Properties

Label 189.2.ba.a.101.15
Level $189$
Weight $2$
Character 189.101
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 101.15
Character \(\chi\) \(=\) 189.101
Dual form 189.2.ba.a.131.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.594351 - 0.708320i) q^{2} +(0.665198 - 1.59922i) q^{3} +(0.198832 + 1.12763i) q^{4} +(-0.386349 + 0.324185i) q^{5} +(-0.737399 - 1.42167i) q^{6} +(0.529787 - 2.59217i) q^{7} +(2.51844 + 1.45402i) q^{8} +(-2.11502 - 2.12760i) q^{9} +O(q^{10})\) \(q+(0.594351 - 0.708320i) q^{2} +(0.665198 - 1.59922i) q^{3} +(0.198832 + 1.12763i) q^{4} +(-0.386349 + 0.324185i) q^{5} +(-0.737399 - 1.42167i) q^{6} +(0.529787 - 2.59217i) q^{7} +(2.51844 + 1.45402i) q^{8} +(-2.11502 - 2.12760i) q^{9} +0.466338i q^{10} +(3.12271 - 3.72150i) q^{11} +(1.93560 + 0.432124i) q^{12} +(-1.60911 + 4.42100i) q^{13} +(-1.52120 - 1.91591i) q^{14} +(0.261446 + 0.833505i) q^{15} +(0.374792 - 0.136413i) q^{16} -4.77392 q^{17} +(-2.76409 + 0.233571i) q^{18} +6.37115i q^{19} +(-0.442381 - 0.371202i) q^{20} +(-3.79304 - 2.57155i) q^{21} +(-0.780028 - 4.42376i) q^{22} +(1.22699 - 3.37113i) q^{23} +(4.00056 - 3.06033i) q^{24} +(-0.824071 + 4.67354i) q^{25} +(2.17510 + 3.76739i) q^{26} +(-4.80941 + 1.96711i) q^{27} +(3.02836 + 0.0819996i) q^{28} +(0.997075 + 2.73944i) q^{29} +(0.745779 + 0.310208i) q^{30} +(-0.773023 + 0.136305i) q^{31} +(-1.86308 + 5.11878i) q^{32} +(-3.87429 - 7.46945i) q^{33} +(-2.83739 + 3.38147i) q^{34} +(0.635660 + 1.17323i) q^{35} +(1.97862 - 2.80801i) q^{36} +(2.73726 - 4.74107i) q^{37} +(4.51281 + 3.78670i) q^{38} +(5.99978 + 5.51416i) q^{39} +(-1.44437 + 0.254681i) q^{40} +(5.44849 + 1.98309i) q^{41} +(-4.07587 + 1.15828i) q^{42} +(-1.36729 + 7.75429i) q^{43} +(4.81739 + 2.78132i) q^{44} +(1.50687 + 0.136337i) q^{45} +(-1.65857 - 2.87274i) q^{46} +(1.33467 - 7.56931i) q^{47} +(0.0311561 - 0.690117i) q^{48} +(-6.43865 - 2.74659i) q^{49} +(2.82057 + 3.36143i) q^{50} +(-3.17561 + 7.63457i) q^{51} +(-5.30521 - 0.935452i) q^{52} +(-4.26125 - 2.46023i) q^{53} +(-1.46513 + 4.57576i) q^{54} +2.45014i q^{55} +(5.10329 - 5.75788i) q^{56} +(10.1889 + 4.23808i) q^{57} +(2.53301 + 0.921941i) q^{58} +(-5.01169 - 1.82411i) q^{59} +(-0.887906 + 0.460543i) q^{60} +(-7.07246 - 1.24706i) q^{61} +(-0.362900 + 0.628561i) q^{62} +(-6.63560 + 4.35531i) q^{63} +(2.91725 + 5.05283i) q^{64} +(-0.811544 - 2.22970i) q^{65} +(-7.59344 - 1.69524i) q^{66} +(6.70384 - 5.62519i) q^{67} +(-0.949211 - 5.38324i) q^{68} +(-4.57499 - 4.20470i) q^{69} +(1.20883 + 0.247060i) q^{70} +(-11.3110 + 6.53043i) q^{71} +(-2.23298 - 8.43351i) q^{72} +(8.42907 - 4.86653i) q^{73} +(-1.73130 - 4.75671i) q^{74} +(6.92586 + 4.42671i) q^{75} +(-7.18433 + 1.26679i) q^{76} +(-7.99238 - 10.0662i) q^{77} +(7.47176 - 0.972412i) q^{78} +(-3.63977 - 3.05413i) q^{79} +(-0.100577 + 0.174205i) q^{80} +(-0.0533607 + 8.99984i) q^{81} +(4.64298 - 2.68063i) q^{82} +(2.75845 - 1.00400i) q^{83} +(2.14559 - 4.78847i) q^{84} +(1.84440 - 1.54764i) q^{85} +(4.67987 + 5.57725i) q^{86} +(5.04423 + 0.227727i) q^{87} +(13.2755 - 4.83188i) q^{88} +11.2094 q^{89} +(0.992182 - 0.986316i) q^{90} +(10.6075 + 6.51327i) q^{91} +(4.04537 + 0.713308i) q^{92} +(-0.296232 + 1.32691i) q^{93} +(-4.56823 - 5.44420i) q^{94} +(-2.06543 - 2.46149i) q^{95} +(6.94674 + 6.38448i) q^{96} +(-2.41733 - 0.426241i) q^{97} +(-5.77228 + 2.92818i) q^{98} +(-14.5225 + 1.22718i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.594351 0.708320i 0.420270 0.500858i −0.513819 0.857898i \(-0.671770\pi\)
0.934089 + 0.357041i \(0.116214\pi\)
\(3\) 0.665198 1.59922i 0.384052 0.923311i
\(4\) 0.198832 + 1.12763i 0.0994162 + 0.563817i
\(5\) −0.386349 + 0.324185i −0.172781 + 0.144980i −0.725077 0.688667i \(-0.758196\pi\)
0.552297 + 0.833648i \(0.313752\pi\)
\(6\) −0.737399 1.42167i −0.301042 0.580395i
\(7\) 0.529787 2.59217i 0.200241 0.979747i
\(8\) 2.51844 + 1.45402i 0.890401 + 0.514073i
\(9\) −2.11502 2.12760i −0.705007 0.709200i
\(10\) 0.466338i 0.147469i
\(11\) 3.12271 3.72150i 0.941533 1.12208i −0.0508281 0.998707i \(-0.516186\pi\)
0.992361 0.123368i \(-0.0393695\pi\)
\(12\) 1.93560 + 0.432124i 0.558760 + 0.124743i
\(13\) −1.60911 + 4.42100i −0.446287 + 1.22616i 0.489003 + 0.872282i \(0.337361\pi\)
−0.935290 + 0.353882i \(0.884862\pi\)
\(14\) −1.52120 1.91591i −0.406559 0.512050i
\(15\) 0.261446 + 0.833505i 0.0675050 + 0.215210i
\(16\) 0.374792 0.136413i 0.0936980 0.0341033i
\(17\) −4.77392 −1.15785 −0.578923 0.815382i \(-0.696527\pi\)
−0.578923 + 0.815382i \(0.696527\pi\)
\(18\) −2.76409 + 0.233571i −0.651501 + 0.0550533i
\(19\) 6.37115i 1.46164i 0.682569 + 0.730821i \(0.260863\pi\)
−0.682569 + 0.730821i \(0.739137\pi\)
\(20\) −0.442381 0.371202i −0.0989195 0.0830033i
\(21\) −3.79304 2.57155i −0.827708 0.561159i
\(22\) −0.780028 4.42376i −0.166302 0.943148i
\(23\) 1.22699 3.37113i 0.255845 0.702929i −0.743567 0.668661i \(-0.766868\pi\)
0.999413 0.0342682i \(-0.0109100\pi\)
\(24\) 4.00056 3.06033i 0.816611 0.624686i
\(25\) −0.824071 + 4.67354i −0.164814 + 0.934708i
\(26\) 2.17510 + 3.76739i 0.426573 + 0.738846i
\(27\) −4.80941 + 1.96711i −0.925572 + 0.378571i
\(28\) 3.02836 + 0.0819996i 0.572305 + 0.0154965i
\(29\) 0.997075 + 2.73944i 0.185152 + 0.508701i 0.997191 0.0749022i \(-0.0238645\pi\)
−0.812039 + 0.583604i \(0.801642\pi\)
\(30\) 0.745779 + 0.310208i 0.136160 + 0.0566359i
\(31\) −0.773023 + 0.136305i −0.138839 + 0.0244811i −0.242636 0.970117i \(-0.578012\pi\)
0.103797 + 0.994599i \(0.466901\pi\)
\(32\) −1.86308 + 5.11878i −0.329349 + 0.904880i
\(33\) −3.87429 7.46945i −0.674427 1.30026i
\(34\) −2.83739 + 3.38147i −0.486608 + 0.579916i
\(35\) 0.635660 + 1.17323i 0.107446 + 0.198312i
\(36\) 1.97862 2.80801i 0.329770 0.468001i
\(37\) 2.73726 4.74107i 0.450002 0.779426i −0.548383 0.836227i \(-0.684757\pi\)
0.998386 + 0.0568005i \(0.0180899\pi\)
\(38\) 4.51281 + 3.78670i 0.732075 + 0.614284i
\(39\) 5.99978 + 5.51416i 0.960733 + 0.882973i
\(40\) −1.44437 + 0.254681i −0.228374 + 0.0402686i
\(41\) 5.44849 + 1.98309i 0.850912 + 0.309707i 0.730412 0.683007i \(-0.239328\pi\)
0.120500 + 0.992713i \(0.461550\pi\)
\(42\) −4.07587 + 1.15828i −0.628921 + 0.178726i
