Properties

Label 1881.2.a.p.1.6
Level $1881$
Weight $2$
Character 1881.1
Self dual yes
Analytic conductor $15.020$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1881,2,Mod(1,1881)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1881, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1881.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1881 = 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1881.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.0198606202\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 14x^{5} + 10x^{4} + 59x^{3} - 27x^{2} - 66x + 30 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 209)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.61330\) of defining polynomial
Character \(\chi\) \(=\) 1881.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.61330 q^{2} +4.82936 q^{4} -4.07680 q^{5} +3.61829 q^{7} +7.39397 q^{8} +O(q^{10})\) \(q+2.61330 q^{2} +4.82936 q^{4} -4.07680 q^{5} +3.61829 q^{7} +7.39397 q^{8} -10.6539 q^{10} +1.00000 q^{11} -1.47857 q^{13} +9.45570 q^{14} +9.66398 q^{16} +3.27003 q^{17} +1.00000 q^{19} -19.6883 q^{20} +2.61330 q^{22} +7.45793 q^{23} +11.6203 q^{25} -3.86395 q^{26} +17.4740 q^{28} -1.02535 q^{29} +1.64921 q^{31} +10.4670 q^{32} +8.54558 q^{34} -14.7511 q^{35} -6.71293 q^{37} +2.61330 q^{38} -30.1438 q^{40} +3.92451 q^{41} +5.38113 q^{43} +4.82936 q^{44} +19.4898 q^{46} +3.71597 q^{47} +6.09205 q^{49} +30.3674 q^{50} -7.14054 q^{52} +0.102902 q^{53} -4.07680 q^{55} +26.7536 q^{56} -2.67955 q^{58} -13.2986 q^{59} -6.49664 q^{61} +4.30989 q^{62} +8.02543 q^{64} +6.02783 q^{65} -3.70989 q^{67} +15.7921 q^{68} -38.5490 q^{70} -6.32968 q^{71} -1.37759 q^{73} -17.5429 q^{74} +4.82936 q^{76} +3.61829 q^{77} +13.6725 q^{79} -39.3981 q^{80} +10.2559 q^{82} -5.44061 q^{83} -13.3313 q^{85} +14.0625 q^{86} +7.39397 q^{88} -12.1357 q^{89} -5.34990 q^{91} +36.0170 q^{92} +9.71096 q^{94} -4.07680 q^{95} -13.7910 q^{97} +15.9204 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + q^{2} + 15 q^{4} - 2 q^{5} + 10 q^{7} + 9 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + q^{2} + 15 q^{4} - 2 q^{5} + 10 q^{7} + 9 q^{8} - 6 q^{10} + 7 q^{11} - 4 q^{13} - 6 q^{14} + 27 q^{16} - 2 q^{17} + 7 q^{19} + 4 q^{20} + q^{22} - 10 q^{23} + 9 q^{25} + 8 q^{26} + 26 q^{28} + 18 q^{29} + 24 q^{31} + 49 q^{32} - 6 q^{34} - 8 q^{35} + q^{38} - 2 q^{40} + 12 q^{41} + 2 q^{43} + 15 q^{44} - 4 q^{46} - 8 q^{47} + 17 q^{49} + 33 q^{50} - 60 q^{52} - 2 q^{53} - 2 q^{55} - 26 q^{56} - 8 q^{58} + 10 q^{59} + 14 q^{61} - 14 q^{62} + 55 q^{64} + 14 q^{65} + 8 q^{67} + 18 q^{68} - 66 q^{70} - 10 q^{71} - 6 q^{73} - 26 q^{74} + 15 q^{76} + 10 q^{77} + 52 q^{79} + 12 q^{80} + 24 q^{82} + 10 q^{83} - 12 q^{85} - 8 q^{86} + 9 q^{88} + 12 q^{91} + 24 q^{94} - 2 q^{95} - 24 q^{97} - 19 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.61330 1.84789 0.923943 0.382531i \(-0.124948\pi\)
0.923943 + 0.382531i \(0.124948\pi\)
\(3\) 0 0
\(4\) 4.82936 2.41468
\(5\) −4.07680 −1.82320 −0.911600 0.411078i \(-0.865153\pi\)
−0.911600 + 0.411078i \(0.865153\pi\)
\(6\) 0 0
\(7\) 3.61829 1.36759 0.683793 0.729676i \(-0.260329\pi\)
0.683793 + 0.729676i \(0.260329\pi\)
\(8\) 7.39397 2.61416
\(9\) 0 0
\(10\) −10.6539 −3.36907
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −1.47857 −0.410081 −0.205041 0.978753i \(-0.565733\pi\)
−0.205041 + 0.978753i \(0.565733\pi\)
\(14\) 9.45570 2.52714
\(15\) 0 0
\(16\) 9.66398 2.41600
\(17\) 3.27003 0.793099 0.396549 0.918013i \(-0.370208\pi\)
0.396549 + 0.918013i \(0.370208\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) −19.6883 −4.40244
\(21\) 0 0
\(22\) 2.61330 0.557158
\(23\) 7.45793 1.55509 0.777543 0.628830i \(-0.216466\pi\)
0.777543 + 0.628830i \(0.216466\pi\)
\(24\) 0 0
\(25\) 11.6203 2.32406
\(26\) −3.86395 −0.757783
\(27\) 0 0
\(28\) 17.4740 3.30228
\(29\) −1.02535 −0.190403 −0.0952013 0.995458i \(-0.530349\pi\)
