Properties

Label 189.2.ba.a.101.19
Level $189$
Weight $2$
Character 189.101
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 101.19
Character \(\chi\) \(=\) 189.101
Dual form 189.2.ba.a.131.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.34473 - 1.60259i) q^{2} +(0.0648568 - 1.73084i) q^{3} +(-0.412694 - 2.34051i) q^{4} +(0.275976 - 0.231571i) q^{5} +(-2.68661 - 2.43145i) q^{6} +(2.18789 + 1.48767i) q^{7} +(-0.682329 - 0.393943i) q^{8} +(-2.99159 - 0.224513i) q^{9} +O(q^{10})\) \(q+(1.34473 - 1.60259i) q^{2} +(0.0648568 - 1.73084i) q^{3} +(-0.412694 - 2.34051i) q^{4} +(0.275976 - 0.231571i) q^{5} +(-2.68661 - 2.43145i) q^{6} +(2.18789 + 1.48767i) q^{7} +(-0.682329 - 0.393943i) q^{8} +(-2.99159 - 0.224513i) q^{9} -0.753678i q^{10} +(-4.02242 + 4.79373i) q^{11} +(-4.07780 + 0.562508i) q^{12} +(-0.429890 + 1.18111i) q^{13} +(5.32625 - 1.50578i) q^{14} +(-0.382913 - 0.492688i) q^{15} +(2.91769 - 1.06195i) q^{16} -0.937219 q^{17} +(-4.38269 + 4.49238i) q^{18} -7.64344i q^{19} +(-0.655887 - 0.550354i) q^{20} +(2.71680 - 3.69039i) q^{21} +(2.27331 + 12.8926i) q^{22} +(-0.584919 + 1.60705i) q^{23} +(-0.726104 + 1.15545i) q^{24} +(-0.845703 + 4.79622i) q^{25} +(1.31476 + 2.27722i) q^{26} +(-0.582620 + 5.16339i) q^{27} +(2.57896 - 5.73471i) q^{28} +(-0.731568 - 2.00997i) q^{29} +(-1.30449 - 0.0488812i) q^{30} +(5.71494 - 1.00770i) q^{31} +(2.76059 - 7.58465i) q^{32} +(8.03628 + 7.27305i) q^{33} +(-1.26031 + 1.50198i) q^{34} +(0.948304 - 0.0960919i) q^{35} +(0.709137 + 7.09448i) q^{36} +(1.66757 - 2.88831i) q^{37} +(-12.2493 - 10.2784i) q^{38} +(2.01643 + 0.820673i) q^{39} +(-0.279532 + 0.0492890i) q^{40} +(-8.66669 - 3.15442i) q^{41} +(-2.26081 - 9.31652i) q^{42} +(-0.688669 + 3.90564i) q^{43} +(12.8798 + 7.43615i) q^{44} +(-0.877596 + 0.630805i) q^{45} +(1.78889 + 3.09844i) q^{46} +(0.876005 - 4.96807i) q^{47} +(-1.64883 - 5.11892i) q^{48} +(2.57370 + 6.50969i) q^{49} +(6.54914 + 7.80496i) q^{50} +(-0.0607850 + 1.62217i) q^{51} +(2.94182 + 0.518722i) q^{52} +(-3.01037 - 1.73804i) q^{53} +(7.49133 + 7.87709i) q^{54} +2.25443i q^{55} +(-0.906803 - 1.87698i) q^{56} +(-13.2295 - 0.495729i) q^{57} +(-4.20492 - 1.53047i) q^{58} +(6.00562 + 2.18587i) q^{59} +(-0.995112 + 1.09954i) q^{60} +(-10.3015 - 1.81644i) q^{61} +(6.07015 - 10.5138i) q^{62} +(-6.21126 - 4.94169i) q^{63} +(-5.33790 - 9.24552i) q^{64} +(0.154873 + 0.425509i) q^{65} +(22.4624 - 3.09856i) q^{66} +(-0.222678 + 0.186849i) q^{67} +(0.386785 + 2.19357i) q^{68} +(2.74361 + 1.11663i) q^{69} +(1.12122 - 1.64896i) q^{70} +(-4.18316 + 2.41515i) q^{71} +(1.95280 + 1.33171i) q^{72} +(-3.19638 + 1.84543i) q^{73} +(-2.38635 - 6.55643i) q^{74} +(8.24663 + 1.77484i) q^{75} +(-17.8895 + 3.15440i) q^{76} +(-15.9321 + 4.50413i) q^{77} +(4.02677 - 2.12793i) q^{78} +(7.90824 + 6.63581i) q^{79} +(0.559294 - 0.968725i) q^{80} +(8.89919 + 1.34330i) q^{81} +(-16.7096 + 9.64732i) q^{82} +(6.06917 - 2.20900i) q^{83} +(-9.75859 - 4.83569i) q^{84} +(-0.258650 + 0.217033i) q^{85} +(5.33306 + 6.35570i) q^{86} +(-3.52637 + 1.13586i) q^{87} +(4.63307 - 1.68630i) q^{88} +5.12391 q^{89} +(-0.169211 + 2.25469i) q^{90} +(-2.69765 + 1.94461i) q^{91} +(4.00271 + 0.705785i) q^{92} +(-1.37351 - 9.95699i) q^{93} +(-6.78379 - 8.08461i) q^{94} +(-1.77000 - 2.10940i) q^{95} +(-12.9487 - 5.27004i) q^{96} +(-7.91567 - 1.39575i) q^{97} +(13.8933 + 4.62921i) q^{98} +(13.1097 - 13.4378i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34473 1.60259i 0.950871 1.13320i −0.0401094 0.999195i \(-0.512771\pi\)
0.990980 0.134008i \(-0.0427849\pi\)
\(3\) 0.0648568 1.73084i 0.0374451 0.999299i
\(4\) −0.412694 2.34051i −0.206347 1.17025i
\(5\) 0.275976 0.231571i 0.123420 0.103562i −0.578989 0.815336i \(-0.696552\pi\)
0.702409 + 0.711774i \(0.252108\pi\)
\(6\) −2.68661 2.43145i −1.09680 0.992637i
\(7\) 2.18789 + 1.48767i 0.826944 + 0.562285i
\(8\) −0.682329 0.393943i −0.241240 0.139280i
\(9\) −2.99159 0.224513i −0.997196 0.0748377i
\(10\) 0.753678i 0.238334i
\(11\) −4.02242 + 4.79373i −1.21281 + 1.44536i −0.352327 + 0.935877i \(0.614610\pi\)
−0.860478 + 0.509488i \(0.829835\pi\)
\(12\) −4.07780 + 0.562508i −1.17716 + 0.162382i
\(13\) −0.429890 + 1.18111i −0.119230 + 0.327582i −0.984923 0.172994i \(-0.944656\pi\)
0.865693 + 0.500576i \(0.166878\pi\)
\(14\) 5.32625 1.50578i 1.42350 0.402435i
\(15\) −0.382913 0.492688i −0.0988676 0.127211i
\(16\) 2.91769 1.06195i 0.729422 0.265488i
\(17\) −0.937219 −0.227309 −0.113654 0.993520i \(-0.536256\pi\)
−0.113654 + 0.993520i \(0.536256\pi\)
\(18\) −4.38269 + 4.49238i −1.03301 + 1.05886i
\(19\) 7.64344i 1.75352i −0.480924 0.876762i \(-0.659699\pi\)
0.480924 0.876762i \(-0.340301\pi\)
\(20\) −0.655887 0.550354i −0.146661 0.123063i
\(21\) 2.71680 3.69039i 0.592855 0.805309i
\(22\) 2.27331 + 12.8926i 0.484672 + 2.74871i
\(23\) −0.584919 + 1.60705i −0.121964 + 0.335093i −0.985617 0.168993i \(-0.945948\pi\)
0.863653 + 0.504086i \(0.168171\pi\)
\(24\) −0.726104 + 1.15545i −0.148215 + 0.235855i
\(25\) −0.845703 + 4.79622i −0.169141 + 0.959245i
\(26\) 1.31476 + 2.27722i 0.257845 + 0.446600i
\(27\) −0.582620 + 5.16339i −0.112125 + 0.993694i
\(28\) 2.57896 5.73471i 0.487378 1.08376i
\(29\) −0.731568 2.00997i −0.135849 0.373241i 0.853051 0.521828i \(-0.174750\pi\)
−0.988899 + 0.148587i \(0.952528\pi\)
\(30\) −1.30449 0.0488812i −0.238167 0.00892444i
\(31\) 5.71494 1.00770i 1.02643 0.180988i 0.365013 0.931002i \(-0.381065\pi\)
0.661421 + 0.750014i \(0.269953\pi\)
\(32\) 2.76059 7.58465i 0.488007 1.34079i
\(33\) 8.03628 + 7.27305i 1.39894 + 1.26608i
\(34\) −1.26031 + 1.50198i −0.216141 + 0.257587i
\(35\) 0.948304 0.0960919i 0.160293 0.0162425i
\(36\) 0.709137 + 7.09448i 0.118189 + 1.18241i
\(37\) 1.66757 2.88831i 0.274146 0.474835i −0.695773 0.718261i \(-0.744938\pi\)
0.969919 + 0.243427i \(0.0782715\pi\)
\(38\) −12.2493 10.2784i −1.98710 1.66738i
\(39\) 2.01643 + 0.820673i 0.322888 + 0.131413i
\(40\) −0.279532 + 0.0492890i −0.0441978 + 0.00779327i
\(41\) −8.66669 3.15442i −1.35351 0.492637i −0.439468 0.898258i \(-0.644833\pi\)
−0.914041 + 0.405621i \(0.867055\pi\)
\(42\) −2.26081 9.31652i −0.348850 1.43757i
