-0.843236\pi\)
0.881159 0.472821i \(-0.156764\pi\)
\(578\) 15.3358 18.2765i 0.637884 0.760200i
\(579\) 5.23840 14.0215i 0.217700 0.582712i
\(580\) −14.4237 + 39.6287i −0.598911 + 1.64549i
\(581\) 11.5795 + 27.7444i 0.480401 + 1.15103i
\(582\) 25.6453 4.29817i 1.06303 0.178165i
\(583\) −17.0804 + 6.21677i −0.707400 + 0.257472i
\(584\) 15.0564 0.623039
\(585\) 0.629322 0.724687i 0.0260193 0.0299621i
\(586\) 4.46687i 0.184525i
\(587\) −1.35014 1.13291i −0.0557264 0.0467600i 0.614499 0.788918i \(-0.289358\pi\)
−0.670225 + 0.742158i \(0.733803\pi\)
\(588\) 13.7124 50.5480i 0.565492 2.08456i
\(589\) 0.280955 + 1.59338i 0.0115766 + 0.0656539i
\(590\) −24.7273 + 67.9377i −1.01801 + 2.79695i
\(591\) −0.615955 1.08806i −0.0253370 0.0447568i
\(592\) 2.00741 11.3846i 0.0825039 0.467903i
\(593\) −20.7313 35.9077i −0.851334 1.47455i −0.880005 0.474965i \(-0.842461\pi\)
0.0286712 0.999589i \(-0.490872\pi\)
\(594\) −54.0741 + 8.12308i −2.21869 + 0.333294i
\(595\) 25.3358 + 27.5004i 1.03867 + 1.12741i
\(596\) −24.7565 68.0180i −1.01407 2.78613i
\(597\) 19.1365 32.5059i 0.783203 1.33038i
\(598\) −2.16550 + 0.381835i −0.0885537 + 0.0156144i
\(599\) 7.24754 19.9124i 0.296126 0.813600i −0.699012 0.715110i \(-0.746376\pi\)
0.995138 0.0984901i \(-0.0314013\pi\)
\(600\) 24.1833 8.57057i 0.987277 0.349892i
\(601\) 5.31277 6.33151i 0.216712 0.258268i −0.646726 0.762723i \(-0.723862\pi\)
0.863438 + 0.504455i \(0.168307\pi\)
\(602\) −11.5807 + 10.6692i −0.471996 + 0.434843i
\(603\) 31.0538 + 11.9026i 1.26461 + 0.484709i
\(604\) −32.3285 + 55.9947i −1.31543 + 2.27839i
\(605\) 13.7206 + 11.5130i 0.557822 + 0.468068i
\(606\) −27.6738 + 22.8242i −1.12417 + 0.927169i
\(607\) −15.5617 + 2.74395i −0.631630 + 0.111373i −0.480292 0.877109i \(-0.659469\pi\)
−0.151338 + 0.988482i \(0.548358\pi\)
\(608\) 17.0307 + 6.19865i 0.690684 + 0.251389i
\(609\) −16.1403 2.22004i −0.654040 0.0899604i
\(610\) 1.38566 7.85846i 0.0561037 0.318180i
\(611\) −0.509501 0.294161i −0.0206122 0.0119005i
\(612\) 51.8151 42.0021i 2.09450 1.69783i
\(613\) 9.40541 + 16.2906i 0.379881 + 0.657973i 0.991045 0.133531i \(-0.0426316\pi\)
−0.611164 + 0.791504i \(0.709298\pi\)
\(614\) −8.58183 + 48.6699i −0.346334 + 1.96416i
\(615\) 31.3212 + 5.79690i 1.26299 + 0.233754i
\(616\) 24.8772 + 59.6052i 1.00233 + 2.40156i
\(617\) −1.65294 1.96989i −0.0665447 0.0793049i 0.731745 0.681578i \(-0.238706\pi\)
−0.798290 + 0.602273i \(0.794262\pi\)
\(618\) −3.69923 2.17776i −0.148805 0.0876025i
\(619\) −15.5121 2.73521i −0.623485 0.109937i −0.147024 0.989133i \(-0.546969\pi\)
−0.476461 + 0.879196i \(0.658081\pi\)
\(620\) −3.18499 1.83885i −0.127912 0.0738501i
\(621\) 36.3053 + 14.2695i 1.45688 + 0.572613i
\(622\) 66.5577i 2.66872i