−0.0952013 + 0.995458i \(0.530349\pi\)
\(30\) 0 0
\(31\) 1.64921 0.296207 0.148104 0.988972i \(-0.452683\pi\)
0.148104 + 0.988972i \(0.452683\pi\)
\(32\) 10.4670 1.85032
\(33\) 0 0
\(34\) 8.54558 1.46556
\(35\) −14.7511 −2.49338
\(36\) 0 0
\(37\) −6.71293 −1.10360 −0.551799 0.833977i \(-0.686059\pi\)
−0.551799 + 0.833977i \(0.686059\pi\)
\(38\) 2.61330 0.423934
\(39\) 0 0
\(40\) −30.1438 −4.76615
\(41\) 3.92451 0.612905 0.306453 0.951886i \(-0.400858\pi\)
0.306453 + 0.951886i \(0.400858\pi\)
\(42\) 0 0
\(43\) 5.38113 0.820614 0.410307 0.911947i \(-0.365422\pi\)
0.410307 + 0.911947i \(0.365422\pi\)
\(44\) 4.82936 0.728053
\(45\) 0 0
\(46\) 19.4898 2.87362
\(47\) 3.71597 0.542030 0.271015 0.962575i \(-0.412641\pi\)
0.271015 + 0.962575i \(0.412641\pi\)
\(48\) 0 0
\(49\) 6.09205 0.870292
\(50\) 30.3674 4.29460
\(51\) 0 0
\(52\) −7.14054 −0.990215
\(53\) 0.102902 0.0141347 0.00706733 0.999975i \(-0.497750\pi\)
0.00706733 + 0.999975i \(0.497750\pi\)
\(54\) 0 0
\(55\) −4.07680 −0.549716
\(56\) 26.7536 3.57509
\(57\) 0 0
\(58\) −2.67955 −0.351842
\(59\) −13.2986 −1.73134 −0.865668 0.500619i \(-0.833106\pi\)
−0.865668 + 0.500619i \(0.833106\pi\)
\(60\) 0 0
\(61\) −6.49664 −0.831809 −0.415905 0.909408i \(-0.636535\pi\)
−0.415905 + 0.909408i \(0.636535\pi\)
\(62\) 4.30989 0.547357
\(63\) 0 0
\(64\) 8.02543 1.00318
\(65\) 6.02783 0.747661
\(66\) 0 0
\(67\) −3.70989 −0.453235 −0.226618 0.973984i \(-0.572767\pi\)
−0.226618 + 0.973984i \(0.572767\pi\)
\(68\) 15.7921 1.91508
\(69\) 0 0
\(70\) −38.5490 −4.60749
\(71\) −6.32968 −0.751194 −0.375597 0.926783i \(-0.622562\pi\)
−0.375597 + 0.926783i \(0.622562\pi\)
\(72\) 0 0
\(73\) −1.37759 −0.161235 −0.0806173 0.996745i \(-0.525689\pi\)
−0.0806173 + 0.996745i \(0.525689\pi\)
\(74\) −17.5429 −2.03932
\(75\) 0 0
\(76\) 4.82936 0.553965
\(77\) 3.61829 0.412343
\(78\) 0 0
\(79\) 13.6725 1.53828 0.769141 0.639079i \(-0.220684\pi\)
0.769141 + 0.639079i \(0.220684\pi\)
\(80\) −39.3981 −4.40484
\(81\) 0 0
\(82\) 10.2559 1.13258
\(83\) −5.44061 −0.597184 −0.298592 0.954381i \(-0.596517\pi\)
−0.298592 + 0.954381i \(0.596517\pi\)
\(84\) 0 0
\(85\) −13.3313 −1.44598
\(86\) 14.0625 1.51640
\(87\) 0 0
\(88\) 7.39397 0.788200
\(89\) −12.1357 −1.28638 −0.643191 0.765706i \(-0.722390\pi\)
−0.643191 + 0.765706i \(0.722390\pi\)
\(90\) 0 0
\(91\) −5.34990 −0.560822
\(92\) 36.0170 3.75503
\(93\) 0 0
\(94\) 9.71096 1.00161
\(95\) −4.07680 −0.418271
\(96\) 0 0
\(97\) −13.7910 −1.40026 −0.700131 0.714014i \(-0.746875\pi\)
−0.700131 + 0.714014i \(0.746875\pi\)
\(98\) 15.9204 1.60820
\(99\) 0 0
\(100\) 56.1186 5.61186
\(101\) 11.0029 1.09483 0.547413 0.836863i \(-0.315613\pi\)
0.547413 + 0.836863i \(0.315613\pi\)
\(102\) 0 0
\(103\) −4.99191 −0.491867 −0.245934 0.969287i \(-0.579094\pi\)
−0.245934 + 0.969287i \(0.579094\pi\)
\(104\) −10.9325 −1.07202
\(105\) 0 0
\(106\) 0.268914 0.0261192
\(107\) −7.31345 −0.707018 −0.353509 0.935431i \(-0.615012\pi\)
−0.353509 + 0.935431i \(0.615012\pi\)
\(108\) 0 0
\(109\) −1.44482 −0.138389 −0.0691944 0.997603i \(-0.522043\pi\)
−0.0691944 + 0.997603i \(0.522043\pi\)
\(110\) −10.6539 −1.01581
\(111\) 0 0
\(112\) 34.9671 3.30408
\(113\) 12.0369 1.13234 0.566169 0.824289i \(-0.308425\pi\)
0.566169 + 0.824289i \(0.308425\pi\)
\(114\) 0 0
\(115\) −30.4045 −2.83523
\(116\) −4.95178 −0.459761
\(117\) 0 0
\(118\) −34.7534 −3.19931
\(119\) 11.8319 1.08463
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −16.9777 −1.53709
\(123\) 0 0
\(124\) 7.96463 0.715245
\(125\) −26.9897 −2.41403
\(126\) 0 0
\(127\) −4.69692 −0.416784 −0.208392 0.978045i \(-0.566823\pi\)
−0.208392 + 0.978045i \(0.566823\pi\)
\(128\) 0.0389415 0.00344197
\(129\) 0 0
\(130\) 15.7526 1.38159
\(131\) −3.74466 −0.327173 −0.163586 0.986529i \(-0.552306\pi\)
−0.163586 + 0.986529i \(0.552306\pi\)
\(132\) 0 0
\(133\) 3.61829 0.313746
\(134\) −9.69507 −0.837526
\(135\) 0 0
\(136\) 24.1785 2.07329