\(43\) −0.688669 + 3.90564i −0.105021 + 0.595604i 0.886191 + 0.463320i \(0.153342\pi\)
−0.991212 + 0.132284i \(0.957769\pi\)
\(44\) 12.8798 + 7.43615i 1.94170 + 1.12104i
\(45\) −0.877596 + 0.630805i −0.130824 + 0.0940348i
\(46\) 1.78889 + 3.09844i 0.263757 + 0.456841i
\(47\) 0.876005 4.96807i 0.127778 0.724667i −0.851840 0.523802i \(-0.824513\pi\)
0.979619 0.200866i \(-0.0643755\pi\)
\(48\) −1.64883 5.11892i −0.237989 0.738852i
\(49\) 2.57370 + 6.50969i 0.367672 + 0.929956i
\(50\) 6.54914 + 7.80496i 0.926189 + 1.10379i
\(51\) −0.0607850 + 1.62217i −0.00851161 + 0.227150i
\(52\) 2.94182 + 0.518722i 0.407957 + 0.0719338i
\(53\) −3.01037 1.73804i −0.413506 0.238738i 0.278789 0.960352i \(-0.410067\pi\)
−0.692295 + 0.721614i \(0.743400\pi\)
\(54\) 7.49133 + 7.87709i 1.01944 + 1.07194i
\(55\) 2.25443i 0.303987i
\(56\) −0.906803 1.87698i −0.121177 0.250822i
\(57\) −13.2295 0.495729i −1.75229 0.0656609i
\(58\) −4.20492 1.53047i −0.552133 0.200960i
\(59\) 6.00562 + 2.18587i 0.781866 + 0.284576i 0.701950 0.712226i \(-0.252313\pi\)
0.0799153 + 0.996802i \(0.474535\pi\)
\(60\) −0.995112 + 1.09954i −0.128468 + 0.141950i
\(61\) −10.3015 1.81644i −1.31898 0.232571i −0.530525 0.847669i \(-0.678005\pi\)
−0.788451 + 0.615098i \(0.789116\pi\)
\(62\) 6.07015 10.5138i 0.770910 1.33526i
\(63\) −6.21126 4.94169i −0.782545 0.622595i
\(64\) −5.33790 9.24552i −0.667238 1.15569i
\(65\) 0.154873 + 0.425509i 0.0192096 + 0.0527779i
\(66\) 22.4624 3.09856i 2.76493 0.381406i
\(67\) −0.222678 + 0.186849i −0.0272045 + 0.0228273i −0.656289 0.754510i \(-0.727875\pi\)
0.629084 + 0.777337i \(0.283430\pi\)
\(68\) 0.386785 + 2.19357i 0.0469046 + 0.266009i
\(69\) 2.74361 + 1.11663i 0.330291 + 0.134426i
\(70\) 1.12122 1.64896i 0.134011 0.197089i
\(71\) −4.18316 + 2.41515i −0.496450 + 0.286625i −0.727246 0.686377i \(-0.759200\pi\)
0.230797 + 0.973002i \(0.425867\pi\)
\(72\) 1.95280 + 1.33171i 0.230140 + 0.156943i
\(73\) −3.19638 + 1.84543i −0.374108 + 0.215992i −0.675252 0.737587i \(-0.735965\pi\)
0.301143 + 0.953579i \(0.402632\pi\)
\(74\) −2.38635 6.55643i −0.277407 0.762170i
\(75\) 8.24663 + 1.77484i 0.952238 + 0.204941i
\(76\) −17.8895 + 3.15440i −2.05207 + 0.361835i
\(77\) −15.9321 + 4.50413i −1.81563 + 0.513293i
\(78\) 4.02677 2.12793i 0.455942 0.240941i
\(79\) 7.90824 + 6.63581i 0.889747 + 0.746586i 0.968159 0.250335i \(-0.0805406\pi\)
−0.0784124 + 0.996921i \(0.524985\pi\)
\(80\) 0.559294 0.968725i 0.0625309 0.108307i
\(81\) 8.89919 + 1.34330i 0.988799 + 0.149256i
\(82\) −16.7096 + 9.64732i −1.84527 + 1.06537i
\(83\) 6.06917 2.20900i 0.666178 0.242469i 0.0132766 0.999912i \(-0.495774\pi\)
0.652901 + 0.757443i \(0.273552\pi\)
\(84\) −9.75859 4.83569i −1.06475 0.527618i
\(85\) −0.258650 + 0.217033i −0.0280545 + 0.0235405i
\(86\) 5.33306 + 6.35570i 0.575079 + 0.685353i
\(87\) −3.52637 + 1.13586i −0.378066 + 0.121777i
\(88\) 4.63307 1.68630i 0.493887 0.179760i
\(89\) 5.12391 0.543133 0.271566 0.962420i \(-0.412458\pi\)
0.271566 + 0.962420i \(0.412458\pi\)
\(90\) −0.169211 + 2.25469i −0.0178364 + 0.237666i
\(91\) −2.69765 + 1.94461i −0.282791 + 0.203851i
\(92\) 4.00271 + 0.705785i 0.417311 + 0.0735832i
\(93\) −1.37351 9.95699i −0.142426 1.03249i
\(94\) −6.78379 8.08461i −0.699695 0.833864i
\(95\) −1.77000 2.10940i −0.181598 0.216420i
\(96\) −12.9487 5.27004i −1.32158 0.537871i
\(97\) −7.91567 1.39575i −0.803714 0.141717i −0.243324 0.969945i \(-0.578238\pi\)
−0.560390 + 0.828229i \(0.689349\pi\)
\(98\) 13.8933 + 4.62921i 1.40344 + 0.467621i
\(99\) 13.1097 13.4378i 1.31757 1.35055i
\(100\) 11.5746 1.15746
\(101\) −13.3809 + 4.87023i −1.33145 + 0.484606i −0.907108 0.420898i \(-0.861715\pi\)
−0.424337 + 0.905504i \(0.639493\pi\)
\(102\) 2.51794 + 2.27880i 0.249313 + 0.225635i
\(103\) 4.11263 + 4.90124i 0.405230 + 0.482934i 0.929607 0.368552i \(-0.120146\pi\)
−0.524377 + 0.851486i \(0.675702\pi\)
\(104\) 0.758617 0.636556i 0.0743886 0.0624194i
\(105\) −0.104815 1.64759i −0.0102289 0.160788i
\(106\) −6.83352 + 2.48720i −0.663730 + 0.241578i
\(107\) −2.81413 + 1.62474i −0.272053 + 0.157070i −0.629820 0.776741i \(-0.716871\pi\)
0.357767 + 0.933811i \(0.383538\pi\)
\(108\) 12.3254 0.767274i 1.18601 0.0738310i
\(109\) 6.30335 10.9177i 0.603751 1.04573i −0.388496 0.921450i \(-0.627005\pi\)
0.992247 0.124278i \(-0.0396613\pi\)
\(110\) 3.61293 + 3.03161i 0.344479 + 0.289052i
\(111\) −4.89103 3.07361i −0.464236 0.291734i
\(112\) 7.96340 + 2.01711i 0.752471 + 0.190599i
\(113\) −14.5530 + 2.56609i −1.36903 + 0.241397i −0.809358 0.587315i \(-0.800185\pi\)
−0.559674 + 0.828713i \(0.689074\pi\)
\(114\) −18.5847 + 20.5349i −1.74061 + 1.92327i
\(115\) 0.210723 + 0.578957i 0.0196500 + 0.0539880i
\(116\) −4.40242 + 2.54174i −0.408755 + 0.235995i
\(117\) 1.55123 3.43689i 0.143411 0.317740i
\(118\) 11.5790 6.68515i 1.06594 0.615418i
\(119\) −2.05053 1.39427i −0.187972 0.127812i
\(120\) 0.0671816 + 0.487020i 0.00613281 + 0.0444587i
\(121\) −4.88989 27.7319i −0.444535 2.52108i
\(122\) −16.7638 + 14.0665i −1.51773 + 1.27352i
\(123\) −6.02187 + 14.7960i −0.542974 + 1.33411i
\(124\) −4.71705 12.9600i −0.423604 1.16384i
\(125\) 1.77792 + 3.07945i 0.159022 + 0.275435i
\(126\) −16.2720 + 3.30885i −1.44963 + 0.294775i
\(127\) 7.01123 12.1438i 0.622146 1.07759i −0.366939 0.930245i \(-0.619594\pi\)
0.989085 0.147344i \(-0.0470724\pi\)
\(128\) −6.09727 1.07511i −0.538928 0.0950275i
\(129\) 6.71535 + 1.44528i 0.591254 + 0.127250i
\(130\) 0.890179 + 0.323999i 0.0780739 + 0.0284166i
\(131\) 2.46411 + 0.896863i 0.215290 + 0.0783593i 0.447414 0.894327i \(-0.352345\pi\)
−0.232123 + 0.972686i \(0.574567\pi\)
\(132\) 13.7061 21.8105i 1.19296 1.89836i
\(133\) 11.3709 16.7230i 0.985980 1.45007i
\(134\) 0.608125i 0.0525340i
\(135\) 1.03490 + 1.55989i 0.0890701 + 0.134254i
\(136\) 0.639491 + 0.369210i 0.0548359 + 0.0316595i
\(137\) 9.59321 + 1.69154i 0.819603 + 0.144518i 0.567701 0.823235i \(-0.307833\pi\)
0.251902 + 0.967753i \(0.418944\pi\)
\(138\) 5.47892 2.89532i 0.466397 0.246466i
\(139\) 0.0836111 + 0.0996438i 0.00709180 + 0.00845168i 0.769579 0.638552i \(-0.220466\pi\)
−0.762487 + 0.647004i \(0.776022\pi\)