\(623\) 0.111932 + 2.41474i 0.00448444 + 0.0967443i
\(624\) −0.616445 + 1.04712i −0.0246775 + 0.0419182i
\(625\) 29.3639 + 10.6876i 1.17456 + 0.427503i
\(626\) −11.9090 4.33451i −0.475979 0.173242i
\(627\) 12.6388 + 35.6624i 0.504745 + 1.42422i
\(628\) −13.7423 2.42314i −0.548379 0.0966939i
\(629\) −4.94086 + 8.55781i −0.197005 + 0.341222i
\(630\) 28.7771 + 46.6255i 1.14651 + 1.85760i
\(631\) −21.8676 37.8758i −0.870536 1.50781i −0.861443 0.507855i \(-0.830439\pi\)
−0.00909374 0.999959i \(-0.502895\pi\)
\(632\) −31.4960 86.5344i −1.25284 3.44215i
\(633\) 5.87002 15.7121i 0.233312 0.624500i
\(634\) −59.5178 + 49.9413i −2.36375 + 1.98342i
\(635\) 0.590719 + 3.35014i 0.0234420 + 0.132946i
\(636\) 25.0642 20.6719i 0.993858 0.819693i
\(637\) 0.206853 0.788920i 0.00819580 0.0312582i
\(638\) 32.4009 18.7067i 1.28276 0.740604i
\(639\) −16.2507 9.75332i −0.642869 0.385835i
\(640\) 36.3139 20.9659i 1.43543 0.828748i
\(641\) −8.51714 23.4007i −0.336407 0.924270i −0.986405 0.164334i \(-0.947452\pi\)
0.649998 0.759936i \(-0.274770\pi\)
\(642\) 36.5771 42.8480i 1.44358 1.69108i
\(643\) 22.2139 3.91690i 0.876029 0.154468i 0.282488 0.959271i \(-0.408840\pi\)
0.593542 + 0.804803i \(0.297729\pi\)
\(644\) 10.9707 85.0972i 0.432307 3.35330i
\(645\) 0.0954307 11.2592i 0.00375758 0.443332i
\(646\) −51.7239 43.4015i −2.03505 1.70761i
\(647\) −1.19357 + 2.06732i −0.0469239 + 0.0812747i −0.888533 0.458812i \(-0.848275\pi\)
0.841609 + 0.540087i \(0.181609\pi\)
\(648\) 46.3179 24.6874i 1.81954 0.969812i
\(649\) 37.9680 21.9208i 1.49038 0.860468i
\(650\) 0.699122 0.254459i 0.0274218 0.00998072i
\(651\) 0.435081 1.35255i 0.0170522 0.0530107i
\(652\) 25.5218 21.4153i 0.999509 0.838688i
\(653\) −23.6895 28.2321i −0.927043 1.10481i −0.994252 0.107067i \(-0.965854\pi\)
0.0672091 0.997739i \(-0.478591\pi\)
\(654\) −3.00414 + 16.2316i −0.117471 + 0.634707i
\(655\) −19.3321 + 7.03630i −0.755367 + 0.274931i
\(656\) −40.3256 −1.57445
\(657\) −6.64103 3.98580i −0.259091 0.155501i
\(658\) 24.7003 22.7560i 0.962916 0.887122i
\(659\) −7.39431 1.30382i −0.288041 0.0507895i 0.0277605 0.999615i \(-0.491162\pi\)
−0.315802 + 0.948825i \(0.602274\pi\)
\(660\) −80.5642 30.0987i −3.13596 1.17159i
\(661\) −5.35183 6.37807i −0.208162 0.248078i 0.651854 0.758344i \(-0.273991\pi\)
−0.860017 + 0.510266i \(0.829547\pi\)
\(662\) −26.5045 31.5869i −1.03013 1.22766i
\(663\) 0.801298 0.660877i 0.0311198 0.0256663i
\(664\) 65.2606 + 11.5072i 2.53260 + 0.446566i
\(665\) 27.8828 25.6880i 1.08125 0.996139i
\(666\) −9.49408 + 10.9328i −0.367888 + 0.423636i
\(667\) −26.6904 −1.03345
\(668\) −6.69311 + 2.43609i −0.258964 + 0.0942553i
\(669\) −45.9440 + 16.2826i −1.77630 + 0.629522i
\(670\) 49.1886 + 58.6207i 1.90032 + 2.26472i
\(671\) −3.70683 + 3.11040i −0.143100 + 0.120076i