\(137\) 15.7595 1.34643 0.673213 0.739449i \(-0.264914\pi\)
0.673213 + 0.739449i \(0.264914\pi\)
\(138\) 0 0
\(139\) −2.52822 −0.214440 −0.107220 0.994235i \(-0.534195\pi\)
−0.107220 + 0.994235i \(0.534195\pi\)
\(140\) −71.2381 −6.02072
\(141\) 0 0
\(142\) −16.5414 −1.38812
\(143\) −1.47857 −0.123644
\(144\) 0 0
\(145\) 4.18015 0.347142
\(146\) −3.60006 −0.297943
\(147\) 0 0
\(148\) −32.4191 −2.66484
\(149\) −1.84902 −0.151477 −0.0757387 0.997128i \(-0.524131\pi\)
−0.0757387 + 0.997128i \(0.524131\pi\)
\(150\) 0 0
\(151\) −15.3184 −1.24659 −0.623296 0.781986i \(-0.714207\pi\)
−0.623296 + 0.781986i \(0.714207\pi\)
\(152\) 7.39397 0.599730
\(153\) 0 0
\(154\) 9.45570 0.761962
\(155\) −6.72351 −0.540045
\(156\) 0 0
\(157\) 24.6631 1.96833 0.984165 0.177254i \(-0.0567215\pi\)
0.984165 + 0.177254i \(0.0567215\pi\)
\(158\) 35.7305 2.84257
\(159\) 0 0
\(160\) −42.6718 −3.37350
\(161\) 26.9850 2.12671
\(162\) 0 0
\(163\) −3.72149 −0.291490 −0.145745 0.989322i \(-0.546558\pi\)
−0.145745 + 0.989322i \(0.546558\pi\)
\(164\) 18.9529 1.47997
\(165\) 0 0
\(166\) −14.2180 −1.10353
\(167\) −2.64758 −0.204876 −0.102438 0.994739i \(-0.532664\pi\)
−0.102438 + 0.994739i \(0.532664\pi\)
\(168\) 0 0
\(169\) −10.8138 −0.831833
\(170\) −34.8386 −2.67200
\(171\) 0 0
\(172\) 25.9874 1.98152
\(173\) −7.34552 −0.558469 −0.279235 0.960223i \(-0.590081\pi\)
−0.279235 + 0.960223i \(0.590081\pi\)
\(174\) 0 0
\(175\) 42.0457 3.17835
\(176\) 9.66398 0.728450
\(177\) 0 0
\(178\) −31.7143 −2.37708
\(179\) −9.55394 −0.714095 −0.357047 0.934086i \(-0.616217\pi\)
−0.357047 + 0.934086i \(0.616217\pi\)
\(180\) 0 0
\(181\) 6.02638 0.447937 0.223969 0.974596i \(-0.428099\pi\)
0.223969 + 0.974596i \(0.428099\pi\)
\(182\) −13.9809 −1.03633
\(183\) 0 0
\(184\) 55.1437 4.06525
\(185\) 27.3673 2.01208
\(186\) 0 0
\(187\) 3.27003 0.239128
\(188\) 17.9458 1.30883
\(189\) 0 0
\(190\) −10.6539 −0.772917
\(191\) −17.7069 −1.28123 −0.640613 0.767864i \(-0.721320\pi\)
−0.640613 + 0.767864i \(0.721320\pi\)
\(192\) 0 0
\(193\) 3.69348 0.265863 0.132931 0.991125i \(-0.457561\pi\)
0.132931 + 0.991125i \(0.457561\pi\)
\(194\) −36.0400 −2.58752
\(195\) 0 0
\(196\) 29.4207 2.10148
\(197\) 25.7789 1.83667 0.918336 0.395802i \(-0.129533\pi\)
0.918336 + 0.395802i \(0.129533\pi\)
\(198\) 0 0
\(199\) 18.8953 1.33945 0.669726 0.742608i \(-0.266411\pi\)
0.669726 + 0.742608i \(0.266411\pi\)
\(200\) 85.9202 6.07548
\(201\) 0 0
\(202\) 28.7538 2.02311
\(203\) −3.71002 −0.260392
\(204\) 0 0
\(205\) −15.9994 −1.11745
\(206\) −13.0454 −0.908914
\(207\) 0 0
\(208\) −14.2889 −0.990755
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) −10.1993 −0.702150 −0.351075 0.936347i \(-0.614184\pi\)
−0.351075 + 0.936347i \(0.614184\pi\)
\(212\) 0.496950 0.0341306
\(213\) 0 0
\(214\) −19.1123 −1.30649
\(215\) −21.9378 −1.49614
\(216\) 0 0
\(217\) 5.96733 0.405089
\(218\) −3.77576 −0.255727
\(219\) 0 0
\(220\) −19.6883 −1.32739
\(221\) −4.83497 −0.325235
\(222\) 0 0
\(223\) −0.262700 −0.0175917 −0.00879584 0.999961i \(-0.502800\pi\)
−0.00879584 + 0.999961i \(0.502800\pi\)
\(224\) 37.8726 2.53047
\(225\) 0 0
\(226\) 31.4561 2.09243
\(227\) −27.3256 −1.81367 −0.906834 0.421489i \(-0.861508\pi\)
−0.906834 + 0.421489i \(0.861508\pi\)
\(228\) 0 0
\(229\) −5.53171 −0.365546 −0.182773 0.983155i \(-0.558507\pi\)
−0.182773 + 0.983155i \(0.558507\pi\)
\(230\) −79.4562 −5.23918
\(231\) 0 0
\(232\) −7.58141 −0.497744
\(233\) −27.4733 −1.79984 −0.899918 0.436059i \(-0.856374\pi\)
−0.899918 + 0.436059i \(0.856374\pi\)
\(234\) 0 0
\(235\) −15.1493 −0.988229
\(236\) −64.2239 −4.18062
\(237\) 0 0
\(238\) 30.9204 2.00427
\(239\) −1.40339 −0.0907781 −0.0453890 0.998969i \(-0.514453\pi\)
−0.0453890 + 0.998969i \(0.514453\pi\)
\(240\) 0 0
\(241\) −20.7696 −1.33789 −0.668944 0.743312i \(-0.733254\pi\)
−0.668944 + 0.743312i \(0.733254\pi\)
\(242\) 2.61330 0.167990
\(243\) 0 0
\(244\) −31.3746 −2.00855
\(245\) −24.8361 −1.58672