\(43\) −1.36729 + 7.75429i −0.208510 + 1.18252i 0.683310 + 0.730128i \(0.260540\pi\)
−0.891820 + 0.452390i \(0.850571\pi\)
\(44\) 4.81739 + 2.78132i 0.726249 + 0.419300i
\(45\) 1.50687 + 0.136337i 0.224631 + 0.0203239i
\(46\) −1.65857 2.87274i −0.244544 0.423562i
\(47\) 1.33467 7.56931i 0.194682 1.10410i −0.718188 0.695849i \(-0.755028\pi\)
0.912871 0.408249i \(-0.133861\pi\)
\(48\) 0.0311561 0.690117i 0.00449700 0.0996099i
\(49\) −6.43865 2.74659i −0.919807 0.392370i
\(50\) 2.82057 + 3.36143i 0.398889 + 0.475378i
\(51\) −3.17561 + 7.63457i −0.444674 + 1.06905i
\(52\) −5.30521 0.935452i −0.735700 0.129724i
\(53\) −4.26125 2.46023i −0.585328 0.337939i 0.177920 0.984045i \(-0.443063\pi\)
−0.763248 + 0.646106i \(0.776396\pi\)
\(54\) −1.46513 + 4.57576i −0.199379 + 0.622682i
\(55\) 2.45014i 0.330376i
\(56\) 5.10329 5.75788i 0.681956 0.769429i
\(57\) 10.1889 + 4.23808i 1.34955 + 0.561347i
\(58\) 2.53301 + 0.921941i 0.332601 + 0.121057i
\(59\) −5.01169 1.82411i −0.652467 0.237478i −0.00548607 0.999985i \(-0.501746\pi\)
−0.646981 + 0.762507i \(0.723969\pi\)
\(60\) −0.887906 + 0.460543i −0.114628 + 0.0594559i
\(61\) −7.07246 1.24706i −0.905535 0.159670i −0.298560 0.954391i \(-0.596506\pi\)
−0.606975 + 0.794721i \(0.707617\pi\)
\(62\) −0.362900 + 0.628561i −0.0460883 + 0.0798273i
\(63\) −6.63560 + 4.35531i −0.836007 + 0.548718i
\(64\) 2.91725 + 5.05283i 0.364656 + 0.631603i
\(65\) −0.811544 2.22970i −0.100660 0.276560i
\(66\) −7.59344 1.69524i −0.934688 0.208669i
\(67\) 6.70384 5.62519i 0.819005 0.687227i −0.133734 0.991017i \(-0.542697\pi\)
0.952739 + 0.303790i \(0.0982523\pi\)
\(68\) −0.949211 5.38324i −0.115109 0.652814i
\(69\) −4.57499 4.20470i −0.550764 0.506187i
\(70\) 1.20883 + 0.247060i 0.144482 + 0.0295293i
\(71\) −11.3110 + 6.53043i −1.34237 + 0.775019i −0.987155 0.159764i \(-0.948927\pi\)
−0.355217 + 0.934784i \(0.615593\pi\)
\(72\) −2.23298 8.43351i −0.263159 0.993898i
\(73\) 8.42907 4.86653i 0.986548 0.569584i 0.0823076 0.996607i \(-0.473771\pi\)
0.904241 + 0.427023i \(0.140438\pi\)
\(74\) −1.73130 4.75671i −0.201260 0.552956i
\(75\) 6.92586 + 4.42671i 0.799729 + 0.511152i
\(76\) −7.18433 + 1.26679i −0.824099 + 0.145311i
\(77\) −7.99238 10.0662i −0.910816 1.14715i
\(78\) 7.47176 0.972412i 0.846011 0.110104i
\(79\) −3.63977 3.05413i −0.409506 0.343617i 0.414648 0.909982i \(-0.363905\pi\)
−0.824154 + 0.566365i \(0.808349\pi\)
\(80\) −0.100577 + 0.174205i −0.0112449 + 0.0194767i
\(81\) −0.0533607 + 8.99984i −0.00592897 + 0.999982i
\(82\) 4.64298 2.68063i 0.512731 0.296026i
\(83\) 2.75845 1.00400i 0.302780 0.110203i −0.186163 0.982519i \(-0.559605\pi\)
0.488942 + 0.872316i \(0.337383\pi\)
\(84\) 2.14559 4.78847i 0.234103 0.522465i
\(85\) 1.84440 1.54764i 0.200053 0.167865i
\(86\) 4.67987 + 5.57725i 0.504643 + 0.601410i
\(87\) 5.04423 + 0.227727i 0.540798 + 0.0244149i
\(88\) 13.2755 4.83188i 1.41517 0.515080i
\(89\) 11.2094 1.18819 0.594097 0.804394i \(-0.297510\pi\)
0.594097 + 0.804394i \(0.297510\pi\)
\(90\) 0.992182 0.986316i 0.104585 0.103967i
\(91\) 10.6075 + 6.51327i 1.11197 + 0.682776i
\(92\) 4.04537 + 0.713308i 0.421759 + 0.0743675i
\(93\) −0.296232 + 1.32691i −0.0307178 + 0.137594i
\(94\) −4.56823 5.44420i −0.471177 0.561527i
\(95\) −2.06543 2.46149i −0.211909 0.252543i
\(96\) 6.94674 + 6.38448i 0.708999 + 0.651614i
\(97\) −2.41733 0.426241i −0.245443 0.0432783i 0.0495730 0.998771i \(-0.484214\pi\)
−0.295016 + 0.955492i \(0.595325\pi\)
\(98\) −5.77228 + 2.92818i −0.583089 + 0.295791i
\(99\) −14.5225 + 1.22718i −1.45956 + 0.123336i
\(100\) −5.43390 −0.543390
\(101\) −5.68215 + 2.06813i −0.565395 + 0.205787i −0.608874 0.793267i \(-0.708378\pi\)
0.0434782 + 0.999054i \(0.486156\pi\)
\(102\) 3.52029 + 6.78696i 0.348561 + 0.672009i
\(103\) −6.28671 7.49221i −0.619448 0.738229i 0.361528 0.932361i \(-0.382255\pi\)
−0.980975 + 0.194132i \(0.937811\pi\)
\(104\) −10.4807 + 8.79431i −1.02771 + 0.862354i
\(105\) 2.29910 0.236130i 0.224369 0.0230439i
\(106\) −4.27531 + 1.55609i −0.415255 + 0.151140i
\(107\) 13.9175 8.03528i 1.34546 0.776800i 0.357855 0.933777i \(-0.383508\pi\)
0.987602 + 0.156977i \(0.0501749\pi\)
\(108\) −3.17445 5.03214i −0.305462 0.484217i
\(109\) 7.22285 12.5103i 0.691823 1.19827i −0.279417 0.960170i \(-0.590141\pi\)
0.971240 0.238103i \(-0.0765256\pi\)
\(110\) 1.73548 + 1.45624i 0.165472 + 0.138847i
\(111\) −5.76120 7.53123i −0.546829 0.714833i
\(112\) −0.155046 1.04379i −0.0146504 0.0986292i
\(113\) −1.50934 + 0.266138i −0.141987 + 0.0250361i −0.244190 0.969727i \(-0.578522\pi\)
0.102203 + 0.994764i \(0.467411\pi\)
\(114\) 9.05769 4.69808i 0.848330 0.440016i
\(115\) 0.618824 + 1.70021i 0.0577056 + 0.158545i
\(116\) −2.89084 + 1.66903i −0.268407 + 0.154965i
\(117\) 12.8094 5.92696i 1.18423 0.547948i
\(118\) −4.27075 + 2.46572i −0.393155 + 0.226988i
\(119\) −2.52916 + 12.3748i −0.231848 + 1.13440i
\(120\) −0.553499 + 2.47928i −0.0505273 + 0.226326i
\(121\) −2.18812 12.4095i −0.198920 1.12813i
\(122\) −5.08684 + 4.26837i −0.460541 + 0.386440i
\(123\) 6.79573 7.39420i 0.612750 0.666713i
\(124\) −0.307404 0.844586i −0.0276057 0.0758461i
\(125\) −2.45757 4.25664i −0.219812 0.380725i
\(126\) −0.858921 + 7.28871i −0.0765188 + 0.649330i
\(127\) 5.33708 9.24410i 0.473590 0.820281i −0.525953 0.850513i \(-0.676291\pi\)
0.999543 + 0.0302322i \(0.00962466\pi\)
\(128\) −5.41617 0.955018i −0.478727 0.0844124i
\(129\) 11.4913 + 7.34475i 1.01175 + 0.646669i
\(130\) −2.06168 0.750390i −0.180821 0.0658136i
\(131\) −8.65448 3.14997i −0.756146 0.275215i −0.0649563 0.997888i \(-0.520691\pi\)
−0.691189 + 0.722674i \(0.742913\pi\)
\(132\) 7.65247 5.85395i 0.666062 0.509521i
\(133\) 16.5151 + 3.37535i 1.43204 + 0.292680i
\(134\) 8.09180i 0.699025i
\(135\) 1.22040 2.31913i 0.105036 0.199599i
\(136\) −12.0228 6.94138i −1.03095 0.595218i
\(137\) −14.6628 2.58546i −1.25273 0.220890i −0.492368 0.870387i \(-0.663868\pi\)
−0.760364 + 0.649497i \(0.774980\pi\)
\(138\) −5.69742 + 0.741490i −0.484997 + 0.0631198i
\(139\) 6.89067 + 8.21198i 0.584459 + 0.696531i 0.974531 0.224254i \(-0.0719944\pi\)
−0.390072 + 0.920784i \(0.627550\pi\)
\(140\) −1.19659 + 0.950068i −0.101130 + 0.0802954i