\(140\) −0.616263 2.17985i −0.0520837 0.184231i
\(141\) −8.54210 1.83843i −0.719374 0.154824i
\(142\) −1.75474 + 9.95163i −0.147255 + 0.835122i
\(143\) −3.93274 6.81171i −0.328873 0.569624i
\(144\) −8.96694 + 2.52186i −0.747245 + 0.210155i
\(145\) −0.667345 0.385292i −0.0554199 0.0319967i
\(146\) −1.34081 + 7.60411i −0.110966 + 0.629321i
\(147\) 11.4341 4.03246i 0.943071 0.332592i
\(148\) −7.44829 2.71096i −0.612246 0.222839i
\(149\) 14.1676 2.49814i 1.16066 0.204655i 0.440034 0.897981i \(-0.354966\pi\)
0.720624 + 0.693326i \(0.243855\pi\)
\(150\) 13.9339 10.8293i 1.13770 0.884208i
\(151\) 15.5163 + 13.0197i 1.26269 + 1.05953i 0.995390 + 0.0959147i \(0.0305776\pi\)
0.267305 + 0.963612i \(0.413867\pi\)
\(152\) −3.01107 + 5.21533i −0.244230 + 0.423019i
\(153\) 2.80377 + 0.210418i 0.226672 + 0.0170113i
\(154\) −14.2061 + 31.5895i −1.14476 + 2.54555i
\(155\) 1.34383 1.60152i 0.107939 0.128637i
\(156\) 1.08862 5.05816i 0.0871593 0.404977i
\(157\) −1.35670 + 3.72752i −0.108277 + 0.297488i −0.981984 0.188964i \(-0.939487\pi\)
0.873707 + 0.486452i \(0.161709\pi\)
\(158\) 21.2690 3.75029i 1.69207 0.298357i
\(159\) −3.20350 + 5.09773i −0.254054 + 0.404277i
\(160\) −0.994530 2.73245i −0.0786245 0.216019i
\(161\) −3.67049 + 2.64588i −0.289275 + 0.208525i
\(162\) 14.1198 12.4554i 1.10936 0.978587i
\(163\) −8.65872 14.9973i −0.678203 1.17468i −0.975522 0.219904i \(-0.929426\pi\)
0.297318 0.954778i \(-0.403908\pi\)
\(164\) −3.80624 + 21.5863i −0.297217 + 1.68560i
\(165\) 3.90205 + 0.146215i 0.303774 + 0.0113828i
\(166\) 4.62130 12.6969i 0.358682 0.985472i
\(167\) 2.13178 + 12.0899i 0.164962 + 0.935548i 0.949103 + 0.314965i \(0.101993\pi\)
−0.784141 + 0.620583i \(0.786896\pi\)
\(168\) −3.30755 + 1.44779i −0.255183 + 0.111700i
\(169\) 8.74835 + 7.34074i 0.672950 + 0.564672i
\(170\) 0.706361i 0.0541754i
\(171\) −1.71605 + 22.8660i −0.131230 + 1.74861i
\(172\) 9.42537 0.718678
\(173\) 19.8439 7.22261i 1.50871 0.549125i 0.550409 0.834895i \(-0.314472\pi\)
0.958298 + 0.285771i \(0.0922495\pi\)
\(174\) −2.92170 + 7.17876i −0.221494 + 0.544221i
\(175\) −8.98548 + 9.23547i −0.679238 + 0.698136i
\(176\) −6.64546 + 18.2582i −0.500920 + 1.37627i
\(177\) 4.17289 10.2530i 0.313653 0.770661i
\(178\) 6.89029 8.21153i 0.516449 0.615480i
\(179\) 9.39393i 0.702135i −0.936350 0.351068i \(-0.885819\pi\)
0.936350 0.351068i \(-0.114181\pi\)
\(180\) 1.83858 + 1.79369i 0.137040 + 0.133694i
\(181\) −8.05463 4.65035i −0.598696 0.345657i 0.169832 0.985473i \(-0.445677\pi\)
−0.768529 + 0.639816i \(0.779011\pi\)
\(182\) −0.511210 + 6.93822i −0.0378934 + 0.514295i
\(183\) −3.81208 + 17.7125i −0.281797 + 1.30934i
\(184\) 1.03219 0.866113i 0.0760943 0.0638507i
\(185\) −0.208641 1.18326i −0.0153396 0.0869952i
\(186\) −17.8040 11.1883i −1.30545 0.820368i
\(187\) 3.76989 4.49278i 0.275681 0.328544i
\(188\) −11.9893 −0.874411
\(189\) −8.95610 + 10.4302i −0.651460 + 0.758683i
\(190\) −5.76069 −0.417924
\(191\) −5.86657 + 6.99151i −0.424490 + 0.505888i −0.935324 0.353791i \(-0.884892\pi\)
0.510834 + 0.859679i \(0.329337\pi\)
\(192\) −16.3487 + 8.63940i −1.17986 + 0.623495i
\(193\) −0.608638 3.45176i −0.0438107 0.248463i 0.955035 0.296492i \(-0.0958169\pi\)
−0.998846 + 0.0480295i \(0.984706\pi\)
\(194\) −12.8813 + 10.8087i −0.924822 + 0.776018i
\(195\) 0.746530 0.240462i 0.0534602 0.0172198i
\(196\) 14.1738 8.71028i 1.01242 0.622163i
\(197\) −17.0883 9.86593i −1.21749 0.702918i −0.253110 0.967438i \(-0.581453\pi\)
−0.964380 + 0.264519i \(0.914787\pi\)
\(198\) −3.90626 39.0797i −0.277605 2.77727i
\(199\) 11.1409i 0.789757i 0.918733 + 0.394878i \(0.129213\pi\)
−0.918733 + 0.394878i \(0.870787\pi\)
\(200\) 2.46648 2.93944i 0.174407 0.207850i
\(201\) 0.308963 + 0.397538i 0.0217926 + 0.0280402i
\(202\) −10.1887 + 27.9932i −0.716875 + 1.96960i
\(203\) 1.38957 5.48591i 0.0975286 0.385035i
\(204\) 3.82179 0.527194i 0.267579 0.0369109i
\(205\) −3.12227 + 1.13641i −0.218069 + 0.0793705i
\(206\) 13.3851 0.932584
\(207\) 2.11064 4.67631i 0.146700 0.325026i
\(208\) 3.90265i 0.270600i
\(209\) 36.6406 + 30.7451i 2.53448 + 2.12668i
\(210\) −2.78136 2.04760i −0.191932 0.141298i
\(211\) −1.40219 7.95221i −0.0965307 0.547453i −0.994268 0.106921i \(-0.965901\pi\)
0.897737 0.440532i \(-0.145210\pi\)
\(212\) −2.82553 + 7.76307i −0.194058 + 0.533170i
\(213\) 3.90892 + 7.39700i 0.267835 + 0.506834i
\(214\) −1.18047 + 6.69475i −0.0806950 + 0.457644i
\(215\) 0.714376 + 1.23734i 0.0487201 + 0.0843856i
\(216\) 2.43162 3.29361i 0.165450 0.224102i
\(217\) 14.0028 + 6.29720i 0.950570 + 0.427481i
\(218\) −9.02032 24.7831i −0.610933 1.67853i
\(219\) 2.98683 + 5.65210i 0.201832 + 0.381934i
\(220\) 5.27650 0.930390i 0.355742 0.0627269i
\(221\) 0.402901 1.10696i 0.0271021 0.0744623i
\(222\) −11.5029 + 3.70514i −0.772023 + 0.248673i
\(223\) 4.16647 4.96540i 0.279007 0.332508i −0.608282 0.793721i \(-0.708141\pi\)
0.887290 + 0.461213i \(0.152586\pi\)
\(224\) 17.3233 12.4875i 1.15746 0.834358i
\(225\) 3.60681 14.1584i 0.240454 0.943896i
\(226\) −15.4575 + 26.7733i −1.02822 + 1.78093i
\(227\) 5.31375 + 4.45877i 0.352686 + 0.295939i 0.801868 0.597502i \(-0.203840\pi\)
−0.449181 + 0.893441i \(0.648284\pi\)
\(228\) 4.29950 + 31.1684i 0.284741 + 2.06418i
\(229\) −18.1760 + 3.20491i −1.20110 + 0.211787i −0.738175 0.674610i \(-0.764312\pi\)
−0.462927 + 0.886396i \(0.653201\pi\)
\(230\) 1.21120 + 0.440840i 0.0798641 + 0.0290682i
\(231\) 6.76261 + 27.8679i 0.444947 + 1.83358i
\(232\) −0.292641 + 1.65965i −0.0192129 + 0.108962i
\(233\) 20.8367 + 12.0300i 1.36505 + 0.788115i 0.990292 0.139006i \(-0.0443908\pi\)
0.374763 + 0.927121i \(0.377724\pi\)
\(234\) −3.42194 7.10769i −0.223699 0.464644i
\(235\) −0.908705 1.57392i −0.0592774 0.102671i
\(236\) 2.63755 14.9583i 0.171690 0.973702i
\(237\) 11.9984 13.2575i 0.779379 0.861167i
\(238\) −4.99186 + 1.41124i −0.323574 + 0.0914772i
\(239\) −3.56306 4.24628i −0.230475 0.274669i 0.638396 0.769708i \(-0.279598\pi\)
−0.868871 + 0.495039i \(0.835154\pi\)
\(240\) −1.64043 1.03087i −0.105889 0.0665426i
\(241\) −10.0391 1.77016i −0.646673 0.114026i −0.159314 0.987228i \(-0.550928\pi\)
−0.487358 + 0.873202i \(0.662039\pi\)