\(246\) 0 0
\(247\) −1.47857 −0.0940791
\(248\) 12.1942 0.774334
\(249\) 0 0
\(250\) −70.5322 −4.46085
\(251\) 1.29936 0.0820148 0.0410074 0.999159i \(-0.486943\pi\)
0.0410074 + 0.999159i \(0.486943\pi\)
\(252\) 0 0
\(253\) 7.45793 0.468876
\(254\) −12.2745 −0.770169
\(255\) 0 0
\(256\) −15.9491 −0.996819
\(257\) −3.41219 −0.212847 −0.106423 0.994321i \(-0.533940\pi\)
−0.106423 + 0.994321i \(0.533940\pi\)
\(258\) 0 0
\(259\) −24.2893 −1.50927
\(260\) 29.1106 1.80536
\(261\) 0 0
\(262\) −9.78594 −0.604577
\(263\) −14.2418 −0.878189 −0.439094 0.898441i \(-0.644701\pi\)
−0.439094 + 0.898441i \(0.644701\pi\)
\(264\) 0 0
\(265\) −0.419510 −0.0257703
\(266\) 9.45570 0.579766
\(267\) 0 0
\(268\) −17.9164 −1.09442
\(269\) −5.39477 −0.328925 −0.164462 0.986383i \(-0.552589\pi\)
−0.164462 + 0.986383i \(0.552589\pi\)
\(270\) 0 0
\(271\) −11.0624 −0.671995 −0.335998 0.941863i \(-0.609073\pi\)
−0.335998 + 0.941863i \(0.609073\pi\)
\(272\) 31.6015 1.91612
\(273\) 0 0
\(274\) 41.1844 2.48804
\(275\) 11.6203 0.700731
\(276\) 0 0
\(277\) 14.0808 0.846036 0.423018 0.906121i \(-0.360971\pi\)
0.423018 + 0.906121i \(0.360971\pi\)
\(278\) −6.60700 −0.396261
\(279\) 0 0
\(280\) −109.069 −6.51812
\(281\) 10.8199 0.645459 0.322729 0.946491i \(-0.395400\pi\)
0.322729 + 0.946491i \(0.395400\pi\)
\(282\) 0 0
\(283\) 1.90947 0.113506 0.0567532 0.998388i \(-0.481925\pi\)
0.0567532 + 0.998388i \(0.481925\pi\)
\(284\) −30.5683 −1.81389
\(285\) 0 0
\(286\) −3.86395 −0.228480
\(287\) 14.2000 0.838201
\(288\) 0 0
\(289\) −6.30690 −0.370994
\(290\) 10.9240 0.641479
\(291\) 0 0
\(292\) −6.65287 −0.389330
\(293\) −3.63550 −0.212388 −0.106194 0.994345i \(-0.533867\pi\)
−0.106194 + 0.994345i \(0.533867\pi\)
\(294\) 0 0
\(295\) 54.2159 3.15657
\(296\) −49.6352 −2.88499
\(297\) 0 0
\(298\) −4.83205 −0.279913
\(299\) −11.0271 −0.637712
\(300\) 0 0
\(301\) 19.4705 1.12226
\(302\) −40.0316 −2.30356
\(303\) 0 0
\(304\) 9.66398 0.554267
\(305\) 26.4855 1.51656
\(306\) 0 0
\(307\) −23.5329 −1.34310 −0.671548 0.740961i \(-0.734370\pi\)
−0.671548 + 0.740961i \(0.734370\pi\)
\(308\) 17.4740 0.995675
\(309\) 0 0
\(310\) −17.5706 −0.997941
\(311\) 16.0026 0.907425 0.453713 0.891148i \(-0.350099\pi\)
0.453713 + 0.891148i \(0.350099\pi\)
\(312\) 0 0
\(313\) 16.0034 0.904566 0.452283 0.891875i \(-0.350610\pi\)
0.452283 + 0.891875i \(0.350610\pi\)
\(314\) 64.4522 3.63725
\(315\) 0 0
\(316\) 66.0296 3.71446
\(317\) 20.8766 1.17255 0.586273 0.810113i \(-0.300595\pi\)
0.586273 + 0.810113i \(0.300595\pi\)
\(318\) 0 0
\(319\) −1.02535 −0.0574086
\(320\) −32.7181 −1.82900
\(321\) 0 0
\(322\) 70.5199 3.92992
\(323\) 3.27003 0.181949
\(324\) 0 0
\(325\) −17.1814 −0.953054
\(326\) −9.72539 −0.538640
\(327\) 0 0
\(328\) 29.0177 1.60224
\(329\) 13.4455 0.741273
\(330\) 0 0
\(331\) 15.1136 0.830721 0.415360 0.909657i \(-0.363655\pi\)
0.415360 + 0.909657i \(0.363655\pi\)
\(332\) −26.2746 −1.44201
\(333\) 0 0
\(334\) −6.91893 −0.378587
\(335\) 15.1245 0.826339
\(336\) 0 0
\(337\) −12.2766 −0.668751 −0.334376 0.942440i \(-0.608525\pi\)
−0.334376 + 0.942440i \(0.608525\pi\)
\(338\) −28.2598 −1.53713
\(339\) 0 0
\(340\) −64.3814 −3.49157
\(341\) 1.64921 0.0893098
\(342\) 0 0
\(343\) −3.28525 −0.177387
\(344\) 39.7879 2.14522
\(345\) 0 0
\(346\) −19.1961 −1.03199
\(347\) 30.9067 1.65916 0.829580 0.558387i \(-0.188580\pi\)
0.829580 + 0.558387i \(0.188580\pi\)
\(348\) 0 0
\(349\) −23.9024 −1.27947 −0.639733 0.768597i \(-0.720955\pi\)
−0.639733 + 0.768597i \(0.720955\pi\)
\(350\) 109.878 5.87323
\(351\) 0 0
\(352\) 10.4670 0.557892
\(353\) −15.0158 −0.799210 −0.399605 0.916687i \(-0.630853\pi\)
−0.399605 + 0.916687i \(0.630853\pi\)
\(354\) 0 0
\(355\) 25.8048 1.36958
\(356\) −58.6076 −3.10620
\(357\) 0 0
\(358\) −24.9673 −1.31957
\(359\) −14.0826 −0.743251 −0.371626 0.928383i \(-0.621200\pi\)
−0.371626 + 0.928383i \(0.621200\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 15.7488 0.827737