\(141\) −11.2172 7.16954i −0.944658 0.603784i
\(142\) −2.09709 + 11.8932i −0.175984 + 0.998055i
\(143\) 11.4280 + 19.7938i 0.955654 + 1.65524i
\(144\) −1.08293 0.508890i −0.0902438 0.0424075i
\(145\) −1.27331 0.735143i −0.105742 0.0610503i
\(146\) 1.56277 8.86290i 0.129336 0.733499i
\(147\) −8.67539 + 8.46980i −0.715534 + 0.698578i
\(148\) 5.89045 + 2.14395i 0.484192 + 0.176231i
\(149\) −2.09925 + 0.370154i −0.171977 + 0.0303242i −0.258974 0.965884i \(-0.583384\pi\)
0.0869964 + 0.996209i \(0.472273\pi\)
\(150\) 7.25191 2.27471i 0.592116 0.185729i
\(151\) 5.09411 + 4.27446i 0.414552 + 0.347851i 0.826086 0.563544i \(-0.190562\pi\)
−0.411534 + 0.911394i \(0.635007\pi\)
\(152\) −9.26378 + 16.0453i −0.751391 + 1.30145i
\(153\) 10.0970 + 10.1570i 0.816291 + 0.821145i
\(154\) −11.8804 0.321688i −0.957347 0.0259223i
\(155\) 0.254469 0.303264i 0.0204394 0.0243588i
\(156\) −5.02501 + 7.86195i −0.402323 + 0.629460i
\(157\) 0.202620 0.556695i 0.0161709 0.0444291i −0.931345 0.364139i \(-0.881363\pi\)
0.947515 + 0.319710i \(0.103585\pi\)
\(158\) −4.32660 + 0.762897i −0.344206 + 0.0606928i
\(159\) −6.76904 + 5.17814i −0.536820 + 0.410653i
\(160\) −0.939632 2.58162i −0.0742844 0.204095i
\(161\) −8.08848 4.96655i −0.637462 0.391419i
\(162\) 6.34305 + 5.38686i 0.498357 + 0.423232i
\(163\) 9.38783 + 16.2602i 0.735311 + 1.27360i 0.954587 + 0.297934i \(0.0962975\pi\)
−0.219275 + 0.975663i \(0.570369\pi\)
\(164\) −1.15286 + 6.53821i −0.0900235 + 0.510549i
\(165\) 3.91831 + 1.62983i 0.305040 + 0.126882i
\(166\) 0.928340 2.55059i 0.0720531 0.197964i
\(167\) −2.39928 13.6070i −0.185662 1.05294i −0.925102 0.379718i \(-0.876021\pi\)
0.739441 0.673221i \(-0.235090\pi\)
\(168\) −5.81343 11.9914i −0.448516 0.925159i
\(169\) −6.99739 5.87151i −0.538261 0.451654i
\(170\) 2.22626i 0.170747i
\(171\) 13.5553 13.4751i 1.03660 1.03047i
\(172\) −9.01587 −0.687454
\(173\) 4.13775 1.50602i 0.314588 0.114501i −0.179901 0.983685i \(-0.557578\pi\)
0.494488 + 0.869184i \(0.335355\pi\)
\(174\) 3.15934 3.43757i 0.239509 0.260602i
\(175\) 11.6780 + 4.61211i 0.882775 + 0.348643i
\(176\) 0.662705 1.82077i 0.0499533 0.137246i
\(177\) −6.25092 + 6.80141i −0.469848 + 0.511226i
\(178\) 6.66231 7.93983i 0.499361 0.595116i
\(179\) 3.01335i 0.225228i 0.993639 + 0.112614i \(0.0359224\pi\)
−0.993639 + 0.112614i \(0.964078\pi\)
\(180\) 0.145877 + 1.72631i 0.0108730 + 0.128672i
\(181\) 1.98157 + 1.14406i 0.147289 + 0.0850373i 0.571833 0.820370i \(-0.306232\pi\)
−0.424544 + 0.905407i \(0.639566\pi\)
\(182\) 10.9180 3.64231i 0.809299 0.269986i
\(183\) −6.69892 + 10.4809i −0.495198 + 0.774769i
\(184\) 7.99179 6.70590i 0.589162 0.494366i
\(185\) 0.479448 + 2.71908i 0.0352497 + 0.199911i
\(186\) 0.763808 + 0.998474i 0.0560051 + 0.0732117i
\(187\) −14.9076 + 17.7662i −1.09015 + 1.29919i
\(188\) 8.80080 0.641864
\(189\) 2.55112 + 13.5090i 0.185567 + 0.982632i
\(190\) −2.97111 −0.215547
\(191\) −8.45281 + 10.0737i −0.611624 + 0.728905i −0.979606 0.200928i \(-0.935604\pi\)
0.367982 + 0.929833i \(0.380049\pi\)
\(192\) 10.0211 1.30420i 0.723214 0.0941225i
\(193\) −0.00650905 0.0369147i −0.000468532 0.00265717i 0.984573 0.174977i \(-0.0559850\pi\)
−0.985041 + 0.172319i \(0.944874\pi\)
\(194\) −1.73866 + 1.45891i −0.124829 + 0.104744i
\(195\) −4.10562 0.185353i −0.294010 0.0132734i
\(196\) 1.81694 7.80656i 0.129781 0.557611i
\(197\) −4.43094 2.55821i −0.315692 0.182265i 0.333779 0.942651i \(-0.391676\pi\)
−0.649471 + 0.760387i \(0.725009\pi\)
\(198\) −7.76221 + 11.0159i −0.551636 + 0.782868i
\(199\) 6.17488i 0.437726i 0.975756 + 0.218863i \(0.0702348\pi\)
−0.975756 + 0.218863i \(0.929765\pi\)
\(200\) −8.87079 + 10.5718i −0.627260 + 0.747539i
\(201\) −4.53655 14.4628i −0.319983 1.02013i
\(202\) −1.91229 + 5.25398i −0.134548 + 0.369669i
\(203\) 7.62932 1.13326i 0.535473 0.0795395i
\(204\) −9.24041 2.06293i −0.646958 0.144434i
\(205\) −2.74791 + 1.00016i −0.191922 + 0.0698540i
\(206\) −9.04339 −0.630083
\(207\) −9.76753 + 4.51947i −0.678890 + 0.314125i
\(208\) 1.87646i 0.130109i
\(209\) 23.7103 + 19.8953i 1.64007 + 1.37618i
\(210\) 1.19921 1.76884i 0.0827536 0.122061i
\(211\) 0.583521 + 3.30931i 0.0401712 + 0.227822i 0.998283 0.0585715i \(-0.0186546\pi\)
−0.958112 + 0.286394i \(0.907543\pi\)
\(212\) 1.92697 5.29431i 0.132345 0.363615i
\(213\) 2.91952 + 22.4329i 0.200043 + 1.53708i
\(214\) 2.58034 14.6338i 0.176388 1.00035i
\(215\) −1.98558 3.43912i −0.135415 0.234546i
\(216\) −14.9724 2.03893i −1.01874 0.138732i
\(217\) −0.0562129 + 2.07602i −0.00381598 + 0.140929i
\(218\) −4.56841 12.5516i −0.309412 0.850103i
\(219\) −2.17565 16.7172i −0.147017 1.12964i
\(220\) −2.76286 + 0.487167i −0.186272 + 0.0328448i
\(221\) 7.68177 21.1055i 0.516732 1.41971i
\(222\) −8.75869 0.395421i −0.587845 0.0265389i
\(223\) −4.25268 + 5.06814i −0.284780 + 0.339388i −0.889403 0.457124i \(-0.848880\pi\)
0.604623 + 0.796512i \(0.293324\pi\)
\(224\) 12.2817 + 7.54128i 0.820604 + 0.503873i
\(225\) 11.6864 8.13135i 0.779090 0.542090i
\(226\) −0.708568 + 1.22728i −0.0471333 + 0.0816372i
\(227\) −8.02989 6.73788i −0.532962 0.447209i 0.336160 0.941805i \(-0.390872\pi\)
−0.869123 + 0.494596i \(0.835316\pi\)
\(228\) −2.75312 + 12.3320i −0.182330 + 0.816707i
\(229\) 17.2043 3.03357i 1.13689 0.200464i 0.426645 0.904419i \(-0.359695\pi\)
0.710245 + 0.703955i \(0.248584\pi\)
\(230\) 1.57209 + 0.572193i 0.103660 + 0.0377293i
\(231\) −21.4146 + 6.08558i −1.40898 + 0.400402i
\(232\) −1.47213 + 8.34887i −0.0966501 + 0.548130i
\(233\) −8.89526 5.13568i −0.582748 0.336450i 0.179477 0.983762i \(-0.442560\pi\)
−0.762225 + 0.647312i \(0.775893\pi\)
\(234\) 3.41510 12.5959i 0.223252 0.823417i
\(235\) 1.93821 + 3.35708i 0.126435 + 0.218992i
\(236\) 1.06044 6.01405i 0.0690287 0.391481i
\(237\) −7.30540 + 3.78920i −0.474537 + 0.246135i
\(238\) 7.26211 + 9.14643i 0.470733 + 0.592875i
\(239\) 14.4600 + 17.2328i 0.935342 + 1.11470i 0.993206 + 0.116372i \(0.0371266\pi\)
−0.0578640 + 0.998324i \(0.518429\pi\)
\(240\) 0.211689 + 0.276727i 0.0136645 + 0.0178626i
\(241\) 8.43248 + 1.48687i 0.543184 + 0.0957780i 0.438506 0.898728i \(-0.355508\pi\)
0.104678 + 0.994506i \(0.466619\pi\)
