Properties

Label 1881.2.a.q
Level $1881$
Weight $2$
Character orbit 1881.a
Self dual yes
Analytic conductor $15.020$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1881,2,Mod(1,1881)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1881, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1881.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1881 = 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1881.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.0198606202\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 8x^{5} + 14x^{4} + 17x^{3} - 24x^{2} - 7x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + 1) q^{4} + \beta_{6} q^{5} + (\beta_{6} + \beta_1) q^{7} + (\beta_{3} + \beta_{2} + 1) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} + (\beta_{2} + 1) q^{4} + \beta_{6} q^{5} + (\beta_{6} + \beta_1) q^{7} + (\beta_{3} + \beta_{2} + 1) q^{8} + (\beta_{6} + \beta_{5} + \beta_1 - 1) q^{10} + q^{11} + ( - \beta_{5} - \beta_{4} - \beta_{2}) q^{13} + (\beta_{6} + \beta_{5} + \beta_{2} + \cdots + 2) q^{14}+ \cdots + (2 \beta_{6} + \beta_{5} + \beta_{4} + \cdots + 4) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 2 q^{2} + 6 q^{4} + 2 q^{7} + 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + 2 q^{2} + 6 q^{4} + 2 q^{7} + 6 q^{8} - 6 q^{10} + 7 q^{11} + 3 q^{13} + 14 q^{14} + 7 q^{17} - 7 q^{19} + 4 q^{20} + 2 q^{22} + 18 q^{23} - 5 q^{25} + 6 q^{26} + 14 q^{28} + 14 q^{29} - 8 q^{31} + 14 q^{32} - 6 q^{34} + 24 q^{35} - 2 q^{37} - 2 q^{38} + 8 q^{40} + 18 q^{41} - 4 q^{43} + 6 q^{44} + 20 q^{46} + 10 q^{47} - 11 q^{49} + 4 q^{50} - 12 q^{52} + 23 q^{53} + 20 q^{56} + 6 q^{58} + 15 q^{59} + 12 q^{61} - 26 q^{62} - 2 q^{64} + 2 q^{65} - 6 q^{67} + 24 q^{68} + 18 q^{70} + 39 q^{71} - 4 q^{73} - 6 q^{76} + 2 q^{77} + 21 q^{79} + 10 q^{80} - 4 q^{82} + 15 q^{83} + 8 q^{85} - 10 q^{86} + 6 q^{88} + 13 q^{89} + 8 q^{91} + 4 q^{92} + 24 q^{94} - 4 q^{97} + 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 2x^{6} - 8x^{5} + 14x^{4} + 17x^{3} - 24x^{2} - 7x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 4\nu + 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 2\nu^{3} - 5\nu^{2} + 7\nu + 3 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - \nu^{4} - 7\nu^{3} + 3\nu^{2} + 10\nu + 1 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( \nu^{6} - \nu^{5} - 8\nu^{4} + 5\nu^{3} + 15\nu^{2} - 6\nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 4\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 2\beta_{3} + 7\beta_{2} + \beta _1 + 14 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} + \beta_{4} + 9\beta_{3} + 11\beta_{2} + 19\beta _1 + 11 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{6} + \beta_{5} + 9\beta_{4} + 20\beta_{3} + 47\beta_{2} + 13\beta _1 + 75 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.10677
−1.65416
−0.418452
0.185421
1.57695
1.77601
2.64099
−2.10677 0 2.43847 1.80464 0 −0.302128 −0.923745 0 −3.80195
1.2 −1.65416 0 0.736234 −0.687408 0 −2.34156 2.09047 0 1.13708
1.3 −0.418452 0 −1.82490 2.54380 0 2.12534 1.60054 0 −1.06446
1.4 0.185421 0 −1.96562 −2.57457 0 −2.38915 −0.735311 0 −0.477381
1.5 1.57695 0 0.486784 1.60147 0 3.17843 −2.38627 0 2.52545
1.6 1.77601 0 1.15422 −3.21402 0 −1.43801 −1.50211 0 −5.70814
1.7 2.64099 0 4.97481 0.526092 0 3.16708 7.85644 0 1.38940
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(11\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1881.2.a.q yes 7
3.b odd 2 1 1881.2.a.o 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1881.2.a.o 7 3.b odd 2 1
1881.2.a.q yes 7 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1881))\):

\( T_{2}^{7} - 2T_{2}^{6} - 8T_{2}^{5} + 14T_{2}^{4} + 17T_{2}^{3} - 24T_{2}^{2} - 7T_{2} + 2 \) Copy content Toggle raw display
\( T_{5}^{7} - 15T_{5}^{5} + 8T_{5}^{4} + 60T_{5}^{3} - 56T_{5}^{2} - 29T_{5} + 22 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} - 2 T^{6} + \cdots + 2 \) Copy content Toggle raw display
$3$ \( T^{7} \) Copy content Toggle raw display
$5$ \( T^{7} - 15 T^{5} + \cdots + 22 \) Copy content Toggle raw display
$7$ \( T^{7} - 2 T^{6} + \cdots - 52 \) Copy content Toggle raw display
$11$ \( (T - 1)^{7} \) Copy content Toggle raw display
$13$ \( T^{7} - 3 T^{6} + \cdots + 197 \) Copy content Toggle raw display
$17$ \( T^{7} - 7 T^{6} + \cdots - 2021 \) Copy content Toggle raw display
$19$ \( (T + 1)^{7} \) Copy content Toggle raw display
$23$ \( T^{7} - 18 T^{6} + \cdots + 144 \) Copy content Toggle raw display
$29$ \( T^{7} - 14 T^{6} + \cdots + 5902 \) Copy content Toggle raw display
$31$ \( T^{7} + 8 T^{6} + \cdots + 33808 \) Copy content Toggle raw display
$37$ \( T^{7} + 2 T^{6} + \cdots - 12808 \) Copy content Toggle raw display
$41$ \( T^{7} - 18 T^{6} + \cdots - 11464 \) Copy content Toggle raw display
$43$ \( T^{7} + 4 T^{6} + \cdots - 5888 \) Copy content Toggle raw display
$47$ \( T^{7} - 10 T^{6} + \cdots - 692866 \) Copy content Toggle raw display
$53$ \( T^{7} - 23 T^{6} + \cdots - 437171 \) Copy content Toggle raw display
$59$ \( T^{7} - 15 T^{6} + \cdots - 32573 \) Copy content Toggle raw display
$61$ \( T^{7} - 12 T^{6} + \cdots + 4414 \) Copy content Toggle raw display
$67$ \( T^{7} + 6 T^{6} + \cdots - 288404 \) Copy content Toggle raw display
$71$ \( T^{7} - 39 T^{6} + \cdots - 31927 \) Copy content Toggle raw display
$73$ \( T^{7} + 4 T^{6} + \cdots - 33884 \) Copy content Toggle raw display
$79$ \( T^{7} - 21 T^{6} + \cdots + 57821 \) Copy content Toggle raw display
$83$ \( T^{7} - 15 T^{6} + \cdots + 100073 \) Copy content Toggle raw display
$89$ \( T^{7} - 13 T^{6} + \cdots + 244951 \) Copy content Toggle raw display
$97$ \( T^{7} + 4 T^{6} + \cdots - 3978512 \) Copy content Toggle raw display
show more
show less