\(242\) −51.0185 29.4556i −3.27960 1.89348i
\(243\) 2.90221 15.3159i 0.186177 0.982516i
\(244\) 24.8604i 1.59153i
\(245\) 2.21773 + 1.20052i 0.141686 + 0.0766985i
\(246\) 15.6142 + 29.5473i 0.995524 + 1.88387i
\(247\) 9.02777 + 3.28584i 0.574423 + 0.209073i
\(248\) −4.29645 1.56378i −0.272825 0.0993000i
\(249\) −3.42979 10.6480i −0.217354 0.674790i
\(250\) 7.32595 + 1.29176i 0.463333 + 0.0816982i
\(251\) 10.3890 17.9942i 0.655746 1.13579i −0.325960 0.945384i \(-0.605688\pi\)
0.981706 0.190402i \(-0.0609792\pi\)
\(252\) −9.00271 + 16.5769i −0.567117 + 1.04425i
\(253\) −5.35099 9.26818i −0.336414 0.582685i
\(254\) −10.0333 27.5663i −0.629547 1.72967i
\(255\) 0.358873 + 0.461756i 0.0224735 + 0.0289163i
\(256\) 6.43410 5.39885i 0.402132 0.337428i
\(257\) −4.40206 24.9653i −0.274593 1.55729i −0.740251 0.672330i \(-0.765294\pi\)
0.465658 0.884965i \(-0.345818\pi\)
\(258\) 11.3466 8.81845i 0.706406 0.549013i
\(259\) 7.94528 3.83851i 0.493696 0.238514i
\(260\) 0.931991 0.538085i 0.0577996 0.0333706i
\(261\) 1.73728 + 6.17723i 0.107535 + 0.382361i
\(262\) 4.75088 2.74292i 0.293510 0.169458i
\(263\) −1.35880 3.73327i −0.0837872 0.230203i 0.890723 0.454546i \(-0.150199\pi\)
−0.974510 + 0.224343i \(0.927976\pi\)
\(264\) −2.61822 8.12845i −0.161140 0.500271i
\(265\) −1.23327 + 0.217458i −0.0757591 + 0.0133584i
\(266\) −11.5093 40.7108i −0.705680 2.49614i
\(267\) 0.332320 8.86864i 0.0203377 0.542752i
\(268\) 0.529220 + 0.444068i 0.0323272 + 0.0271258i
\(269\) −2.35052 + 4.07121i −0.143313 + 0.248226i −0.928742 0.370726i \(-0.879109\pi\)
0.785429 + 0.618952i \(0.212442\pi\)
\(270\) 3.89153 + 0.439108i 0.236831 + 0.0267233i
\(271\) −7.44995 + 4.30123i −0.452552 + 0.261281i −0.708907 0.705302i \(-0.750812\pi\)
0.256355 + 0.966583i \(0.417478\pi\)
\(272\) −2.73451 + 0.995282i −0.165804 + 0.0603478i
\(273\) 3.19084 + 4.79532i 0.193119 + 0.290226i
\(274\) 15.6112 13.0993i 0.943105 0.791359i
\(275\) −19.5900 23.3465i −1.18132 1.40785i
\(276\) 1.48120 6.88225i 0.0891578 0.414263i
\(277\) −14.9283 + 5.43344i −0.896952 + 0.326464i −0.749031 0.662535i \(-0.769480\pi\)
−0.147921 + 0.988999i \(0.547258\pi\)
\(278\) 0.272123 0.0163209
\(279\) −17.3230 + 1.73154i −1.03710 + 0.103665i
\(280\) −0.684909 0.308011i −0.0409312 0.0184072i
\(281\) 21.2686 + 3.75023i 1.26878 + 0.223720i 0.767208 0.641398i \(-0.221645\pi\)
0.501569 + 0.865118i \(0.332756\pi\)
\(282\) −14.4331 + 11.2173i −0.859479 + 0.667980i
\(283\) −2.92239 3.48277i −0.173718 0.207029i 0.672159 0.740407i \(-0.265367\pi\)
−0.845877 + 0.533377i \(0.820923\pi\)
\(284\) 7.37903 + 8.79399i 0.437865 + 0.521827i
\(285\) −3.76583 + 2.92677i −0.223068 + 0.173367i
\(286\) −16.2049 2.85736i −0.958216 0.168959i
\(287\) −14.2690 19.7946i −0.842274 1.16844i
\(288\) −9.96139 + 22.0703i −0.586980 + 1.30051i
\(289\) −16.1216 −0.948331
\(290\) −1.51487 + 0.551366i −0.0889560 + 0.0323773i
\(291\) −2.92919 + 13.6102i −0.171712 + 0.797844i
\(292\) 5.63837 + 6.71955i 0.329961 + 0.393232i
\(293\) −6.06074 + 5.08556i −0.354072 + 0.297102i −0.802423 0.596756i \(-0.796456\pi\)
0.448351 + 0.893858i \(0.352012\pi\)
\(294\) 8.91348 23.7468i 0.519845 1.38494i
\(295\) 2.16359 0.787482i 0.125969 0.0458490i
\(296\) −2.27565 + 1.31385i −0.132270 + 0.0763660i
\(297\) −22.4083 23.5622i −1.30026 1.36722i
\(298\) 15.0482 26.0643i 0.871720 1.50986i
\(299\) −1.64666 1.38171i −0.0952288 0.0799064i
\(300\) 0.750692 20.0337i 0.0433412 1.15665i
\(301\) −7.31701 + 7.52058i −0.421746 + 0.433479i
\(302\) 41.7305 7.35821i 2.40132 0.423417i
\(303\) 7.56174 + 23.4759i 0.434410 + 1.34866i
\(304\) −8.11696 22.3012i −0.465540 1.27906i
\(305\) −3.26361 + 1.88424i −0.186873 + 0.107891i
\(306\) 4.10754 4.21035i 0.234813 0.240690i
\(307\) 16.6860 9.63367i 0.952321 0.549823i 0.0585197 0.998286i \(-0.481362\pi\)
0.893801 + 0.448464i \(0.148029\pi\)
\(308\) 17.1170 + 35.4303i 0.975333 + 2.01883i
\(309\) 8.74998 6.80041i 0.497769 0.386862i
\(310\) −0.759480 4.30723i −0.0431356 0.244634i
\(311\) 10.1814 8.54323i 0.577336 0.484442i −0.306735 0.951795i \(-0.599237\pi\)
0.884071 + 0.467353i \(0.154792\pi\)
\(312\) −1.05257 1.35433i −0.0595901 0.0766737i
\(313\) 5.11582 + 14.0556i 0.289163 + 0.794470i 0.996184 + 0.0872770i \(0.0278165\pi\)
−0.707021 + 0.707193i \(0.749961\pi\)
\(314\) 4.14928 + 7.18676i 0.234157 + 0.405573i
\(315\) −2.85851 + 0.0745606i −0.161059 + 0.00420102i
\(316\) 12.2675 21.2479i 0.690098 1.19528i
\(317\) −16.3443 2.88195i −0.917990 0.161866i −0.305361 0.952237i \(-0.598777\pi\)
−0.612629 + 0.790370i \(0.709888\pi\)
\(318\) 3.86173 + 11.9890i 0.216555 + 0.672310i
\(319\) 12.5779 + 4.57798i 0.704228 + 0.256318i
\(320\) −3.61412 1.31543i −0.202036 0.0735350i
\(321\) 2.62964 + 4.97618i 0.146772 + 0.277743i
\(322\) −0.695564 + 9.44031i −0.0387623 + 0.526088i
\(323\) 7.16357i 0.398592i
\(324\) −0.528641 21.3830i −0.0293689 1.18794i
\(325\) −5.30133 3.06072i −0.294065 0.169778i
\(326\) −35.6783 6.29105i −1.97604 0.348429i
\(327\) −18.4880 11.6182i −1.02239 0.642485i
\(328\) 4.67087 + 5.56653i 0.257906 + 0.307360i
\(329\) 9.30743 9.56637i 0.513135 0.527411i
\(330\) 5.48154 6.05677i 0.301749 0.333414i
\(331\) −3.98781 + 22.6160i −0.219190 + 1.24309i 0.654297 + 0.756238i \(0.272965\pi\)
−0.873486 + 0.486848i \(0.838146\pi\)
\(332\) −7.67488 13.2933i −0.421214 0.729564i
\(333\) −5.63713 + 8.26623i −0.308913 + 0.452987i
\(334\) 22.2419 + 12.8414i 1.21702 + 0.702649i
\(335\) −0.0181849 + 0.103132i −0.000993547 + 0.00563469i
\(336\) 4.00778 13.6525i 0.218642 0.744806i
\(337\) 25.8190 + 9.39733i 1.40645 + 0.511905i 0.930085 0.367344i \(-0.119733\pi\)
0.476363 + 0.879249i \(0.341955\pi\)
\(338\) 23.5284 4.14870i 1.27978 0.225659i
\(339\) 3.49762 + 25.3553i 0.189965 + 1.37711i
\(340\) 0.614710 + 0.515803i 0.0333373 + 0.0279733i
\(341\) −18.1573 + 31.4493i −0.983271 + 1.70308i
\(342\) 34.3372 + 33.4988i 1.85675 + 1.81141i
\(343\) −4.05327 + 18.0713i −0.218856 + 0.975757i
\(344\) 2.00849 2.39363i 0.108291 0.129056i
\(345\) 1.01575 0.327178i 0.0546860 0.0176147i
\(346\) 15.1099 41.5142i 0.812316 2.23182i
\(347\) 9.82099 1.73171i 0.527218 0.0929628i 0.0962976 0.995353i \(-0.469300\pi\)