\(242\) −10.0904 5.82569i −0.648635 0.374489i
\(243\) 14.3573 + 6.07202i 0.921018 + 0.389520i
\(244\) 8.22310i 0.526430i
\(245\) 3.37797 1.02617i 0.215811 0.0655598i
\(246\) −1.19841 9.20830i −0.0764080 0.587100i
\(247\) −28.1668 10.2519i −1.79221 0.652312i
\(248\) −2.14500 0.780716i −0.136208 0.0495755i
\(249\) 0.229308 5.07924i 0.0145318 0.321884i
\(250\) −4.47572 0.789190i −0.283069 0.0499128i
\(251\) 8.90861 15.4302i 0.562307 0.973943i −0.434988 0.900436i \(-0.643247\pi\)
0.997295 0.0735073i \(-0.0234192\pi\)
\(252\) −6.23058 6.61656i −0.392489 0.416804i
\(253\) −8.71413 15.0933i −0.547853 0.948909i
\(254\) −3.37568 9.27460i −0.211809 0.581940i
\(255\) −1.24812 3.97909i −0.0781604 0.249180i
\(256\) −12.8345 + 10.7695i −0.802159 + 0.673091i
\(257\) 4.15085 + 23.5406i 0.258923 + 1.46842i 0.785799 + 0.618482i \(0.212252\pi\)
−0.526877 + 0.849942i \(0.676637\pi\)
\(258\) 12.0323 3.77417i 0.749098 0.234970i
\(259\) −10.8395 9.60718i −0.673532 0.596961i
\(260\) 2.35292 1.35846i 0.145922 0.0842482i
\(261\) 3.71960 7.91535i 0.230237 0.489948i
\(262\) −7.37499 + 4.25795i −0.455628 + 0.263057i
\(263\) 3.04119 + 8.35561i 0.187528 + 0.515229i 0.997455 0.0713021i \(-0.0227154\pi\)
−0.809927 + 0.586531i \(0.800493\pi\)
\(264\) 1.10358 24.4446i 0.0679206 1.50446i
\(265\) 2.44390 0.430926i 0.150128 0.0264716i
\(266\) 12.2066 9.69181i 0.748433 0.594243i
\(267\) 7.45647 17.9263i 0.456328 1.09707i
\(268\) 7.67611 + 6.44102i 0.468893 + 0.393448i
\(269\) 0.579284 1.00335i 0.0353195 0.0611752i −0.847825 0.530276i \(-0.822088\pi\)
0.883145 + 0.469100i \(0.155422\pi\)
\(270\) −0.917341 2.24281i −0.0558276 0.136493i
\(271\) −22.8894 + 13.2152i −1.39043 + 0.802766i −0.993363 0.115023i \(-0.963306\pi\)
−0.397069 + 0.917789i \(0.629973\pi\)
\(272\) −1.78923 + 0.651226i −0.108488 + 0.0394864i
\(273\) 17.4722 12.6311i 1.05747 0.764468i
\(274\) −10.5462 + 8.84932i −0.637120 + 0.534607i
\(275\) 14.8193 + 17.6609i 0.893635 + 1.06499i
\(276\) 3.83171 5.99495i 0.230642 0.360854i
\(277\) 10.3151 3.75438i 0.619773 0.225579i −0.0130009 0.999915i \(-0.504138\pi\)
0.632774 + 0.774336i \(0.281916\pi\)
\(278\) 9.91218 0.594493
\(279\) 1.92496 + 1.35640i 0.115245 + 0.0812053i
\(280\) −0.105032 + 3.87897i −0.00627685 + 0.231813i
\(281\) 0.726106 + 0.128032i 0.0433159 + 0.00763776i 0.195264 0.980751i \(-0.437444\pi\)
−0.151948 + 0.988388i \(0.548555\pi\)
\(282\) −11.7453 + 3.68414i −0.699421 + 0.219387i
\(283\) −5.91960 7.05471i −0.351884 0.419359i 0.560847 0.827919i \(-0.310475\pi\)
−0.912731 + 0.408560i \(0.866031\pi\)
\(284\) −9.61294 11.4563i −0.570423 0.679803i
\(285\) −5.31039 + 1.66571i −0.314560 + 0.0986681i
\(286\) 20.8126 + 3.66982i 1.23067 + 0.217001i
\(287\) 8.02704 13.0728i 0.473821 0.771662i
\(288\) 14.8312 6.86243i 0.873935 0.404373i
\(289\) 5.79036 0.340609
\(290\) −1.27751 + 0.464974i −0.0750178 + 0.0273042i
\(291\) −2.28966 + 3.58232i −0.134222 + 0.209999i
\(292\) 7.16364 + 8.53729i 0.419220 + 0.499607i
\(293\) 17.3436 14.5530i 1.01322 0.850196i 0.0244632 0.999701i \(-0.492212\pi\)
0.988761 + 0.149505i \(0.0477679\pi\)
\(294\) 0.843104 + 11.1790i 0.0491708 + 0.651972i
\(295\) 2.52761 0.919975i 0.147163 0.0535630i
\(296\) 13.7872 7.96005i 0.801365 0.462668i
\(297\) −7.69779 + 24.0410i −0.446671 + 1.39500i
\(298\) −0.985503 + 1.70694i −0.0570887 + 0.0988805i
\(299\) 12.9294 + 10.8490i 0.747726 + 0.627416i
\(300\) −3.61462 + 8.69001i −0.208690 + 0.501718i
\(301\) 19.3760 + 7.65237i 1.11682 + 0.441075i
\(302\) 6.05537 1.06773i 0.348448 0.0614407i
\(303\) −0.472352 + 10.4627i −0.0271359 + 0.601069i
\(304\) 0.869108 + 2.38786i 0.0498468 + 0.136953i
\(305\) 3.13672 1.81098i 0.179608 0.103697i
\(306\) 13.1955 1.11505i 0.754339 0.0637433i
\(307\) 18.3264 10.5807i 1.04594 0.603875i 0.124432 0.992228i \(-0.460289\pi\)
0.921511 + 0.388353i \(0.126956\pi\)
\(308\) 9.76184 11.0140i 0.556233 0.627579i
\(309\) −16.1636 + 5.07004i −0.919516 + 0.288424i
\(310\) −0.0635642 0.360491i −0.00361020 0.0204745i
\(311\) 6.35195 5.32992i 0.360186 0.302232i −0.444679 0.895690i \(-0.646682\pi\)
0.804865 + 0.593458i \(0.202238\pi\)
\(312\) 7.09235 + 22.6109i 0.401525 + 1.28009i
\(313\) −9.78199 26.8758i −0.552911 1.51911i −0.829717 0.558184i \(-0.811498\pi\)
0.276807 0.960926i \(-0.410724\pi\)
\(314\) −0.273890 0.474392i −0.0154565 0.0267715i
\(315\) 1.15173 3.83384i 0.0648926 0.216012i
\(316\) 2.72024 4.71159i 0.153025 0.265048i
\(317\) −19.8974 3.50845i −1.11755 0.197054i −0.415785 0.909463i \(-0.636493\pi\)
−0.701765 + 0.712409i \(0.747604\pi\)
\(318\) −0.355403 + 7.87228i −0.0199300 + 0.441455i
\(319\) 13.3084 + 4.84387i 0.745128 + 0.271204i
\(320\) −2.76513 1.00642i −0.154575 0.0562609i
\(321\) −3.59229 27.6023i −0.200502 1.54061i
\(322\) −8.32530 + 2.77736i −0.463951 + 0.154776i
\(323\) 30.4154i 1.69236i
\(324\) −10.1591 + 1.72929i −0.564397 + 0.0960716i
\(325\) −19.3357 11.1635i −1.07255 0.619238i
\(326\) 17.0971 + 3.01468i 0.946920 + 0.166968i
\(327\) −15.2022 19.8728i −0.840683 1.09897i
\(328\) 10.8382 + 12.9165i 0.598441 + 0.713194i
\(329\) −18.9138 7.46982i −1.04275 0.411825i
\(330\) 3.48329 1.80673i 0.191749 0.0994572i
\(331\) −2.59475 + 14.7155i −0.142620 + 0.808840i 0.826627 + 0.562750i \(0.190257\pi\)
−0.969247 + 0.246089i \(0.920854\pi\)
\(332\) 1.68061 + 2.91090i 0.0922354 + 0.159756i
\(333\) −15.8764 + 4.20368i −0.870024 + 0.230360i
\(334\) −11.0641 6.38786i −0.605400 0.349528i
\(335\) −0.766419 + 4.34658i −0.0418739 + 0.237479i
\(336\) −1.77239 0.446377i −0.0966920 0.0243519i
\(337\) −10.4942 3.81956i −0.571653 0.208065i 0.0399880 0.999200i \(-0.487268\pi\)
−0.611641 + 0.791136i \(0.709490\pi\)
\(338\) −8.31781 + 1.46665i −0.452429 + 0.0797755i
\(339\) −0.578399 + 2.59081i −0.0314143 + 0.140713i
\(340\) 2.11190 + 1.77209i 0.114534 + 0.0961051i
\(341\) −1.90667 + 3.30245i −0.103252 + 0.178838i
\(342\) −1.48812 17.6104i −0.0804682 0.952262i
\(343\) −10.5307 + 15.2349i −0.568606 + 0.822610i
\(344\) −14.7183 + 17.5406i −0.793559 + 0.945727i
\(345\) 3.13065 + 0.141337i 0.168548 + 0.00760930i
\(346\) 1.39253 3.82596i 0.0748631 0.205685i
\(347\) 17.9205 3.15986i 0.962022 0.169630i 0.329485 0.944161i \(-0.393125\pi\)