\(363\) 0 0
\(364\) −25.8366 −1.35420
\(365\) 5.61616 0.293963
\(366\) 0 0
\(367\) 21.3142 1.11259 0.556296 0.830984i \(-0.312222\pi\)
0.556296 + 0.830984i \(0.312222\pi\)
\(368\) 72.0733 3.75708
\(369\) 0 0
\(370\) 71.5190 3.71810
\(371\) 0.372329 0.0193304
\(372\) 0 0
\(373\) −2.42088 −0.125349 −0.0626743 0.998034i \(-0.519963\pi\)
−0.0626743 + 0.998034i \(0.519963\pi\)
\(374\) 8.54558 0.441882
\(375\) 0 0
\(376\) 27.4758 1.41696
\(377\) 1.51605 0.0780806
\(378\) 0 0
\(379\) 8.87535 0.455896 0.227948 0.973673i \(-0.426798\pi\)
0.227948 + 0.973673i \(0.426798\pi\)
\(380\) −19.6883 −1.00999
\(381\) 0 0
\(382\) −46.2735 −2.36756
\(383\) 3.54065 0.180919 0.0904595 0.995900i \(-0.471166\pi\)
0.0904595 + 0.995900i \(0.471166\pi\)
\(384\) 0 0
\(385\) −14.7511 −0.751784
\(386\) 9.65219 0.491284
\(387\) 0 0
\(388\) −66.6016 −3.38118
\(389\) 16.7041 0.846933 0.423466 0.905912i \(-0.360813\pi\)
0.423466 + 0.905912i \(0.360813\pi\)
\(390\) 0 0
\(391\) 24.3877 1.23334
\(392\) 45.0444 2.27509
\(393\) 0 0
\(394\) 67.3681 3.39396
\(395\) −55.7403 −2.80460
\(396\) 0 0
\(397\) 28.2073 1.41568 0.707841 0.706372i \(-0.249669\pi\)
0.707841 + 0.706372i \(0.249669\pi\)
\(398\) 49.3792 2.47515
\(399\) 0 0
\(400\) 112.298 5.61492
\(401\) 36.2078 1.80813 0.904065 0.427395i \(-0.140569\pi\)
0.904065 + 0.427395i \(0.140569\pi\)
\(402\) 0 0
\(403\) −2.43847 −0.121469
\(404\) 53.1368 2.64365
\(405\) 0 0
\(406\) −9.69540 −0.481175
\(407\) −6.71293 −0.332748
\(408\) 0 0
\(409\) 36.9236 1.82576 0.912878 0.408233i \(-0.133855\pi\)
0.912878 + 0.408233i \(0.133855\pi\)
\(410\) −41.8114 −2.06492
\(411\) 0 0
\(412\) −24.1077 −1.18770
\(413\) −48.1184 −2.36775
\(414\) 0 0
\(415\) 22.1803 1.08879
\(416\) −15.4762 −0.758781
\(417\) 0 0
\(418\) 2.61330 0.127821
\(419\) −18.0690 −0.882726 −0.441363 0.897329i \(-0.645505\pi\)
−0.441363 + 0.897329i \(0.645505\pi\)
\(420\) 0 0
\(421\) −8.57629 −0.417983 −0.208991 0.977918i \(-0.567018\pi\)
−0.208991 + 0.977918i \(0.567018\pi\)
\(422\) −26.6539 −1.29749
\(423\) 0 0
\(424\) 0.760853 0.0369503
\(425\) 37.9987 1.84321
\(426\) 0 0
\(427\) −23.5067 −1.13757
\(428\) −35.3193 −1.70722
\(429\) 0 0
\(430\) −57.3301 −2.76470
\(431\) −4.28147 −0.206231 −0.103116 0.994669i \(-0.532881\pi\)
−0.103116 + 0.994669i \(0.532881\pi\)
\(432\) 0 0
\(433\) 18.2035 0.874804 0.437402 0.899266i \(-0.355899\pi\)
0.437402 + 0.899266i \(0.355899\pi\)
\(434\) 15.5945 0.748558
\(435\) 0 0
\(436\) −6.97756 −0.334165
\(437\) 7.45793 0.356761
\(438\) 0 0
\(439\) 29.4442 1.40529 0.702647 0.711538i \(-0.252001\pi\)
0.702647 + 0.711538i \(0.252001\pi\)
\(440\) −30.1438 −1.43705
\(441\) 0 0
\(442\) −12.6352 −0.600997
\(443\) 24.3633 1.15753 0.578767 0.815493i \(-0.303534\pi\)
0.578767 + 0.815493i \(0.303534\pi\)
\(444\) 0 0
\(445\) 49.4748 2.34533
\(446\) −0.686514 −0.0325074
\(447\) 0 0
\(448\) 29.0384 1.37193
\(449\) −38.7776 −1.83003 −0.915015 0.403421i \(-0.867821\pi\)
−0.915015 + 0.403421i \(0.867821\pi\)
\(450\) 0 0
\(451\) 3.92451 0.184798
\(452\) 58.1306 2.73423
\(453\) 0 0
\(454\) −71.4102 −3.35145
\(455\) 21.8105 1.02249
\(456\) 0 0
\(457\) −7.47672 −0.349746 −0.174873 0.984591i \(-0.555952\pi\)
−0.174873 + 0.984591i \(0.555952\pi\)
\(458\) −14.4560 −0.675487
\(459\) 0 0
\(460\) −146.834 −6.84618
\(461\) −15.9782 −0.744181 −0.372091 0.928196i \(-0.621359\pi\)
−0.372091 + 0.928196i \(0.621359\pi\)
\(462\) 0 0
\(463\) −6.10221 −0.283594 −0.141797 0.989896i \(-0.545288\pi\)
−0.141797 + 0.989896i \(0.545288\pi\)
\(464\) −9.90896 −0.460012
\(465\) 0 0
\(466\) −71.7961 −3.32589
\(467\) 26.6373 1.23263 0.616313 0.787502i \(-0.288626\pi\)
0.616313 + 0.787502i \(0.288626\pi\)
\(468\) 0 0
\(469\) −13.4235 −0.619838
\(470\) −39.5896 −1.82613
\(471\) 0 0
\(472\) −98.3298 −4.52599
\(473\) 5.38113 0.247424
\(474\) 0 0
\(475\) 11.6203 0.533176
\(476\) 57.1406 2.61904
\(477\) 0 0
\(478\) −3.66750 −0.167747