0.430921 + 0.902390i \(0.358189\pi\)
\(348\) 4.11381 + 7.78472i 0.220523 + 0.417305i
\(349\) −9.55483 26.2517i −0.511458 1.40522i −0.879717 0.475497i \(-0.842268\pi\)
0.368259 0.929723i \(-0.379954\pi\)
\(350\) 2.71761 + 26.8193i 0.145262 + 1.43355i
\(351\) −5.84808 2.90783i −0.312148 0.155208i
\(352\) 25.2545 + 43.7421i 1.34607 + 2.33146i
\(353\) 4.10320 23.2704i 0.218392 1.23856i −0.656532 0.754298i \(-0.727977\pi\)
0.874923 0.484262i \(-0.160912\pi\)
\(354\) −10.8199 20.4750i −0.575073 1.08823i
\(355\) −0.595172 + 1.63522i −0.0315884 + 0.0867885i
\(356\) −2.11461 11.9925i −0.112074 0.635603i
\(357\) −2.54624 + 3.45870i −0.134761 + 0.183054i
\(358\) −15.0546 12.6323i −0.795662 0.667640i
\(359\) 0.0297974i 0.00157265i 1.00000 0.000786324i \(0.000250295\pi\)
−1.00000 0.000786324i \(0.999750\pi\)
\(360\) 0.847309 0.0846938i 0.0446571 0.00446375i
\(361\) −39.4221 −2.07485
\(362\) −18.2839 + 6.65481i −0.960983 + 0.349769i
\(363\) −48.3165 + 6.66499i −2.53596 + 0.349821i
\(364\) 5.66468 + 5.51134i 0.296910 + 0.288873i
\(365\) −0.454775 + 1.24948i −0.0238040 + 0.0654010i
\(366\) 23.2596 + 29.9278i 1.21580 + 1.56435i
\(367\) −10.0778 + 12.0103i −0.526059 + 0.626933i −0.962002 0.273041i \(-0.911970\pi\)
0.435943 + 0.899974i \(0.356415\pi\)
\(368\) 5.31003i 0.276805i
\(369\) 25.2190 + 11.3825i 1.31285 + 0.592549i
\(370\) −2.17685 1.25681i −0.113169 0.0653383i
\(371\) −4.00073 8.28106i −0.207708 0.429931i
\(372\) −22.7375 + 7.32390i −1.17889 + 0.379726i
\(373\) 11.7396 9.85066i 0.607852 0.510048i −0.286107 0.958198i \(-0.592361\pi\)
0.893959 + 0.448150i \(0.147917\pi\)
\(374\) −2.13059 12.0832i −0.110170 0.624807i
\(375\) 5.44534 2.87757i 0.281196 0.148597i
\(376\) −2.55486 + 3.04476i −0.131757 + 0.157021i
\(377\) 2.68849 0.138464
\(378\) 4.67172 + 28.3788i 0.240287 + 1.45965i
\(379\) 17.9559 0.922330 0.461165 0.887314i \(-0.347432\pi\)
0.461165 + 0.887314i \(0.347432\pi\)
\(380\) −4.20660 + 5.01323i −0.215794 + 0.257173i
\(381\) −20.5642 12.9229i −1.05354 0.662060i
\(382\) 3.31556 + 18.8034i 0.169639 + 0.962068i
\(383\) −26.4748 + 22.2150i −1.35280 + 1.13513i −0.374665 + 0.927160i \(0.622242\pi\)
−0.978135 + 0.207973i \(0.933313\pi\)
\(384\) −2.25629 + 10.4836i −0.115141 + 0.534991i
\(385\) −3.35384 + 4.93244i −0.170927 + 0.251380i
\(386\) −6.35021 3.66630i −0.323217 0.186610i
\(387\) 2.93708 11.5294i 0.149300 0.586074i
\(388\) 19.1027i 0.969792i
\(389\) 0.222028 0.264602i 0.0112573 0.0134159i −0.760386 0.649471i \(-0.774990\pi\)
0.771644 + 0.636055i \(0.219435\pi\)
\(390\) 0.618523 1.51974i 0.0313201 0.0769551i
\(391\) 0.548197 1.50616i 0.0277235 0.0761697i
\(392\) 0.808334 5.45564i 0.0408270 0.275551i
\(393\) 1.71214 4.20681i 0.0863659 0.212205i
\(394\) −38.7903 + 14.1185i −1.95423 + 0.711280i
\(395\) 3.71914 0.187130
\(396\) −36.8615 25.1376i −1.85236 1.26321i
\(397\) 2.62188i 0.131589i −0.997833 0.0657943i \(-0.979042\pi\)
0.997833 0.0657943i \(-0.0209581\pi\)
\(398\) 17.8543 + 14.9815i 0.894955 + 0.750956i
\(399\) −28.2073 20.7657i −1.41213 1.03959i
\(400\) 2.62586 + 14.8920i 0.131293 + 0.744599i
\(401\) −5.90492 + 16.2236i −0.294878 + 0.810169i 0.700458 + 0.713694i \(0.252979\pi\)
−0.995335 + 0.0964756i \(0.969243\pi\)
\(402\) 1.05256 + 0.0394411i 0.0524972 + 0.00196714i
\(403\) −1.26659 + 7.18320i −0.0630934 + 0.357821i
\(404\) 16.9210 + 29.3081i 0.841852 + 1.45813i
\(405\) 2.76703 1.69008i 0.137495 0.0839805i
\(406\) −6.92307 9.60400i −0.343586 0.476638i
\(407\) 7.13813 + 19.6118i 0.353824 + 0.972123i
\(408\) 0.680518 1.08291i 0.0336907 0.0536120i
\(409\) −22.7379 + 4.00930i −1.12432 + 0.198247i −0.704735 0.709471i \(-0.748934\pi\)
−0.419581 + 0.907718i \(0.637823\pi\)
\(410\) −2.37741 + 6.53189i −0.117412 + 0.322587i
\(411\) 3.54997 16.4946i 0.175107 0.813617i
\(412\) 9.77413 11.6484i 0.481537 0.573873i
\(413\) 9.88779 + 13.7168i 0.486546 + 0.674959i
\(414\) −4.65597 9.67089i −0.228828 0.475298i
\(415\) 1.16340 2.01507i 0.0571092 0.0989161i
\(416\) 7.77158 + 6.52113i 0.381033 + 0.319725i
\(417\) 0.177890 0.138254i 0.00871130 0.00677035i
\(418\) 98.5437 17.3759i 4.81993 0.849884i
\(419\) 21.7961 + 7.93314i 1.06481 + 0.387559i 0.814234 0.580537i \(-0.197157\pi\)
0.250577 + 0.968097i \(0.419380\pi\)
\(420\) −3.81294 + 0.925272i −0.186052 + 0.0451487i
\(421\) −3.28202 + 18.6133i −0.159956 + 0.907156i 0.794158 + 0.607712i \(0.207912\pi\)
−0.954114 + 0.299444i \(0.903199\pi\)
\(422\) −14.6297 8.44647i −0.712163 0.411168i
\(423\) −3.73604 + 14.6657i −0.181653 + 0.713073i
\(424\) 1.36937 + 2.37183i 0.0665027 + 0.115186i
\(425\) 0.792609 4.49511i 0.0384472 0.218045i
\(426\) 17.1108 + 3.68260i 0.829023 + 0.178423i
\(427\) −19.8363 19.2994i −0.959947 0.933963i
\(428\) 4.96409 + 5.91598i 0.239949 + 0.285959i
\(429\) −12.0450 + 6.36515i −0.581539 + 0.307312i
\(430\) 2.94359 + 0.519035i 0.141953 + 0.0250301i
\(431\) 35.0297 + 20.2244i 1.68732 + 0.974175i 0.956557 + 0.291545i \(0.0941692\pi\)
0.730764 + 0.682630i \(0.239164\pi\)
\(432\) 3.78336 + 15.6839i 0.182027 + 0.754591i
\(433\) 5.57490i 0.267912i 0.990987 + 0.133956i \(0.0427681\pi\)
−0.990987 + 0.133956i \(0.957232\pi\)
\(434\) 28.9218 13.9727i 1.38829 0.670710i
\(435\) −0.710158 + 1.13008i −0.0340495 + 0.0541830i
\(436\) −28.1543 10.2473i −1.34835 0.490759i
\(437\) 12.2834 + 4.47079i 0.587594 + 0.213867i
\(438\) 13.0745 + 2.81390i 0.624724 + 0.134453i
\(439\) −33.6601 5.93518i −1.60651 0.283271i −0.702789 0.711398i \(-0.748062\pi\)
−0.903718 + 0.428127i \(0.859174\pi\)
\(440\) 0.888115 1.53826i 0.0423392 0.0733337i
\(441\) −6.23794 20.0521i −0.297045 0.954864i
\(442\) −1.23221 2.13426i −0.0586104 0.101516i
\(443\) −4.54519 12.4878i −0.215949 0.593314i 0.783663 0.621186i \(-0.213349\pi\)
−0.999611 + 0.0278724i \(0.991127\pi\)
\(444\) −5.17530 + 12.7160i −0.245609 + 0.603472i
\(445\) 1.41407 1.18655i 0.0670335 0.0562478i
\(446\) −2.35472 13.3543i −0.111499 0.632344i
\(447\) −3.40500 24.6839i −0.161051 1.16751i
\(448\) 2.07551 28.1692i 0.0980587 1.33087i
\(449\) −10.5259 + 6.07712i −0.496747 + 0.286797i −0.727369 0.686247i \(-0.759257\pi\)
0.230622 + 0.973043i \(0.425924\pi\)
\(450\) −17.8400 24.8196i −0.840986 1.17001i