0.632537 + 0.774530i \(0.282014\pi\)
\(348\) 0.746163 + 5.73332i 0.0399985 + 0.307338i
\(349\) −8.74024 24.0136i −0.467854 1.28542i −0.919454 0.393198i \(-0.871369\pi\)
0.451599 0.892221i \(-0.350854\pi\)
\(350\) 10.2077 5.53055i 0.545624 0.295621i
\(351\) −0.957726 24.4277i −0.0511196 1.30385i
\(352\) 13.2317 + 22.9179i 0.705250 + 1.22153i
\(353\) −2.22706 + 12.6303i −0.118535 + 0.672243i 0.866405 + 0.499343i \(0.166425\pi\)
−0.984939 + 0.172901i \(0.944686\pi\)
\(354\) 1.10234 + 8.47008i 0.0585885 + 0.450179i
\(355\) 2.25294 6.18990i 0.119574 0.328526i
\(356\) 2.22879 + 12.6401i 0.118126 + 0.669924i
\(357\) 18.1077 + 12.2764i 0.958359 + 0.649736i
\(358\) 2.13441 + 1.79099i 0.112807 + 0.0946565i
\(359\) 21.4389i 1.13150i 0.824577 + 0.565750i \(0.191413\pi\)
−0.824577 + 0.565750i \(0.808587\pi\)
\(360\) 3.59673 + 2.53438i 0.189564 + 0.133573i
\(361\) −21.5916 −1.13640
\(362\) 1.98811 0.723612i 0.104493 0.0380322i
\(363\) −21.3010 4.75546i −1.11801 0.249597i
\(364\) −5.23548 + 13.2564i −0.274414 + 0.694824i
\(365\) −1.67891 + 4.61276i −0.0878780 + 0.241443i
\(366\) 3.44231 + 10.9743i 0.179932 + 0.573636i
\(367\) −4.47982 + 5.33884i −0.233844 + 0.278685i −0.870187 0.492722i \(-0.836002\pi\)
0.636343 + 0.771407i \(0.280447\pi\)
\(368\) 1.43085i 0.0745882i
\(369\) −7.30447 15.7865i −0.380255 0.821812i
\(370\) 2.21094 + 1.27649i 0.114941 + 0.0663614i
\(371\) −8.63489 + 9.74247i −0.448301 + 0.505804i
\(372\) −1.55517 0.0702097i −0.0806316 0.00364020i
\(373\) −8.84883 + 7.42505i −0.458175 + 0.384454i −0.842459 0.538760i \(-0.818893\pi\)
0.384284 + 0.923215i \(0.374448\pi\)
\(374\) 3.72379 + 21.1187i 0.192553 + 1.09202i
\(375\) −8.44208 + 1.09869i −0.435947 + 0.0567363i
\(376\) 14.3672 17.1222i 0.740933 0.883009i
\(377\) −13.7155 −0.706382
\(378\) 11.0849 + 6.22205i 0.570147 + 0.320028i
\(379\) 6.46443 0.332055 0.166028 0.986121i \(-0.446906\pi\)
0.166028 + 0.986121i \(0.446906\pi\)
\(380\) 2.36498 2.81848i 0.121321 0.144585i
\(381\) −11.2332 14.6843i −0.575492 0.752302i
\(382\) 2.11144 + 11.9746i 0.108031 + 0.612673i
\(383\) −1.78265 + 1.49582i −0.0910889 + 0.0764327i −0.687195 0.726473i \(-0.741158\pi\)
0.596106 + 0.802906i \(0.296714\pi\)
\(384\) −5.13012 + 8.02639i −0.261795 + 0.409595i
\(385\) 6.35116 + 1.29805i 0.323685 + 0.0661548i
\(386\) −0.0300160 0.0173298i −0.00152778 0.000882062i
\(387\) 19.3899 13.4915i 0.985643 0.685809i
\(388\) 2.81062i 0.142688i
\(389\) −21.1876 + 25.2503i −1.07425 + 1.28024i −0.116331 + 0.993211i \(0.537113\pi\)
−0.957921 + 0.287032i \(0.907331\pi\)
\(390\) −2.57147 + 2.79793i −0.130211 + 0.141679i
\(391\) −5.85756 + 16.0935i −0.296230 + 0.813884i
\(392\) −12.2217 16.2790i −0.617291 0.822216i
\(393\) −10.7945 + 11.7451i −0.544508 + 0.592461i
\(394\) −4.44556 + 1.61805i −0.223964 + 0.0815163i
\(395\) 2.39633 0.120572
\(396\) −4.27135 16.1320i −0.214643 0.810665i
\(397\) 25.4001i 1.27479i 0.770535 + 0.637397i \(0.219989\pi\)
−0.770535 + 0.637397i \(0.780011\pi\)
\(398\) 4.37379 + 3.67005i 0.219238 + 0.183963i
\(399\) 16.3837 24.1660i 0.820213 1.20981i
\(400\) 0.328677 + 1.86402i 0.0164339 + 0.0932010i
\(401\) −6.66838 + 18.3212i −0.333003 + 0.914918i 0.654323 + 0.756215i \(0.272954\pi\)
−0.987326 + 0.158703i \(0.949269\pi\)
\(402\) −12.9406 5.38265i −0.645418 0.268462i
\(403\) 0.641277 3.63686i 0.0319443 0.181165i
\(404\) −3.46190 5.99618i −0.172236 0.298321i
\(405\) −2.89700 3.49438i −0.143953 0.173637i
\(406\) 3.73178 6.07756i 0.185205 0.301624i
\(407\) −9.09623 24.9917i −0.450883 1.23879i
\(408\) −19.0984 + 14.6098i −0.945510 + 0.723291i
\(409\) −17.0494 + 3.00627i −0.843038 + 0.148650i −0.578457 0.815713i \(-0.696345\pi\)
−0.264581 + 0.964363i \(0.585234\pi\)
\(410\) −0.924791 + 2.54084i −0.0456722 + 0.125483i
\(411\) −13.8884 + 21.7293i −0.685065 + 1.07183i
\(412\) 7.19847 8.57880i 0.354643 0.422647i
\(413\) −7.38352 + 12.0247i −0.363319 + 0.591699i
\(414\) −2.60411 + 9.60468i −0.127985 + 0.472044i
\(415\) −0.740246 + 1.28214i −0.0363372 + 0.0629379i
\(416\) −19.6322 16.4734i −0.962547 0.807673i
\(417\) 17.7164 5.55711i 0.867577 0.272133i
\(418\) 28.1844 4.96967i 1.37854 0.243075i
\(419\) 3.08710 + 1.12361i 0.150815 + 0.0548920i 0.416324 0.909216i \(-0.363318\pi\)
−0.265510 + 0.964108i \(0.585540\pi\)
\(420\) 0.723403 + 2.54559i 0.0352985 + 0.124212i
\(421\) −0.564741 + 3.20281i −0.0275238 + 0.156095i −0.995472 0.0950543i \(-0.969698\pi\)
0.967948 + 0.251150i \(0.0808086\pi\)
\(422\) 2.69087 + 1.55357i 0.130989 + 0.0756267i
\(423\) −18.9273 + 13.1696i −0.920279 + 0.640329i
\(424\) −7.15446 12.3919i −0.347451 0.601803i
\(425\) 3.93405 22.3111i 0.190830 1.08225i
\(426\) 17.6249 + 11.2650i 0.853928 + 0.545793i
\(427\) −6.97949 + 17.6723i −0.337761 + 0.855223i
\(428\) 11.8281 + 14.0962i 0.571734 + 0.681366i
\(429\) 39.2565 5.10904i 1.89532 0.246667i
\(430\) −3.61613 0.637621i −0.174385 0.0307488i
\(431\) −29.6610 17.1248i −1.42872 0.824872i −0.431700 0.902017i \(-0.642086\pi\)
−0.997020 + 0.0771457i \(0.975419\pi\)
\(432\) −1.53419 + 1.39333i −0.0738137 + 0.0670364i
\(433\) 27.4243i 1.31793i 0.752174 + 0.658965i \(0.229005\pi\)
−0.752174 + 0.658965i \(0.770995\pi\)
\(434\) 1.43707 + 1.27370i 0.0689818 + 0.0611395i
\(435\) −2.02266 + 1.54728i −0.0969790 + 0.0741865i
\(436\) 15.5432 + 5.65727i 0.744386 + 0.270934i
\(437\) 21.4780 + 7.81734i 1.02743 + 0.373954i
\(438\) −13.1342 8.39480i −0.627576 0.401119i
\(439\) 3.72213 + 0.656313i 0.177648 + 0.0313241i 0.261764 0.965132i \(-0.415696\pi\)
−0.0841165 + 0.996456i \(0.526807\pi\)
\(440\) −3.56255 + 6.17051i −0.169838 + 0.294168i
\(441\) 7.77424 + 19.5080i 0.370202 + 0.928951i
\(442\) −10.3838 17.9852i −0.493906 0.855470i
\(443\) −7.38522 20.2907i −0.350883 0.964042i −0.982087 0.188426i \(-0.939661\pi\)
0.631205 0.775616i \(-0.282561\pi\)
\(444\) 7.34696 7.99398i 0.348671 0.379378i
\(445\) −4.33074 + 3.63392i −0.205297 + 0.172264i
\(446\) 1.06228 + 6.02451i 0.0503006 + 0.285269i
\(447\) −0.804458 + 3.60339i −0.0380496 + 0.170435i
\(448\) 14.6433 4.88508i 0.691830 0.230798i
\(449\) −15.0109 + 8.66655i −0.708408 + 0.409000i −0.810471 0.585778i \(-0.800789\pi\)