\(479\) 16.2094 0.740626 0.370313 0.928907i \(-0.379250\pi\)
0.370313 + 0.928907i \(0.379250\pi\)
\(480\) 0 0
\(481\) 9.92553 0.452565
\(482\) −54.2773 −2.47226
\(483\) 0 0
\(484\) 4.82936 0.219516
\(485\) 56.2231 2.55296
\(486\) 0 0
\(487\) −4.82448 −0.218618 −0.109309 0.994008i \(-0.534864\pi\)
−0.109309 + 0.994008i \(0.534864\pi\)
\(488\) −48.0360 −2.17449
\(489\) 0 0
\(490\) −64.9042 −2.93207
\(491\) 8.53579 0.385215 0.192607 0.981276i \(-0.438306\pi\)
0.192607 + 0.981276i \(0.438306\pi\)
\(492\) 0 0
\(493\) −3.35293 −0.151008
\(494\) −3.86395 −0.173847
\(495\) 0 0
\(496\) 15.9380 0.715635
\(497\) −22.9026 −1.02732
\(498\) 0 0
\(499\) −13.4325 −0.601319 −0.300660 0.953732i \(-0.597207\pi\)
−0.300660 + 0.953732i \(0.597207\pi\)
\(500\) −130.343 −5.82910
\(501\) 0 0
\(502\) 3.39562 0.151554
\(503\) 1.66487 0.0742327 0.0371163 0.999311i \(-0.488183\pi\)
0.0371163 + 0.999311i \(0.488183\pi\)
\(504\) 0 0
\(505\) −44.8565 −1.99609
\(506\) 19.4898 0.866429
\(507\) 0 0
\(508\) −22.6831 −1.00640
\(509\) 14.9684 0.663463 0.331731 0.943374i \(-0.392367\pi\)
0.331731 + 0.943374i \(0.392367\pi\)
\(510\) 0 0
\(511\) −4.98452 −0.220502
\(512\) −41.7577 −1.84545
\(513\) 0 0
\(514\) −8.91709 −0.393316
\(515\) 20.3510 0.896772
\(516\) 0 0
\(517\) 3.71597 0.163428
\(518\) −63.4754 −2.78895
\(519\) 0 0
\(520\) 44.5696 1.95451
\(521\) 7.89123 0.345721 0.172861 0.984946i \(-0.444699\pi\)
0.172861 + 0.984946i \(0.444699\pi\)
\(522\) 0 0
\(523\) −22.3062 −0.975381 −0.487690 0.873017i \(-0.662160\pi\)
−0.487690 + 0.873017i \(0.662160\pi\)
\(524\) −18.0843 −0.790017
\(525\) 0 0
\(526\) −37.2182 −1.62279
\(527\) 5.39297 0.234922
\(528\) 0 0
\(529\) 32.6207 1.41829
\(530\) −1.09631 −0.0476206
\(531\) 0 0
\(532\) 17.4740 0.757595
\(533\) −5.80266 −0.251341
\(534\) 0 0
\(535\) 29.8155 1.28904
\(536\) −27.4308 −1.18483
\(537\) 0 0
\(538\) −14.0982 −0.607815
\(539\) 6.09205 0.262403
\(540\) 0 0
\(541\) 38.9694 1.67542 0.837712 0.546112i \(-0.183893\pi\)
0.837712 + 0.546112i \(0.183893\pi\)
\(542\) −28.9095 −1.24177
\(543\) 0 0
\(544\) 34.2273 1.46749
\(545\) 5.89025 0.252311
\(546\) 0 0
\(547\) 37.7503 1.61409 0.807043 0.590492i \(-0.201066\pi\)
0.807043 + 0.590492i \(0.201066\pi\)
\(548\) 76.1083 3.25119
\(549\) 0 0
\(550\) 30.3674 1.29487
\(551\) −1.02535 −0.0436814
\(552\) 0 0
\(553\) 49.4713 2.10373
\(554\) 36.7975 1.56338
\(555\) 0 0
\(556\) −12.2097 −0.517805
\(557\) 3.17436 0.134502 0.0672511 0.997736i \(-0.478577\pi\)
0.0672511 + 0.997736i \(0.478577\pi\)
\(558\) 0 0
\(559\) −7.95637 −0.336519
\(560\) −142.554 −6.02401
\(561\) 0 0
\(562\) 28.2756 1.19273
\(563\) 19.9431 0.840503 0.420252 0.907408i \(-0.361942\pi\)
0.420252 + 0.907408i \(0.361942\pi\)
\(564\) 0 0
\(565\) −49.0721 −2.06448
\(566\) 4.99004 0.209747
\(567\) 0 0
\(568\) −46.8015 −1.96375
\(569\) −36.6424 −1.53613 −0.768064 0.640374i \(-0.778780\pi\)
−0.768064 + 0.640374i \(0.778780\pi\)
\(570\) 0 0
\(571\) 11.5300 0.482515 0.241258 0.970461i \(-0.422440\pi\)
0.241258 + 0.970461i \(0.422440\pi\)
\(572\) −7.14054 −0.298561
\(573\) 0 0
\(574\) 37.1090 1.54890
\(575\) 86.6634 3.61411
\(576\) 0 0
\(577\) 28.5590 1.18893 0.594463 0.804123i \(-0.297365\pi\)
0.594463 + 0.804123i \(0.297365\pi\)
\(578\) −16.4818 −0.685554
\(579\) 0 0
\(580\) 20.1874 0.838237
\(581\) −19.6857 −0.816701
\(582\) 0 0
\(583\) 0.102902 0.00426176
\(584\) −10.1859 −0.421494
\(585\) 0 0
\(586\) −9.50067 −0.392469
\(587\) −18.1461 −0.748969 −0.374484 0.927233i \(-0.622180\pi\)
−0.374484 + 0.927233i \(0.622180\pi\)
\(588\) 0 0
\(589\) 1.64921 0.0679546
\(590\) 141.683 5.83298
\(591\) 0 0
\(592\) −64.8736 −2.66629
\(593\) −15.3085 −0.628644 −0.314322 0.949316i \(-0.601777\pi\)
−0.314322 + 0.949316i \(0.601777\pi\)
\(594\) 0 0
\(595\) −48.2364 −1.97750
\(596\) −8.92957 −0.365769
\(597\) 0 0
\(598\) −28.8171 −1.17842
\(599\) −17.8806 −0.730580 −0.365290 0.930894i \(-0.619030\pi\)
−0.365290 + 0.930894i \(0.619030\pi\)
\(600\) 0 0