\(451\) 49.9825 28.8574i 2.35358 1.35884i
\(452\) 12.0119 + 33.0024i 0.564992 + 1.55230i
\(453\) 23.5413 26.0117i 1.10607 1.22214i
\(454\) 14.2912 2.51992i 0.670718 0.118266i
\(455\) −0.294171 + 1.16136i −0.0137910 + 0.0544456i
\(456\) 8.83160 + 5.54993i 0.413578 + 0.259899i
\(457\) −10.9634 9.19939i −0.512846 0.430329i 0.349283 0.937017i \(-0.386425\pi\)
−0.862129 + 0.506688i \(0.830870\pi\)
\(458\) −19.3057 + 33.4384i −0.902095 + 1.56248i
\(459\) 0.546043 4.83922i 0.0254871 0.225876i
\(460\) 1.26809 0.732131i 0.0591249 0.0341358i
\(461\) −23.2811 + 8.47362i −1.08431 + 0.394656i −0.821509 0.570195i \(-0.806868\pi\)
−0.262798 + 0.964851i \(0.584645\pi\)
\(462\) 53.7548 + 26.6373i 2.50090 + 1.23928i
\(463\) −13.5051 + 11.3321i −0.627634 + 0.526647i −0.900193 0.435492i \(-0.856574\pi\)
0.272559 + 0.962139i \(0.412130\pi\)
\(464\) −4.26897 5.08756i −0.198182 0.236184i
\(465\) −2.68480 2.42982i −0.124505 0.112680i
\(466\) 47.2990 17.2154i 2.19108 0.797490i
\(467\) 3.57088 0.165240 0.0826202 0.996581i \(-0.473671\pi\)
0.0826202 + 0.996581i \(0.473671\pi\)
\(468\) −8.68424 2.21228i −0.401429 0.102263i
\(469\) −0.765164 + 0.0775343i −0.0353320 + 0.00358020i
\(470\) −3.74432 0.660225i −0.172713 0.0304539i
\(471\) 6.36373 + 2.58999i 0.293225 + 0.119340i
\(472\) −3.23670 3.85735i −0.148981 0.177549i
\(473\) −15.9525 19.0114i −0.733495 0.874145i
\(474\) −5.11171 37.0563i −0.234788 1.70205i
\(475\) 36.6596 + 6.46408i 1.68206 + 0.296592i
\(476\) −2.41705 + 5.37468i −0.110785 + 0.246348i
\(477\) 8.61557 + 5.87536i 0.394480 + 0.269014i
\(478\) −11.5964 −0.530408
\(479\) 6.03889 2.19798i 0.275924 0.100428i −0.200352 0.979724i \(-0.564209\pi\)
0.476276 + 0.879296i \(0.341986\pi\)
\(480\) −4.79392 + 1.54415i −0.218812 + 0.0704805i
\(481\) 2.69455 + 3.21124i 0.122861 + 0.146420i
\(482\) −16.3367 + 13.7081i −0.744117 + 0.624388i
\(483\) 4.34153 + 6.52462i 0.197547 + 0.296881i
\(484\) −62.8887 + 22.8896i −2.85858 + 1.04044i
\(485\) −2.50775 + 1.44785i −0.113871 + 0.0657434i
\(486\) −20.6425 25.2469i −0.936361 1.14522i
\(487\) 8.85684 15.3405i 0.401342 0.695144i −0.592546 0.805536i \(-0.701877\pi\)
0.993888 + 0.110392i \(0.0352107\pi\)
\(488\) 6.31346 + 5.29762i 0.285797 + 0.239812i
\(489\) −26.5195 + 14.0141i −1.19925 + 0.633741i
\(490\) 4.90621 1.93974i 0.221640 0.0876286i
\(491\) 12.0720 2.12862i 0.544803 0.0960634i 0.105528 0.994416i \(-0.466347\pi\)
0.439274 + 0.898353i \(0.355236\pi\)
\(492\) 37.1154 + 7.98799i 1.67329 + 0.360126i
\(493\) 0.685639 + 1.88378i 0.0308796 + 0.0848411i
\(494\) 17.4058 10.0492i 0.783124 0.452137i
\(495\) 0.506149 6.74432i 0.0227497 0.303135i
\(496\) 15.6043 9.00915i 0.700654 0.404523i
\(497\) −12.7452 0.939070i −0.571701 0.0421231i
\(498\) −21.6766 8.82220i −0.971350 0.395332i
\(499\) 0.866807 + 4.91590i 0.0388036 + 0.220066i 0.998043 0.0625278i \(-0.0199162\pi\)
−0.959240 + 0.282594i \(0.908805\pi\)
\(500\) 6.47374 5.43212i 0.289515 0.242932i
\(501\) 21.0640 2.90565i 0.941069 0.129815i
\(502\) −14.8670 40.8467i −0.663547 1.82308i
\(503\) −10.5236 18.2273i −0.469222 0.812717i 0.530158 0.847899i \(-0.322132\pi\)
−0.999381 + 0.0351814i \(0.988799\pi\)
\(504\) 2.29137 + 5.81873i 0.102066 + 0.259187i
\(505\) −2.56499 + 4.44269i −0.114140 + 0.197697i
\(506\) −22.0488 3.88779i −0.980187 0.172833i
\(507\) 13.2730 14.6659i 0.589475 0.651334i
\(508\) −31.3162 11.3981i −1.38943 0.505711i
\(509\) 25.7085 + 9.35714i 1.13951 + 0.414748i 0.841737 0.539888i \(-0.181534\pi\)
0.297774 + 0.954636i \(0.403756\pi\)
\(510\) 1.22260 + 0.0458123i 0.0541374 + 0.00202860i
\(511\) −9.73871 0.717551i −0.430815 0.0317426i
\(512\) 29.9539i 1.32379i
\(513\) 39.4660 + 4.45322i 1.74247 + 0.196614i
\(514\) −45.9289 26.5170i −2.02583 1.16962i
\(515\) 2.26997 + 0.400257i 0.100027 + 0.0176374i
\(516\) 0.611300 16.3138i 0.0269110 0.718174i
\(517\) 20.2919 + 24.1830i 0.892438 + 1.06357i
\(518\) 4.53272 17.8948i 0.199156 0.786253i
\(519\) −11.2141 34.8151i −0.492246 1.52821i
\(520\) 0.0619521 0.351348i 0.00271678 0.0154076i
\(521\) 18.9952 + 32.9006i 0.832194 + 1.44140i 0.896295 + 0.443458i \(0.146249\pi\)
−0.0641012 + 0.997943i \(0.520418\pi\)
\(522\) 12.2358 + 5.52258i 0.535545 + 0.241717i
\(523\) −0.735757 0.424789i −0.0321724 0.0185747i 0.483828 0.875163i \(-0.339246\pi\)
−0.516000 + 0.856589i \(0.672580\pi\)
\(524\) 1.08219 6.13740i 0.0472756 0.268113i
\(525\) 15.4023 + 16.1514i 0.672212 + 0.704904i
\(526\) −7.81014 2.84266i −0.340538 0.123946i
\(527\) −5.35615 + 0.944435i −0.233318 + 0.0411402i
\(528\) 31.1710 + 12.6864i 1.35654 + 0.552103i
\(529\) 15.3785 + 12.9041i 0.668632 + 0.561049i
\(530\) −1.30992 + 2.26885i −0.0568993 + 0.0985525i
\(531\) −17.4756 7.88756i −0.758376 0.342291i
\(532\) −43.8329 19.7121i −1.90040 0.854629i
\(533\) 7.45145 8.88030i 0.322758 0.384648i
\(534\) −13.7659 12.4585i −0.595710 0.539134i
\(535\) −0.400389 + 1.10006i −0.0173103 + 0.0475598i
\(536\) 0.225548 0.0397701i 0.00974217 0.00171781i
\(537\) −16.2594 0.609261i −0.701643 0.0262915i
\(538\) 3.36367 + 9.24162i 0.145018 + 0.398434i
\(539\) −41.5582 13.8471i −1.79004 0.596435i
\(540\) 3.22383 3.06595i 0.138731 0.131937i
\(541\) 20.4690 + 35.4533i 0.880031 + 1.52426i 0.851305 + 0.524671i \(0.175812\pi\)
0.0287257 + 0.999587i \(0.490855\pi\)
\(542\) −3.12508 + 17.7232i −0.134234 + 0.761278i
\(543\) −8.57138 + 13.6396i −0.367833 + 0.585333i
\(544\) −2.58727 + 7.10848i −0.110928 + 0.304773i
\(545\) −0.788657 4.47270i −0.0337824 0.191589i
\(546\) 11.9758 + 1.33481i 0.512516 + 0.0571247i
\(547\) −9.03807 7.58384i −0.386440 0.324262i 0.428784 0.903407i \(-0.358942\pi\)
−0.815224 + 0.579145i \(0.803386\pi\)
\(548\) 23.1510i 0.988964i
\(549\) 30.4101 + 7.74686i 1.29787 + 0.330628i
\(550\) −63.7583 −2.71866
\(551\) −15.3630 + 5.59169i −0.654487 + 0.238214i
\(552\) −1.43215 1.84273i −0.0609565 0.0784318i
\(553\) 7.43049 + 26.2832i 0.315977 + 1.11768i
\(554\) −11.3670 + 31.2304i −0.482935 + 1.32685i
\(555\) −2.06156 + 0.284381i −0.0875085 + 0.0120713i
\(556\) 0.198711 0.236815i 0.00842723 0.0100432i
\(557\) 31.2086i 1.32235i 0.750232 + 0.661175i \(0.229942\pi\)
−0.750232 + 0.661175i \(0.770058\pi\)