0.102063 + 0.994778i \(0.467456\pi\)
\(450\) 1.18620 13.1106i 0.0559179 0.618037i
\(451\) 24.3942 14.0840i 1.14868 0.663188i
\(452\) −0.600213 1.64907i −0.0282316 0.0775657i
\(453\) 10.2244 5.30324i 0.480384 0.249168i
\(454\) −9.54514 + 1.68307i −0.447976 + 0.0789902i
\(455\) −6.20969 + 0.922391i −0.291115 + 0.0432424i
\(456\) 19.4978 + 25.4882i 0.913068 + 1.19359i
\(457\) 25.1386 + 21.0938i 1.17593 + 0.986726i 0.999997 + 0.00232513i \(0.000740114\pi\)
0.175938 + 0.984401i \(0.443704\pi\)
\(458\) 8.07662 13.9891i 0.377396 0.653669i
\(459\) 22.9598 9.39086i 1.07167 0.438328i
\(460\) −1.79417 + 1.03586i −0.0836535 + 0.0482974i
\(461\) −0.748682 + 0.272498i −0.0348696 + 0.0126915i −0.359396 0.933185i \(-0.617017\pi\)
0.324526 + 0.945877i \(0.394795\pi\)
\(462\) −8.41725 + 18.7853i −0.391606 + 0.873973i
\(463\) 8.79280 7.37804i 0.408636 0.342887i −0.415184 0.909737i \(-0.636283\pi\)
0.823820 + 0.566851i \(0.191838\pi\)
\(464\) 0.747391 + 0.890706i 0.0346968 + 0.0413500i
\(465\) −0.315714 0.608683i −0.0146409 0.0282270i
\(466\) −8.92461 + 3.24829i −0.413425 + 0.150474i
\(467\) 5.18972 0.240151 0.120076 0.992765i \(-0.461686\pi\)
0.120076 + 0.992765i \(0.461686\pi\)
\(468\) 9.23037 + 13.2659i 0.426674 + 0.613215i
\(469\) −11.0298 20.3576i −0.509310 0.940028i
\(470\) 3.52986 + 0.622410i 0.162820 + 0.0287096i
\(471\) −0.755496 0.694347i −0.0348114 0.0319938i
\(472\) −9.96933 11.8810i −0.458876 0.546867i
\(473\) 24.5880 + 29.3028i 1.13056 + 1.34734i
\(474\) −1.65801 + 7.42668i −0.0761548 + 0.341119i
\(475\) −29.7758 5.25028i −1.36621 0.240899i
\(476\) −14.4571 0.391460i −0.662642 0.0179425i
\(477\) 3.77825 + 14.2697i 0.172994 + 0.653364i
\(478\) 20.8007 0.951400
\(479\) 17.4081 6.33602i 0.795395 0.289500i 0.0878180 0.996137i \(-0.472011\pi\)
0.707577 + 0.706637i \(0.249788\pi\)
\(480\) −4.75362 0.214608i −0.216972 0.00979545i
\(481\) 16.5557 + 19.7303i 0.754874 + 0.899624i
\(482\) 6.06503 5.08917i 0.276255 0.231805i
\(483\) −13.3231 + 9.63155i −0.606220 + 0.438251i
\(484\) 13.5583 4.93481i 0.616285 0.224310i
\(485\) 1.07212 0.618987i 0.0486823 0.0281067i
\(486\) 12.8342 6.56062i 0.582170 0.297596i
\(487\) 12.9714 22.4672i 0.587792 1.01809i −0.406729 0.913549i \(-0.633331\pi\)
0.994521 0.104537i \(-0.0333360\pi\)
\(488\) −15.9983 13.4241i −0.724208 0.607682i
\(489\) 32.2484 4.19697i 1.45832 0.189793i
\(490\) 1.28084 3.00259i 0.0578625 0.135643i
\(491\) 17.9073 3.15754i 0.808146 0.142498i 0.245715 0.969342i \(-0.420977\pi\)
0.562431 + 0.826844i \(0.309866\pi\)
\(492\) 9.68917 + 6.19289i 0.436822 + 0.279197i
\(493\) −4.75996 13.0779i −0.214378 0.588998i
\(494\) −24.0026 + 13.8579i −1.07993 + 0.623497i
\(495\) 5.21291 5.18209i 0.234303 0.232918i
\(496\) −0.271129 + 0.156536i −0.0121741 + 0.00702870i
\(497\) 10.9355 + 32.7798i 0.490525 + 1.47038i
\(498\) −3.46143 3.18127i −0.155111 0.142556i
\(499\) −4.24424 24.0703i −0.189998 1.07753i −0.919363 0.393410i \(-0.871295\pi\)
0.729365 0.684125i \(-0.239816\pi\)
\(500\) 4.31129 3.61760i 0.192807 0.161784i
\(501\) −23.3566 5.21436i −1.04349 0.232960i
\(502\) −5.63465 15.4811i −0.251487 0.690954i
\(503\) −7.81528 13.5365i −0.348466 0.603561i 0.637511 0.770441i \(-0.279964\pi\)
−0.985977 + 0.166880i \(0.946631\pi\)
\(504\) −23.0441 + 1.32028i −1.02646 + 0.0588101i
\(505\) 1.52484 2.64109i 0.0678543 0.117527i
\(506\) −15.8701 2.79833i −0.705514 0.124401i
\(507\) −14.0445 + 7.28466i −0.623738 + 0.323523i
\(508\) 11.4852 + 4.18025i 0.509571 + 0.185469i
\(509\) −22.9635 8.35802i −1.01784 0.370463i −0.221400 0.975183i \(-0.571063\pi\)
−0.796438 + 0.604720i \(0.793285\pi\)
\(510\) −3.56029 1.48091i −0.157652 0.0655757i
\(511\) −8.14923 24.4278i −0.360501 1.08062i
\(512\) 4.49234i 0.198535i
\(513\) −12.5328 30.6415i −0.553336 1.35286i
\(514\) 19.1413 + 11.0513i 0.844288 + 0.487450i
\(515\) 4.85773 + 0.856548i 0.214057 + 0.0377440i
\(516\) −5.99734 + 14.4184i −0.264018 + 0.634734i
\(517\) −24.0014 28.6038i −1.05558 1.25799i
\(518\) −13.2474 + 1.96778i −0.582057 + 0.0864591i
\(519\) 0.343968 7.61899i 0.0150985 0.334437i
\(520\) 1.19820 6.79535i 0.0525447 0.297996i
\(521\) −16.5999 28.7519i −0.727255 1.25964i −0.958039 0.286638i \(-0.907462\pi\)
0.230784 0.973005i \(-0.425871\pi\)
\(522\) −3.39586 7.33916i −0.148633 0.321226i
\(523\) 33.9429 + 19.5969i 1.48422 + 0.856915i 0.999839 0.0179428i \(-0.00571167\pi\)
0.484381 + 0.874857i \(0.339045\pi\)
\(524\) 1.83123 10.3854i 0.0799976 0.453689i
\(525\) 15.1440 15.6078i 0.660938 0.681179i
\(526\) 7.72598 + 2.81203i 0.336869 + 0.122610i
\(527\) 3.69035 0.650709i 0.160754 0.0283453i
\(528\) −2.47098 2.27098i −0.107536 0.0988319i
\(529\) 7.76001 + 6.51142i 0.337392 + 0.283105i
\(530\) 1.14730 1.98719i 0.0498356 0.0863178i
\(531\) 6.71887 + 14.5209i 0.291574 + 0.630153i
\(532\) −0.522432 + 19.2941i −0.0226503 + 0.836506i
\(533\) −17.5345 + 20.8968i −0.759502 + 0.905139i
\(534\) −8.26580 15.9361i −0.357696 0.689622i
\(535\) −2.77210 + 7.61628i −0.119848 + 0.329280i
\(536\) 25.0623 4.41917i 1.08253 0.190879i
\(537\) 4.81901 + 2.00447i 0.207956 + 0.0864994i
\(538\) −0.366394 1.00666i −0.0157964 0.0434002i
\(539\) −30.3275 + 15.3846i −1.30630 + 0.662663i
\(540\) 2.85779 + 0.915049i 0.122980 + 0.0393775i
\(541\) −22.2029 38.4566i −0.954578 1.65338i −0.735330 0.677709i \(-0.762973\pi\)
−0.219248 0.975669i \(-0.570360\pi\)
\(542\) −4.24375 + 24.0675i −0.182284 + 1.03379i
\(543\) 3.14774 2.40794i 0.135082 0.103335i
\(544\) 8.89421 24.4366i 0.381336 1.04771i
\(545\) 1.26513 + 7.17490i 0.0541921 + 0.307339i
\(546\) 1.43779 19.8832i 0.0615318 0.850923i
\(547\) 10.6883 + 8.96856i 0.456999 + 0.383468i 0.842025 0.539438i \(-0.181363\pi\)
−0.385026 + 0.922906i \(0.625808\pi\)
\(548\) 17.0484i 0.728272i
\(549\) 12.3051 + 17.6849i 0.525171 + 0.754774i
\(550\) 21.3174 0.908977
\(551\) −17.4534 + 6.35251i −0.743539 + 0.270626i
\(552\) −5.40811 17.2414i −0.230184 0.733843i
\(553\) −9.84512 + 7.81685i −0.418657 + 0.332406i
\(554\) 3.47147 9.53780i 0.147489 0.405222i
\(555\) 4.66735 + 1.04199i 0.198118 + 0.0442299i
\(556\) −7.89002 + 9.40296i −0.334611 + 0.398774i
\(557\) 11.9840i 0.507780i −0.967233 0.253890i \(-0.918290\pi\)