\(601\) −32.5803 −1.32898 −0.664489 0.747298i \(-0.731351\pi\)
−0.664489 + 0.747298i \(0.731351\pi\)
\(602\) 50.8823 2.07381
\(603\) 0 0
\(604\) −73.9779 −3.01012
\(605\) −4.07680 −0.165746
\(606\) 0 0
\(607\) 43.6494 1.77167 0.885837 0.463997i \(-0.153585\pi\)
0.885837 + 0.463997i \(0.153585\pi\)
\(608\) 10.4670 0.424492
\(609\) 0 0
\(610\) 69.2147 2.80242
\(611\) −5.49432 −0.222276
\(612\) 0 0
\(613\) 0.843061 0.0340509 0.0170254 0.999855i \(-0.494580\pi\)
0.0170254 + 0.999855i \(0.494580\pi\)
\(614\) −61.4987 −2.48189
\(615\) 0 0
\(616\) 26.7536 1.07793
\(617\) −4.89882 −0.197219 −0.0986094 0.995126i \(-0.531439\pi\)
−0.0986094 + 0.995126i \(0.531439\pi\)
\(618\) 0 0
\(619\) −14.8704 −0.597691 −0.298846 0.954301i \(-0.596602\pi\)
−0.298846 + 0.954301i \(0.596602\pi\)
\(620\) −32.4702 −1.30404
\(621\) 0 0
\(622\) 41.8197 1.67682
\(623\) −43.9105 −1.75924
\(624\) 0 0
\(625\) 51.9299 2.07720
\(626\) 41.8217 1.67153
\(627\) 0 0
\(628\) 119.107 4.75289
\(629\) −21.9515 −0.875263
\(630\) 0 0
\(631\) 2.83922 0.113027 0.0565137 0.998402i \(-0.482002\pi\)
0.0565137 + 0.998402i \(0.482002\pi\)
\(632\) 101.094 4.02132
\(633\) 0 0
\(634\) 54.5569 2.16673
\(635\) 19.1484 0.759881
\(636\) 0 0
\(637\) −9.00751 −0.356891
\(638\) −2.67955 −0.106084
\(639\) 0 0
\(640\) −0.158757 −0.00627541
\(641\) −20.6746 −0.816599 −0.408299 0.912848i \(-0.633878\pi\)
−0.408299 + 0.912848i \(0.633878\pi\)
\(642\) 0 0
\(643\) −24.6254 −0.971130 −0.485565 0.874201i \(-0.661386\pi\)
−0.485565 + 0.874201i \(0.661386\pi\)
\(644\) 130.320 5.13533
\(645\) 0 0
\(646\) 8.54558 0.336222
\(647\) −45.3626 −1.78339 −0.891693 0.452640i \(-0.850482\pi\)
−0.891693 + 0.452640i \(0.850482\pi\)
\(648\) 0 0
\(649\) −13.2986 −0.522017
\(650\) −44.9003 −1.76113
\(651\) 0 0
\(652\) −17.9724 −0.703854
\(653\) −26.1012 −1.02142 −0.510710 0.859753i \(-0.670617\pi\)
−0.510710 + 0.859753i \(0.670617\pi\)
\(654\) 0 0
\(655\) 15.2662 0.596501
\(656\) 37.9264 1.48078
\(657\) 0 0
\(658\) 35.1371 1.36979
\(659\) 45.8507 1.78609 0.893045 0.449967i \(-0.148564\pi\)
0.893045 + 0.449967i \(0.148564\pi\)
\(660\) 0 0
\(661\) −15.4225 −0.599864 −0.299932 0.953961i \(-0.596964\pi\)
−0.299932 + 0.953961i \(0.596964\pi\)
\(662\) 39.4965 1.53508
\(663\) 0 0
\(664\) −40.2277 −1.56114
\(665\) −14.7511 −0.572022
\(666\) 0 0
\(667\) −7.64698 −0.296092
\(668\) −12.7861 −0.494709
\(669\) 0 0
\(670\) 39.5249 1.52698
\(671\) −6.49664 −0.250800
\(672\) 0 0
\(673\) −37.8633 −1.45952 −0.729762 0.683702i \(-0.760369\pi\)
−0.729762 + 0.683702i \(0.760369\pi\)
\(674\) −32.0826 −1.23578
\(675\) 0 0
\(676\) −52.2239 −2.00861
\(677\) 25.3510 0.974320 0.487160 0.873313i \(-0.338033\pi\)
0.487160 + 0.873313i \(0.338033\pi\)
\(678\) 0 0
\(679\) −49.8998 −1.91498
\(680\) −98.5710 −3.78003
\(681\) 0 0
\(682\) 4.30989 0.165034
\(683\) 21.7513 0.832290 0.416145 0.909298i \(-0.363381\pi\)
0.416145 + 0.909298i \(0.363381\pi\)
\(684\) 0 0
\(685\) −64.2484 −2.45480
\(686\) −8.58534 −0.327790
\(687\) 0 0
\(688\) 52.0031 1.98260
\(689\) −0.152147 −0.00579636
\(690\) 0 0
\(691\) 17.3051 0.658318 0.329159 0.944275i \(-0.393235\pi\)
0.329159 + 0.944275i \(0.393235\pi\)
\(692\) −35.4741 −1.34852
\(693\) 0 0
\(694\) 80.7687 3.06594
\(695\) 10.3070 0.390968
\(696\) 0 0
\(697\) 12.8333 0.486095
\(698\) −62.4643 −2.36431
\(699\) 0 0
\(700\) 203.054 7.67470
\(701\) 29.6923 1.12146 0.560732 0.827997i \(-0.310520\pi\)
0.560732 + 0.827997i \(0.310520\pi\)
\(702\) 0 0
\(703\) −6.71293 −0.253183
\(704\) 8.02543 0.302470
\(705\) 0 0
\(706\) −39.2409 −1.47685
\(707\) 39.8116 1.49727
\(708\) 0 0
\(709\) −21.4898 −0.807067 −0.403534 0.914965i \(-0.632218\pi\)
−0.403534 + 0.914965i \(0.632218\pi\)
\(710\) 67.4359 2.53082
\(711\) 0 0
\(712\) −89.7310 −3.36281
\(713\) 12.2997 0.460627
\(714\) 0 0
\(715\) 6.02783 0.225428
\(716\) −46.1394 −1.72431
\(717\) 0 0
\(718\) −36.8021 −1.37344
\(719\) −9.61388 −0.358537 −0.179269 0.983800i \(-0.557373\pi\)