\(558\) −20.5199 + 30.0902i −0.868676 + 1.27382i
\(559\) −4.31695 2.49239i −0.182587 0.105417i
\(560\) 2.66481 1.28742i 0.112609 0.0544034i
\(561\) −7.53176 6.81644i −0.317991 0.287791i
\(562\) 34.6107 29.0418i 1.45996 1.22505i
\(563\) −2.88191 16.3441i −0.121458 0.688824i −0.983349 0.181729i \(-0.941831\pi\)
0.861890 0.507095i \(-0.169281\pi\)
\(564\) −0.777589 + 20.7515i −0.0327424 + 0.873798i
\(565\) −3.42205 + 4.07824i −0.143967 + 0.171573i
\(566\) −9.51130 −0.399790
\(567\) 17.4720 + 16.1780i 0.733757 + 0.679412i
\(568\) 3.80572 0.159684
\(569\) −8.45351 + 10.0745i −0.354389 + 0.422345i −0.913558 0.406709i \(-0.866676\pi\)
0.559168 + 0.829054i \(0.311121\pi\)
\(570\) −0.373620 + 9.97081i −0.0156492 + 0.417631i
\(571\) 2.47480 + 14.0353i 0.103567 + 0.587359i 0.991783 + 0.127932i \(0.0408340\pi\)
−0.888216 + 0.459427i \(0.848055\pi\)
\(572\) −14.3198 + 12.0158i −0.598742 + 0.502404i
\(573\) 11.7207 + 10.6075i 0.489638 + 0.443136i
\(574\) −50.9108 3.75112i −2.12498 0.156569i
\(575\) −7.21311 4.16449i −0.300807 0.173671i
\(576\) 13.8931 + 28.8572i 0.578877 + 1.20238i
\(577\) 0.548136i 0.0228192i −0.999935 0.0114096i \(-0.996368\pi\)
0.999935 0.0114096i \(-0.00363187\pi\)
\(578\) −21.6793 + 25.8364i −0.901740 + 1.07465i
\(579\) −6.01390 + 0.829582i −0.249929 + 0.0344763i
\(580\) −0.626368 + 1.72093i −0.0260085 + 0.0714578i
\(581\) 16.5649 + 4.19586i 0.687228 + 0.174074i
\(582\) 17.8726 + 22.9964i 0.740844 + 0.953232i
\(583\) 20.4407 7.43979i 0.846566 0.308125i
\(584\) 2.90798 0.120333
\(585\) −0.367782 1.30772i −0.0152059 0.0540675i
\(586\) 16.5516i 0.683741i
\(587\) −19.8533 16.6589i −0.819432 0.687585i 0.133407 0.991061i \(-0.457408\pi\)
−0.952839 + 0.303476i \(0.901853\pi\)
\(588\) −14.1568 25.0975i −0.583816 1.03500i
\(589\) −7.70228 43.6818i −0.317367 1.79988i
\(590\) 1.64744 4.52631i 0.0678241 0.186345i
\(591\) −18.1846 + 28.9372i −0.748015 + 1.19032i
\(592\) 1.79819 10.1981i 0.0739053 0.419138i
\(593\) −1.71212 2.96547i −0.0703082 0.121777i 0.828728 0.559651i \(-0.189065\pi\)
−0.899036 + 0.437874i \(0.855732\pi\)
\(594\) −67.8939 + 4.22650i −2.78572 + 0.173415i
\(595\) −0.888768 + 0.0900591i −0.0364359 + 0.00369206i
\(596\) −11.6938 32.1285i −0.478997 1.31603i
\(597\) 19.2830 + 0.722563i 0.789203 + 0.0295725i
\(598\) −4.42864 + 0.780889i −0.181101 + 0.0319329i
\(599\) 9.51273 26.1360i 0.388680 1.06789i −0.578917 0.815387i \(-0.696524\pi\)
0.967596 0.252502i \(-0.0812533\pi\)
\(600\) −4.92772 4.45972i −0.201173 0.182067i
\(601\) 4.26455 5.08229i 0.173955 0.207311i −0.672022 0.740531i \(-0.734574\pi\)
0.845976 + 0.533220i \(0.179018\pi\)
\(602\) 2.21299 + 21.8394i 0.0901947 + 0.890106i
\(603\) 0.708112 0.508982i 0.0288365 0.0207273i
\(604\) 24.0692 41.6890i 0.979361 1.69630i
\(605\) −7.77140 6.52098i −0.315952 0.265115i
\(606\) 47.7909 + 19.4505i 1.94137 + 0.790124i
\(607\) −36.0153 + 6.35047i −1.46182 + 0.257758i −0.847287 0.531136i \(-0.821765\pi\)
−0.614530 + 0.788894i \(0.710654\pi\)
\(608\) −57.9728 21.1004i −2.35111 0.855733i
\(609\) −9.40508 2.76091i −0.381113 0.111878i
\(610\) −1.36901 + 7.76403i −0.0554295 + 0.314357i
\(611\) 5.49127 + 3.17039i 0.222153 + 0.128260i
\(612\) −0.664616 6.64908i −0.0268655 0.268773i
\(613\) 7.90264 + 13.6878i 0.319185 + 0.552844i 0.980318 0.197424i \(-0.0632577\pi\)
−0.661134 + 0.750268i \(0.729924\pi\)
\(614\) 6.99940 39.6956i 0.282473 1.60198i
\(615\) 1.76444 + 5.47784i 0.0711492 + 0.220888i
\(616\) 12.6453 + 3.20302i 0.509493 + 0.129053i
\(617\) 10.9448 + 13.0434i 0.440619 + 0.525109i 0.939955 0.341299i \(-0.110867\pi\)
−0.499336 + 0.866409i \(0.666423\pi\)
\(618\) 0.868115 23.1674i 0.0349207 0.931930i
\(619\) 23.4106 + 4.12792i 0.940952 + 0.165915i 0.623027 0.782200i \(-0.285903\pi\)
0.317925 + 0.948116i \(0.397014\pi\)
\(620\) −4.30295 2.48431i −0.172811 0.0997722i
\(621\) −7.95704 3.95646i −0.319305 0.158767i
\(622\) 27.8050i 1.11488i
\(623\) 11.2105 + 7.62266i 0.449140 + 0.305395i
\(624\) 6.75484 + 0.253113i 0.270410 + 0.0101326i
\(625\) −21.6787 7.89041i −0.867149 0.315617i
\(626\) 29.4048 + 10.7025i 1.17525 + 0.427757i
\(627\) 55.5911 61.4248i 2.22010 2.45307i
\(628\) 9.28418 + 1.63705i 0.370479 + 0.0653254i
\(629\) −1.56287 + 2.70698i −0.0623158 + 0.107934i
\(630\) −3.72444 + 4.68129i −0.148385 + 0.186507i
\(631\) 21.9990 + 38.1033i 0.875765 + 1.51687i 0.855946 + 0.517066i \(0.172976\pi\)
0.0198191 + 0.999804i \(0.493691\pi\)
\(632\) −2.78189 7.64319i −0.110658 0.304030i
\(633\) −13.8549 + 1.91120i −0.550683 + 0.0759635i
\(634\) −26.5974 + 22.3179i −1.05632 + 0.886356i
\(635\) −0.877226 4.97499i −0.0348116 0.197427i
\(636\) 13.2533 + 5.39401i 0.525529 + 0.213886i
\(637\) −8.79509 + 0.241382i −0.348474 + 0.00956392i
\(638\) 24.2506 14.0011i 0.960090 0.554308i
\(639\) 13.0565 6.28595i 0.516508 0.248668i
\(640\) −1.93166 + 1.11525i −0.0763557 + 0.0440840i
\(641\) −9.08443 24.9593i −0.358813 0.985831i −0.979442 0.201727i \(-0.935345\pi\)
0.620629 0.784105i \(-0.286877\pi\)
\(642\) 11.5110 + 2.47739i 0.454301 + 0.0977749i
\(643\) −21.8428 + 3.85147i −0.861394 + 0.151887i −0.586858 0.809690i \(-0.699635\pi\)
−0.274536 + 0.961577i \(0.588524\pi\)
\(644\) 7.70750 + 7.49887i 0.303718 + 0.295497i
\(645\) 2.18796 1.15622i 0.0861508 0.0455261i
\(646\) 11.4803 + 9.63310i 0.451686 + 0.379009i
\(647\) −6.41692 + 11.1144i −0.252275 + 0.436954i −0.964152 0.265351i \(-0.914512\pi\)
0.711877 + 0.702305i \(0.247846\pi\)
\(648\) −5.54299 4.42234i −0.217749 0.173726i
\(649\) −34.6356 + 19.9969i −1.35957 + 0.784946i
\(650\) −12.0340 + 4.38000i −0.472011 + 0.171798i
\(651\) 11.8076 23.8281i 0.462776 0.933896i
\(652\) −31.5280 + 26.4551i −1.23473 + 1.03606i
\(653\) 6.85654 + 8.17131i 0.268317 + 0.319768i 0.883332 0.468747i \(-0.155294\pi\)
−0.615015 + 0.788515i \(0.710850\pi\)
\(654\) −43.4806 + 14.0053i −1.70022 + 0.547652i
\(655\) 0.887722 0.323104i 0.0346862 0.0126247i
\(656\) −28.6366 −1.11807
\(657\) 9.97658 4.80314i 0.389223 0.187388i
\(658\) −2.81498 27.7802i −0.109739 1.08299i
\(659\) 12.4568 + 2.19647i 0.485248 + 0.0855623i 0.410920 0.911672i \(-0.365208\pi\)
0.0743281 + 0.997234i \(0.476319\pi\)