\(672\) −10.6841 11.7960i −0.412148 0.455041i
\(673\) 36.7067 13.3601i 1.41494 0.514995i 0.482363 0.875971i \(-0.339779\pi\)
0.932575 + 0.360976i \(0.117556\pi\)
\(674\) −3.12535 + 1.80442i −0.120384 + 0.0695038i
\(675\) −12.9355 2.62161i −0.497888 0.100906i
\(676\) 28.0494 48.5830i 1.07882 1.86858i
\(677\) 14.6753 + 12.3140i 0.564017 + 0.473267i 0.879655 0.475613i \(-0.157774\pi\)
−0.315637 + 0.948880i \(0.602218\pi\)
\(678\) −10.2350 + 5.79408i −0.393073 + 0.222520i
\(679\) −2.02022 + 15.6704i −0.0775290 + 0.601375i
\(680\) 81.1684 14.3122i 3.11267 0.548847i
\(681\) 4.43285 + 12.5080i 0.169867 + 0.479307i
\(682\) 1.11591 + 3.06595i 0.0427305 + 0.117401i
\(683\) −35.5943 + 20.5504i −1.36198 + 0.786338i −0.989887 0.141858i \(-0.954692\pi\)
−0.372090 + 0.928196i \(0.621359\pi\)
\(684\) −42.5861 52.5355i −1.62832 2.00874i
\(685\) 38.7288 22.3601i 1.47975 0.854335i
\(686\) 39.4674 + 24.6985i 1.50687 + 0.942993i
\(687\) −23.0691 8.61858i −0.880141 0.328819i
\(688\) 2.47528 + 14.0380i 0.0943692 + 0.535194i
\(689\) 0.387559 0.325201i 0.0147648 0.0123892i
\(690\) 57.1115 + 69.2464i 2.17420 + 2.63617i
\(691\) −14.5222 39.8994i −0.552451 1.51785i −0.830353 0.557237i \(-0.811861\pi\)
0.277903 0.960609i \(-0.410361\pi\)
\(692\) 39.4868 + 68.3932i 1.50106 + 2.59992i
\(693\) 4.80622 32.8761i 0.182573 1.24886i
\(694\) −8.00228 + 13.8604i −0.303763 + 0.526132i
\(695\) 26.3199 + 4.64091i 0.998370 + 0.176040i
\(696\) −23.3160 + 27.3134i −0.883791 + 1.03531i
\(697\) 32.3917 + 11.7896i 1.22693 + 0.446564i
\(698\) 20.6993 + 7.53394i 0.783481 + 0.285164i
\(699\) −19.1911 33.9002i −0.725873 1.28222i
\(700\) 1.34423 + 28.9994i 0.0508070 + 1.09608i
\(701\) 18.1159i 0.684229i −0.939658 0.342114i \(-0.888857\pi\)
0.939658 0.342114i \(-0.111143\pi\)
\(702\) 1.33699 0.727229i 0.0504613 0.0274475i
\(703\) 8.67679 + 5.00955i 0.327252 + 0.188939i
\(704\) −13.6510 2.40703i −0.514490 0.0907185i
\(705\) −0.203542 + 24.0145i −0.00766582 + 0.904439i
\(706\) −3.54983 4.23052i −0.133600 0.159218i
\(707\) −8.39529 20.1150i −0.315737 0.756501i
\(708\) −50.8777 + 59.6004i −1.91210 + 2.23992i
\(709\) −1.63998 + 9.30078i −0.0615907 + 0.349298i 0.938402 + 0.345545i \(0.112306\pi\)
−0.999993 + 0.00375331i \(0.998805\pi\)
\(710\) −21.8054 37.7681i −0.818342 1.41741i
\(711\) −9.01563 + 46.5060i −0.338112 + 1.74411i
\(712\) 4.61446 + 2.66416i 0.172934 + 0.0998437i
\(713\) 0.404182 2.29223i 0.0151367 0.0858448i
\(714\) 22.3731 + 54.9103i 0.837293 + 2.05497i
\(715\) −1.25848 0.458050i −0.0470645 0.0171301i
\(716\) −17.9544 + 3.16584i −0.670986 + 0.118313i
\(717\) 6.82259 + 40.7074i 0.254794 + 1.52025i
\(718\) −25.6525 21.5250i −0.957344 0.803307i
\(719\) −7.27759 + 12.6052i −0.271408 + 0.470093i −0.969223 0.246186i \(-0.920823\pi\)