0.967233 0.253890i \(-0.0817101\pi\)
\(558\) 2.10487 0.557315i 0.0891061 0.0235930i
\(559\) −32.0816 18.5223i −1.35691 0.783410i
\(560\) 0.398284 + 0.353005i 0.0168306 + 0.0149172i
\(561\) 18.4956 + 35.6586i 0.780883 + 1.50551i
\(562\) 0.522250 0.438220i 0.0220298 0.0184852i
\(563\) −0.171106 0.970390i −0.00721125 0.0408970i 0.980990 0.194059i \(-0.0621654\pi\)
−0.988201 + 0.153162i \(0.951054\pi\)
\(564\) 5.85428 14.0744i 0.246509 0.592640i
\(565\) 0.496855 0.592129i 0.0209029 0.0249111i
\(566\) −8.51531 −0.357925
\(567\) 23.3008 + 4.90632i 0.978542 + 0.206046i
\(568\) −37.9815 −1.59367
\(569\) −3.55957 + 4.24213i −0.149225 + 0.177839i −0.835479 0.549523i \(-0.814810\pi\)
0.686254 + 0.727362i \(0.259254\pi\)
\(570\) −1.97638 + 4.75147i −0.0827814 + 0.199017i
\(571\) −2.29263 13.0021i −0.0959436 0.544123i −0.994454 0.105171i \(-0.966461\pi\)
0.898511 0.438952i \(-0.144650\pi\)
\(572\) −20.0479 + 16.8222i −0.838246 + 0.703372i
\(573\) 10.4872 + 20.2189i 0.438111 + 0.844657i
\(574\) −4.48884 13.4555i −0.187360 0.561623i
\(575\) 14.7440 + 8.51244i 0.614867 + 0.354993i
\(576\) 4.58034 16.8936i 0.190848 0.703899i
\(577\) 19.1388i 0.796760i 0.917220 + 0.398380i \(0.130427\pi\)
−0.917220 + 0.398380i \(0.869573\pi\)
\(578\) 3.44150 4.10142i 0.143148 0.170597i
\(579\) −0.0633645 0.0141462i −0.00263334 0.000587894i
\(580\) 0.575799 1.58199i 0.0239087 0.0656887i
\(581\) −1.14113 7.68228i −0.0473420 0.318714i
\(582\) 1.17657 + 3.75097i 0.0487702 + 0.155483i
\(583\) −22.4624 + 8.17565i −0.930299 + 0.338601i
\(584\) 28.3041 1.17123
\(585\) −3.02747 + 6.44250i −0.125171 + 0.266365i
\(586\) 20.9344i 0.864793i
\(587\) 20.7501 + 17.4114i 0.856450 + 0.718647i 0.961200 0.275852i \(-0.0889598\pi\)
−0.104750 + 0.994499i \(0.533404\pi\)
\(588\) −11.2758 8.09860i −0.465006 0.333981i
\(589\) −0.868419 4.92505i −0.0357826 0.202933i
\(590\) 0.850651 2.33714i 0.0350207 0.0962187i
\(591\) −7.03860 + 5.38435i −0.289529 + 0.221482i
\(592\) 0.379158 2.15031i 0.0155833 0.0883772i
\(593\) 21.3668 + 37.0083i 0.877428 + 1.51975i 0.854154 + 0.520020i \(0.174076\pi\)
0.0232738 + 0.999729i \(0.492591\pi\)
\(594\) 12.4535 + 19.7413i 0.510974 + 0.809994i
\(595\) −3.03459 5.60091i −0.124406 0.229615i
\(596\) −0.834798 2.29359i −0.0341946 0.0939490i
\(597\) 9.87501 + 4.10752i 0.404157 + 0.168110i
\(598\) 15.3692 2.71000i 0.628493 0.110820i
\(599\) 10.7152 29.4398i 0.437812 1.20288i −0.503100 0.864228i \(-0.667807\pi\)
0.940912 0.338650i \(-0.109970\pi\)
\(600\) 11.0058 + 21.2187i 0.449311 + 0.866250i
\(601\) 3.68912 4.39652i 0.150482 0.179338i −0.685537 0.728038i \(-0.740433\pi\)
0.836019 + 0.548700i \(0.184877\pi\)
\(602\) 16.9365 9.17624i 0.690280 0.373996i
\(603\) −26.1469 2.36569i −1.06479 0.0963382i
\(604\) −3.80716 + 6.59419i −0.154911 + 0.268314i
\(605\) 4.86835 + 4.08503i 0.197927 + 0.166080i
\(606\) 7.13022 + 6.55312i 0.289646 + 0.266202i
\(607\) −13.3273 + 2.34995i −0.540937 + 0.0953817i −0.437439 0.899248i \(-0.644114\pi\)
−0.103497 + 0.994630i \(0.533003\pi\)
\(608\) −32.6125 11.8700i −1.32261 0.481391i
\(609\) 3.26267 12.9548i 0.132210 0.524956i
\(610\) 0.581554 3.29816i 0.0235464 0.133539i
\(611\) 31.3163 + 18.0805i 1.26692 + 0.731457i
\(612\) −9.44578 + 13.4052i −0.381823 + 0.541874i
\(613\) −0.926764 1.60520i −0.0374316 0.0648335i 0.846703 0.532066i \(-0.178584\pi\)
−0.884134 + 0.467233i \(0.845251\pi\)
\(614\) 3.39775 19.2696i 0.137122 0.777658i
\(615\) −0.228431 + 5.05982i −0.00921124 + 0.204032i
\(616\) −5.49186 36.9721i −0.221273 1.48965i
\(617\) −30.5178 36.3698i −1.22860 1.46419i −0.839823 0.542860i \(-0.817341\pi\)
−0.388779 0.921331i \(-0.627103\pi\)
\(618\) −6.01565 + 14.4624i −0.241985 + 0.581762i
\(619\) −3.03430 0.535030i −0.121959 0.0215047i 0.112335 0.993670i \(-0.464167\pi\)
−0.234294 + 0.972166i \(0.575278\pi\)
\(620\) 0.392568 + 0.226649i 0.0157659 + 0.00910245i
\(621\) 0.730292 + 18.6268i 0.0293056 + 0.747467i
\(622\) 7.66706i 0.307421i
\(623\) 5.93859 29.0566i 0.237925 1.16413i
\(624\) 3.00087 + 1.24822i 0.120131 + 0.0499686i
\(625\) −19.9678 7.26768i −0.798711 0.290707i
\(626\) −24.8506 9.04487i −0.993229 0.361506i
\(627\) 47.5890 24.6837i 1.90052 0.985770i
\(628\) 0.668036 + 0.117793i 0.0266575 + 0.00470044i
\(629\) −13.0675 + 22.6335i −0.521033 + 0.902456i
\(630\) −2.03105 3.09444i −0.0809190 0.123285i
\(631\) 12.7919 + 22.1562i 0.509238 + 0.882026i 0.999943 + 0.0106999i \(0.00340596\pi\)
−0.490705 + 0.871326i \(0.663261\pi\)
\(632\) −4.72576 12.9839i −0.187981 0.516473i
\(633\) 5.68048 + 1.26817i 0.225779 + 0.0504052i
\(634\) −14.3112 + 12.0085i −0.568368 + 0.476918i
\(635\) 0.934825 + 5.30165i 0.0370974 + 0.210390i
\(636\) −7.18496 6.60342i −0.284902 0.261843i
\(637\) 22.5032 24.0457i 0.891608 0.952725i
\(638\) 11.3409 6.54765i 0.448989 0.259224i
\(639\) 37.8172 + 10.2533i 1.49603 + 0.405616i
\(640\) 2.40214 1.38687i 0.0949528 0.0548210i
\(641\) 4.50967 + 12.3902i 0.178121 + 0.489384i 0.996336 0.0855292i \(-0.0272581\pi\)
−0.818215 + 0.574913i \(0.805036\pi\)
\(642\) −21.6863 13.8609i −0.855890 0.547047i
\(643\) 39.9985 7.05281i 1.57739 0.278136i 0.684703 0.728822i \(-0.259932\pi\)
0.892682 + 0.450686i \(0.148821\pi\)
\(644\) 3.99220 10.1084i 0.157315 0.398325i
\(645\) −6.82072 + 0.887681i −0.268566 + 0.0349524i
\(646\) −21.5438 18.0774i −0.847630 0.711246i
\(647\) 20.0184 34.6729i 0.787006 1.36313i −0.140788 0.990040i \(-0.544964\pi\)
0.927794 0.373094i \(-0.121703\pi\)
\(648\) −13.2203 + 22.5879i −0.519344 + 0.887338i
\(649\) −22.4385 + 12.9549i −0.880787 + 0.508523i
\(650\) −19.3995 + 7.06083i −0.760910 + 0.276949i
\(651\) 3.28262 + 1.47086i 0.128656 + 0.0576476i
\(652\) −16.4690 + 13.8191i −0.644974 + 0.541198i
\(653\) −8.87922 10.5818i −0.347471 0.414100i 0.563797 0.825913i \(-0.309340\pi\)
−0.911268 + 0.411814i \(0.864895\pi\)
\(654\) −23.1117 1.04340i −0.903740 0.0408003i
\(655\) 4.36483 1.58867i 0.170548 0.0620744i
\(656\) 2.31257 0.0902907
\(657\) −28.1817 7.64088i −1.09947 0.298099i
\(658\) −16.5325 + 8.95734i −0.644503 + 0.349194i
\(659\) 36.6031 + 6.45411i 1.42585 + 0.251417i 0.832723 0.553690i \(-0.186781\pi\)
0.593131 + 0.805106i \(0.297892\pi\)