\(660\) −1.26814 9.19311i −0.0493621 0.357841i
\(661\) 21.3936 + 25.4959i 0.832115 + 0.991677i 0.999983 + 0.00586698i \(0.00186753\pi\)
−0.167867 + 0.985810i \(0.553688\pi\)
\(662\) 30.8816 + 36.8033i 1.20025 + 1.43040i
\(663\) −1.88984 0.769150i −0.0733953 0.0298713i
\(664\) −5.01139 0.883643i −0.194479 0.0342920i
\(665\) −0.734472 7.24830i −0.0284816 0.281077i
\(666\) 5.66696 + 20.1499i 0.219590 + 0.780793i
\(667\) 3.65803 0.141639
\(668\) 27.4168 9.97890i 1.06079 0.386095i
\(669\) −8.32407 7.53351i −0.321827 0.291262i
\(670\) 0.140824 + 0.167828i 0.00544051 + 0.00648375i
\(671\) 50.1446 42.0763i 1.93581 1.62434i
\(672\) −20.4903 30.7936i −0.790432 1.18789i
\(673\) 21.0468 7.66040i 0.811294 0.295287i 0.0971357 0.995271i \(-0.469032\pi\)
0.714158 + 0.699984i \(0.246810\pi\)
\(674\) 49.7797 28.7403i 1.91744 1.10704i
\(675\) −24.2720 7.16107i −0.934231 0.275630i
\(676\) 13.5706 23.5051i 0.521948 0.904040i
\(677\) 35.4418 + 29.7392i 1.36214 + 1.14297i 0.975316 + 0.220814i \(0.0708714\pi\)
0.386821 + 0.922155i \(0.373573\pi\)
\(678\) 45.3376 + 28.4909i 1.74118 + 1.09419i
\(679\) −15.2422 14.8296i −0.584941 0.569108i
\(680\) 0.261982 0.0461946i 0.0100466 0.00177148i
\(681\) 8.06203 8.90805i 0.308938 0.341357i
\(682\) 25.9837 + 71.3896i 0.994968 + 2.73365i
\(683\) −7.53532 + 4.35052i −0.288331 + 0.166468i −0.637189 0.770708i \(-0.719903\pi\)
0.348858 + 0.937176i \(0.386570\pi\)
\(684\) 54.2262 5.42024i 2.07339 0.207248i
\(685\) 3.03920 1.75468i 0.116122 0.0670431i
\(686\) 23.5103 + 30.7968i 0.897628 + 1.17583i
\(687\) 4.36835 + 31.6675i 0.166663 + 1.20819i
\(688\) 2.13828 + 12.1268i 0.0815210 + 0.462329i
\(689\) 3.34695 2.80842i 0.127509 0.106992i
\(690\) 0.841577 2.06780i 0.0320383 0.0787196i
\(691\) 3.89200 + 10.6932i 0.148059 + 0.406787i 0.991446 0.130519i \(-0.0416642\pi\)
−0.843387 + 0.537306i \(0.819442\pi\)
\(692\) −25.0940 43.4641i −0.953932 1.65226i
\(693\) 48.6734 9.89754i 1.84895 0.375977i
\(694\) 10.4314 18.0677i 0.395971 0.685841i
\(695\) 0.0461492 + 0.00813736i 0.00175054 + 0.000308667i
\(696\) 2.85361 + 0.614154i 0.108166 + 0.0232795i
\(697\) 8.12259 + 2.95638i 0.307665 + 0.111981i
\(698\) −54.9194 19.9890i −2.07873 0.756596i
\(699\) 22.1734 35.2846i 0.838676 1.33459i
\(700\) 25.3239 + 17.2191i 0.957155 + 0.650822i
\(701\) 19.8586i 0.750050i −0.927015 0.375025i \(-0.877634\pi\)
0.927015 0.375025i \(-0.122366\pi\)
\(702\) −12.5242 + 5.46183i −0.472695 + 0.206144i
\(703\) −22.0766 12.7459i −0.832634 0.480722i
\(704\) 65.7918 + 11.6009i 2.47962 + 0.437224i
\(705\) −2.78314 + 1.47074i −0.104819 + 0.0553913i
\(706\) −31.7753 37.8683i −1.19588 1.42519i
\(707\) −36.5211 9.25072i −1.37352 0.347909i
\(708\) −25.7193 5.53532i −0.966590 0.208030i
\(709\) 3.55338 20.1522i 0.133450 0.756831i −0.842477 0.538733i \(-0.818903\pi\)
0.975927 0.218099i \(-0.0699855\pi\)
\(710\) 1.82024 + 3.15275i 0.0683125 + 0.118321i
\(711\) −22.1684 21.6271i −0.831379 0.811079i
\(712\) −3.49619 2.01852i −0.131025 0.0756474i
\(713\) −1.72335 + 9.77363i −0.0645402 + 0.366025i
\(714\) 2.11887 + 8.73162i 0.0792968 + 0.326773i
\(715\) −2.66274 0.969157i −0.0995807 0.0362444i
\(716\) −21.9866 + 3.87682i −0.821676 + 0.144884i
\(717\) −7.58071 + 5.89166i −0.283107 + 0.220028i
\(718\) 0.0477531 + 0.0400696i 0.00178213 + 0.00149538i
\(719\) 11.1854 19.3737i 0.417146 0.722518i −0.578505 0.815679i \(-0.696364\pi\)
0.995651 + 0.0931608i \(0.0296971\pi\)
\(720\) −1.89067 + 2.77246i −0.0704610 + 0.103323i
\(721\) 1.70656 + 16.8416i 0.0635557 + 0.627214i
\(722\) −53.0123 + 63.1776i −1.97291 + 2.35123i
\(723\) −3.71495 + 17.2612i −0.138161 + 0.641950i
\(724\) −7.56006 + 20.7711i −0.280967 + 0.771951i
\(725\) 10.2589 1.80893i 0.381007 0.0671818i
\(726\) −54.2917 + 86.3943i −2.01495 + 3.20639i
\(727\) −2.58356 7.09828i −0.0958190 0.263261i 0.882518 0.470278i \(-0.155846\pi\)
−0.978337 + 0.207018i \(0.933624\pi\)
\(728\) 2.60675 0.264143i 0.0966126 0.00978978i
\(729\) −26.3211 6.01659i −0.974856 0.222837i
\(730\) 1.39086 + 2.40904i 0.0514781 + 0.0891627i
\(731\) 0.645434 3.66044i 0.0238722 0.135386i
\(732\) 43.0293 + 1.61237i 1.59041 + 0.0595948i
\(733\) 5.82499 16.0040i 0.215151 0.591123i −0.784425 0.620223i \(-0.787042\pi\)
0.999576 + 0.0291005i \(0.00926428\pi\)
\(734\) 5.69560 + 32.3013i 0.210228 + 1.19226i
\(735\) 2.22174 3.76067i 0.0819501 0.138715i
\(736\) 10.5742 + 8.87281i 0.389770 + 0.327056i
\(737\) 1.81905i 0.0670054i
\(738\) 52.1543 25.1093i 1.91983 0.924284i
\(739\) 6.98225 0.256846 0.128423 0.991719i \(-0.459008\pi\)
0.128423 + 0.991719i \(0.459008\pi\)
\(740\) −2.68333 + 0.976651i −0.0986411 + 0.0359024i
\(741\) 6.27276 15.4125i 0.230436 0.566191i
\(742\) −18.6511 4.72428i −0.684703 0.173434i
\(743\) −0.493042 + 1.35462i −0.0180880 + 0.0496962i −0.948408 0.317052i \(-0.897307\pi\)
0.930320 + 0.366749i \(0.119529\pi\)
\(744\) −2.98530 + 7.33502i −0.109446 + 0.268915i
\(745\) 3.33143 3.97024i 0.122054 0.145458i
\(746\) 32.0603i 1.17381i
\(747\) −18.6524 + 5.24580i −0.682456 + 0.191934i
\(748\) −12.0712 6.96930i −0.441366 0.254823i
\(749\) −8.57408 0.631740i −0.313290 0.0230833i
\(750\) 2.71097 12.5962i 0.0989905 0.459949i
\(751\) −14.3786 + 12.0651i −0.524683 + 0.440261i −0.866261 0.499592i \(-0.833483\pi\)
0.341578 + 0.939854i \(0.389039\pi\)
\(752\) −2.71994 15.4256i −0.0991861 0.562512i
\(753\) −30.4713 19.1487i −1.11043 0.697816i
\(754\) 3.61531 4.30855i 0.131662 0.156908i
\(755\) 7.29709 0.265568
\(756\) 28.1080 + 16.6573i 1.02228 + 0.605821i
\(757\) −6.53601 −0.237555 −0.118778 0.992921i \(-0.537898\pi\)
−0.118778 + 0.992921i \(0.537898\pi\)
\(758\) 24.1458 28.7759i 0.877017 1.04519i
\(759\) −16.3887 + 8.66057i −0.594874 + 0.314359i
\(760\) 0.376737 + 2.13658i 0.0136657 + 0.0775020i
\(761\) −2.71646 + 2.27938i −0.0984717 + 0.0826276i −0.690694 0.723147i \(-0.742695\pi\)
0.592223 + 0.805774i \(0.298251\pi\)
\(762\) −48.3636 + 15.5782i −1.75203 + 0.564338i
\(763\) 30.0329 14.5095i 1.08727 0.525278i
\(764\) 18.7848 + 10.8454i 0.679609 + 0.392373i
\(765\) 0.822499 0.591202i 0.0297375 0.0213750i
\(766\) 72.3016i 2.61236i
\(767\) −5.16352 + 6.15364i −0.186444 + 0.222195i