0.697814 + 0.716279i \(0.254156\pi\)
\(720\) 49.5933 + 0.840744i 1.84823 + 0.0313327i
\(721\) 1.91833 1.76733i 0.0714422 0.0658187i
\(722\) −13.3025 + 15.8533i −0.495068 + 0.589999i
\(723\) −17.8668 15.2519i −0.664474 0.567226i
\(724\) 16.2286 44.5876i 0.603129 1.65708i
\(725\) 8.89338 1.56814i 0.330292 0.0582394i
\(726\) 13.9919 + 24.7161i 0.519288 + 0.917300i
\(727\) −5.63920 15.4936i −0.209146 0.574625i 0.790119 0.612954i \(-0.210019\pi\)
−0.999265 + 0.0383287i \(0.987797\pi\)
\(728\) −1.21809 1.32216i −0.0451454 0.0490025i
\(729\) −26.9651 1.37245i −0.998707 0.0508315i
\(730\) −8.91101 15.4343i −0.329811 0.571250i
\(731\) 2.11588 11.9998i 0.0782587 0.443827i
\(732\) 4.38789 7.45344i 0.162181 0.275487i
\(733\) 10.6559 29.2767i 0.393583 1.08136i −0.571770 0.820414i \(-0.693743\pi\)
0.965353 0.260947i \(-0.0840348\pi\)
\(734\) −4.65451 26.3970i −0.171801 0.974332i
\(735\) −32.1846 + 8.51695i −1.18715 + 0.314152i
\(736\) −19.9728 16.7592i −0.736209 0.617753i
\(737\) 46.4045i 1.70933i
\(738\) 43.3086 + 25.9928i 1.59421 + 0.956809i
\(739\) −4.19837 −0.154440 −0.0772198 0.997014i \(-0.524604\pi\)
−0.0772198 + 0.997014i \(0.524604\pi\)
\(740\) −21.4006 + 7.78916i −0.786700 + 0.286335i
\(741\) −0.670065 0.812438i −0.0246155 0.0298457i
\(742\) 11.1240 + 26.6528i 0.408373 + 0.978455i
\(743\) −15.8926 + 43.6646i −0.583044 + 1.60190i 0.199906 + 0.979815i \(0.435936\pi\)
−0.782950 + 0.622085i \(0.786286\pi\)
\(744\) −1.99266 2.41605i −0.0730544 0.0885767i
\(745\) −29.5752 + 35.2464i −1.08355 + 1.29133i
\(746\) 35.1960i 1.28862i
\(747\) −25.7387 22.3516i −0.941730 0.817803i
\(748\) −80.6011 46.5351i −2.94707 1.70149i
\(749\) 18.4702 + 28.8212i 0.674886 + 1.05310i
\(750\) 22.3699 + 19.0960i 0.816834 + 0.697287i
\(751\) 39.5891 33.2192i 1.44463 1.21219i 0.508240 0.861216i \(-0.330296\pi\)
0.936387 0.350970i \(-0.114148\pi\)
\(752\) −5.27946 29.9413i −0.192522 1.09185i
\(753\) 14.3871 8.14458i 0.524294 0.296805i
\(754\) −0.669368 + 0.797721i −0.0243769 + 0.0290513i
\(755\) 41.0997 1.49577
\(756\) 11.5322 + 58.2571i 0.419421 + 2.11879i
\(757\) −34.5687 −1.25642 −0.628210 0.778044i \(-0.716212\pi\)
−0.628210 + 0.778044i \(0.716212\pi\)
\(758\) −55.9273 + 66.6515i −2.03137 + 2.42089i
\(759\) 0.461325 54.4287i 0.0167450 1.97564i
\(760\) −14.5112 82.2969i −0.526375 2.98522i
\(761\) −6.86703 + 5.76212i −0.248930 + 0.208877i −0.758711 0.651427i \(-0.774171\pi\)
0.509782 + 0.860304i \(0.329726\pi\)
\(762\) −0.981704 + 5.30423i −0.0355634 + 0.192152i
\(763\) −8.90937 4.60754i −0.322541 0.166804i
\(764\) −38.0034 21.9413i −1.37491 0.793807i
\(765\) −39.5903 15.1745i −1.43139 0.548634i
\(766\) 42.5448i 1.53720i
\(767\) −0.784379 + 0.934786i −0.0283223 + 0.0337532i