\(660\) −1.05876 + 4.74249i −0.0412122 + 0.184601i
\(661\) 29.0253 + 34.5910i 1.12895 + 1.34543i 0.930913 + 0.365240i \(0.119013\pi\)
0.198040 + 0.980194i \(0.436542\pi\)
\(662\) 8.88112 + 10.5841i 0.345175 + 0.411363i
\(663\) −28.6425 26.3242i −1.11238 1.02235i
\(664\) 8.40682 + 1.48235i 0.326248 + 0.0575263i
\(665\) −7.47483 + 4.04988i −0.289861 + 0.157048i
\(666\) −6.45863 + 13.7441i −0.250267 + 0.532571i
\(667\) 10.4584 0.404951
\(668\) 14.8666 5.41101i 0.575207 0.209358i
\(669\) 5.27621 + 10.1723i 0.203990 + 0.393284i
\(670\) 2.62324 + 3.12626i 0.101345 + 0.120778i
\(671\) −26.7262 + 22.4259i −1.03175 + 0.865744i
\(672\) 20.2299 14.6247i 0.780387 0.564160i
\(673\) 4.43681 1.61487i 0.171026 0.0622485i −0.255088 0.966918i \(-0.582104\pi\)
0.426114 + 0.904669i \(0.359882\pi\)
\(674\) −8.94268 + 5.16306i −0.344459 + 0.198874i
\(675\) −5.23009 24.0980i −0.201306 0.927534i
\(676\) 5.22961 9.05794i 0.201139 0.348382i
\(677\) 8.09974 + 6.79649i 0.311298 + 0.261210i 0.785028 0.619460i \(-0.212648\pi\)
−0.473730 + 0.880670i \(0.657093\pi\)
\(678\) 1.49135 + 1.94954i 0.0572749 + 0.0748717i
\(679\) −2.38556 + 6.04032i −0.0915494 + 0.231806i
\(680\) 6.89530 1.21583i 0.264423 0.0466248i
\(681\) −16.1168 + 8.35955i −0.617598 + 0.320339i
\(682\) 1.20596 + 3.31334i 0.0461786 + 0.126875i
\(683\) −8.04671 + 4.64577i −0.307899 + 0.177765i −0.645986 0.763349i \(-0.723553\pi\)
0.338087 + 0.941115i \(0.390220\pi\)
\(684\) 17.8902 + 12.6061i 0.684050 + 0.482006i
\(685\) 6.50314 3.75459i 0.248472 0.143456i
\(686\) 4.53226 + 16.5140i 0.173042 + 0.630509i
\(687\) 6.59288 29.5314i 0.251534 1.12669i
\(688\) 0.545338 + 3.09276i 0.0207908 + 0.117911i
\(689\) 17.7335 14.8802i 0.675593 0.566890i
\(690\) 1.96081 2.13350i 0.0746469 0.0812208i
\(691\) 3.54767 + 9.74713i 0.134960 + 0.370798i 0.988701 0.149898i \(-0.0478945\pi\)
−0.853742 + 0.520697i \(0.825672\pi\)
\(692\) 2.52096 + 4.36643i 0.0958325 + 0.165987i
\(693\) −4.51276 + 38.2948i −0.171426 + 1.45470i
\(694\) 8.41286 14.5715i 0.319348 0.553126i
\(695\) −5.32440 0.938836i −0.201966 0.0356121i
\(696\) 12.3724 + 7.90792i 0.468976 + 0.299749i
\(697\) −26.0107 9.46712i −0.985226 0.358593i
\(698\) −22.2041 8.08163i −0.840437 0.305894i
\(699\) −14.1302 + 10.8093i −0.534454 + 0.408844i
\(700\) −2.87881 + 14.0856i −0.108809 + 0.532385i
\(701\) 32.6042i 1.23144i 0.787964 + 0.615721i \(0.211135\pi\)
−0.787964 + 0.615721i \(0.788865\pi\)
\(702\) −17.8719 13.8403i −0.674530 0.522367i
\(703\) 30.2060 + 17.4395i 1.13924 + 0.657742i
\(704\) 27.9138 + 4.92196i 1.05204 + 0.185503i
\(705\) 6.65801 0.866506i 0.250755 0.0326345i
\(706\) 7.62264 + 9.08431i 0.286882 + 0.341892i
\(707\) 2.35062 + 15.8248i 0.0884040 + 0.595151i
\(708\) −8.91240 5.69641i −0.334948 0.214084i
\(709\) −2.10559 + 11.9414i −0.0790770 + 0.448468i 0.919401 + 0.393321i \(0.128674\pi\)
−0.998478 + 0.0551470i \(0.982437\pi\)
\(710\) −3.04539 5.27477i −0.114291 0.197959i
\(711\) 1.20023 + 14.2035i 0.0450122 + 0.532674i
\(712\) 28.2301 + 16.2987i 1.05797 + 0.610819i
\(713\) −0.488991 + 2.77321i −0.0183129 + 0.103857i
\(714\) 19.4579 5.52953i 0.728194 0.206938i
\(715\) −10.8320 3.94254i −0.405095 0.147443i
\(716\) −3.39795 + 0.599151i −0.126988 + 0.0223913i
\(717\) 37.1779 11.6616i 1.38843 0.435509i
\(718\) 15.1856 + 12.7422i 0.566721 + 0.475535i
\(719\) −5.13678 + 8.89717i −0.191570 + 0.331808i −0.945771 0.324835i \(-0.894691\pi\)
0.754201 + 0.656644i \(0.228024\pi\)
\(720\) 0.583362 0.154459i 0.0217406 0.00575636i
\(721\) −22.7517 + 12.3269i −0.847316 + 0.459078i
\(722\) −12.8330 + 15.2937i −0.477593 + 0.569173i
\(723\) 7.98711 12.4963i 0.297044 0.464744i
\(724\) −0.896081 + 2.46196i −0.0333026 + 0.0914981i
\(725\) −13.6245 + 2.40238i −0.506003 + 0.0892220i
\(726\) −16.0287 + 12.2615i −0.594880 + 0.455068i
\(727\) 12.1820 + 33.4698i 0.451806 + 1.24133i 0.931452 + 0.363865i \(0.118543\pi\)
−0.479646 + 0.877462i \(0.659235\pi\)
\(728\) 17.2438 + 31.8267i 0.639098 + 1.17958i
\(729\) 19.2609 18.9213i 0.713367 0.700790i
\(730\) 2.26945 + 3.93080i 0.0839961 + 0.145485i
\(731\) 6.52735 37.0184i 0.241423 1.36918i
\(732\) −13.1506 5.46999i −0.486059 0.202177i
\(733\) 3.19323 8.77334i 0.117945 0.324051i −0.866646 0.498923i \(-0.833729\pi\)
0.984591 + 0.174872i \(0.0559513\pi\)
\(734\) 1.11902 + 6.34628i 0.0413038 + 0.234246i
\(735\) 0.605943 6.08474i 0.0223505 0.224439i
\(736\) 14.9701 + 12.5614i 0.551804 + 0.463019i
\(737\) 42.5142i 1.56603i
\(738\) −15.5233 4.20882i −0.571421 0.154929i
\(739\) −49.8721 −1.83458 −0.917288 0.398226i \(-0.869626\pi\)
−0.917288 + 0.398226i \(0.869626\pi\)
\(740\) −2.97080 + 1.08128i −0.109209 + 0.0397488i
\(741\) −35.1316 + 38.2255i −1.29059 + 1.40425i
\(742\) 1.76863 + 11.9067i 0.0649284 + 0.437109i
\(743\) −13.7749 + 37.8461i −0.505350 + 1.38844i 0.380635 + 0.924725i \(0.375705\pi\)
−0.885985 + 0.463713i \(0.846517\pi\)
\(744\) −2.67539 + 2.91100i −0.0980845 + 0.106722i
\(745\) 0.691044 0.823555i 0.0253179 0.0301727i
\(746\) 10.6809i 0.391055i
\(747\) −7.97029 3.74541i −0.291618 0.137038i
\(748\) −22.9979 13.2778i −0.840885 0.485485i
\(749\) −13.4555 40.3335i −0.491652 1.47375i
\(750\) −4.23933 + 6.63270i −0.154799 + 0.242192i
\(751\) 31.1504 26.1383i 1.13669 0.953800i 0.137369 0.990520i \(-0.456135\pi\)
0.999326 + 0.0367201i \(0.0116910\pi\)
\(752\) −0.532329 3.01899i −0.0194120 0.110091i
\(753\) −18.7503 24.5110i −0.683298 0.893229i
\(754\) −8.15179 + 9.71493i −0.296871 + 0.353797i
\(755\) −3.35382 −0.122058
\(756\) −14.7259 + 5.56275i −0.535576 + 0.202315i
\(757\) 38.9341 1.41508 0.707542 0.706671i \(-0.249804\pi\)
0.707542 + 0.706671i \(0.249804\pi\)
\(758\) 3.84214 4.57888i 0.139553 0.166312i
\(759\) −29.9342 + 3.89578i −1.08654 + 0.141408i
\(760\) −1.62261 9.20228i −0.0588582 0.333802i
\(761\) 29.3123 24.5960i 1.06257 0.891603i 0.0682127 0.997671i \(-0.478270\pi\)
0.994359 + 0.106067i \(0.0338259\pi\)
\(762\) −17.0776 0.770989i −0.618658 0.0279300i
\(763\) −28.6023 25.3506i −1.03547 0.917755i
\(764\) −13.0401 7.52871i −0.471775 0.272379i
\(765\) −7.19370 0.650862i −0.260089 0.0235320i
\(766\) 2.15172i 0.0777449i
\(767\) 16.1287 19.2215i 0.582375 0.694047i