−0.179269 + 0.983800i \(0.557373\pi\)
\(720\) 0 0
\(721\) −18.0622 −0.672671
\(722\) 2.61330 0.0972571
\(723\) 0 0
\(724\) 29.1036 1.08163
\(725\) −11.9149 −0.442507
\(726\) 0 0
\(727\) 6.84046 0.253699 0.126849 0.991922i \(-0.459514\pi\)
0.126849 + 0.991922i \(0.459514\pi\)
\(728\) −39.5570 −1.46608
\(729\) 0 0
\(730\) 14.6767 0.543210
\(731\) 17.5965 0.650828
\(732\) 0 0
\(733\) 38.2277 1.41197 0.705987 0.708225i \(-0.250504\pi\)
0.705987 + 0.708225i \(0.250504\pi\)
\(734\) 55.7005 2.05594
\(735\) 0 0
\(736\) 78.0620 2.87740
\(737\) −3.70989 −0.136656
\(738\) 0 0
\(739\) −17.7157 −0.651682 −0.325841 0.945425i \(-0.605647\pi\)
−0.325841 + 0.945425i \(0.605647\pi\)
\(740\) 132.166 4.85853
\(741\) 0 0
\(742\) 0.973009 0.0357203
\(743\) −21.3028 −0.781525 −0.390763 0.920491i \(-0.627789\pi\)
−0.390763 + 0.920491i \(0.627789\pi\)
\(744\) 0 0
\(745\) 7.53808 0.276174
\(746\) −6.32650 −0.231630
\(747\) 0 0
\(748\) 15.7921 0.577418
\(749\) −26.4622 −0.966908
\(750\) 0 0
\(751\) 25.1552 0.917926 0.458963 0.888455i \(-0.348221\pi\)
0.458963 + 0.888455i \(0.348221\pi\)
\(752\) 35.9111 1.30954
\(753\) 0 0
\(754\) 3.96190 0.144284
\(755\) 62.4499 2.27279
\(756\) 0 0
\(757\) 15.5116 0.563780 0.281890 0.959447i \(-0.409039\pi\)
0.281890 + 0.959447i \(0.409039\pi\)
\(758\) 23.1940 0.842443
\(759\) 0 0
\(760\) −30.1438 −1.09343
\(761\) −35.2085 −1.27631 −0.638154 0.769908i \(-0.720302\pi\)
−0.638154 + 0.769908i \(0.720302\pi\)
\(762\) 0 0
\(763\) −5.22779 −0.189259
\(764\) −85.5129 −3.09375
\(765\) 0 0
\(766\) 9.25280 0.334317
\(767\) 19.6630 0.709988
\(768\) 0 0
\(769\) −5.57667 −0.201100 −0.100550 0.994932i \(-0.532060\pi\)
−0.100550 + 0.994932i \(0.532060\pi\)
\(770\) −38.5490 −1.38921
\(771\) 0 0
\(772\) 17.8371 0.641973
\(773\) −35.9175 −1.29186 −0.645931 0.763396i \(-0.723531\pi\)
−0.645931 + 0.763396i \(0.723531\pi\)
\(774\) 0 0
\(775\) 19.1643 0.688403
\(776\) −101.970 −3.66052
\(777\) 0 0
\(778\) 43.6530 1.56503
\(779\) 3.92451 0.140610
\(780\) 0 0
\(781\) −6.32968 −0.226494
\(782\) 63.7324 2.27906
\(783\) 0 0
\(784\) 58.8734 2.10262
\(785\) −100.547 −3.58866
\(786\) 0 0
\(787\) 7.53242 0.268502 0.134251 0.990947i \(-0.457137\pi\)
0.134251 + 0.990947i \(0.457137\pi\)
\(788\) 124.496 4.43497
\(789\) 0 0
\(790\) −145.666 −5.18257
\(791\) 43.5531 1.54857
\(792\) 0 0
\(793\) 9.60573 0.341110
\(794\) 73.7141 2.61602
\(795\) 0 0
\(796\) 91.2522 3.23435
\(797\) 49.3837 1.74926 0.874629 0.484792i \(-0.161105\pi\)
0.874629 + 0.484792i \(0.161105\pi\)
\(798\) 0 0
\(799\) 12.1513 0.429883
\(800\) 121.629 4.30025
\(801\) 0 0
\(802\) 94.6219 3.34122
\(803\) −1.37759 −0.0486141
\(804\) 0 0
\(805\) −110.012 −3.87743
\(806\) −6.37247 −0.224461
\(807\) 0 0
\(808\) 81.3549 2.86205
\(809\) −34.4637 −1.21168 −0.605840 0.795587i \(-0.707163\pi\)
−0.605840 + 0.795587i \(0.707163\pi\)
\(810\) 0 0
\(811\) 20.0278 0.703272 0.351636 0.936137i \(-0.385625\pi\)
0.351636 + 0.936137i \(0.385625\pi\)
\(812\) −17.9170 −0.628763
\(813\) 0 0
\(814\) −17.5429 −0.614879
\(815\) 15.1718 0.531444
\(816\) 0 0
\(817\) 5.38113 0.188262
\(818\) 96.4926 3.37379
\(819\) 0 0
\(820\) −77.2670 −2.69828
\(821\) −6.45245 −0.225192 −0.112596 0.993641i \(-0.535917\pi\)
−0.112596 + 0.993641i \(0.535917\pi\)
\(822\) 0 0
\(823\) −43.0190 −1.49955 −0.749774 0.661694i \(-0.769838\pi\)
−0.749774 + 0.661694i \(0.769838\pi\)
\(824\) −36.9100 −1.28582
\(825\) 0 0
\(826\) −125.748 −4.37533
\(827\) 43.1557 1.50067 0.750335 0.661058i \(-0.229892\pi\)
0.750335 + 0.661058i \(0.229892\pi\)
\(828\) 0 0
\(829\) 13.4937 0.468656 0.234328 0.972158i \(-0.424711\pi\)
0.234328 + 0.972158i \(0.424711\pi\)
\(830\) 57.9638 2.01195
\(831\) 0 0
\(832\) −11.8662 −0.411385
\(833\) 19.9212 0.690228
\(834\) 0 0
\(835\) 10.7937 0.373530
\(836\) 4.82936 0.167027
\(837\) 0 0
\(838\) −47.2197 −1.63118
\(839\) 14.6851 0.506988 0.253494 0.967337i \(-0.418420\pi\)
0.253494 + 0.967337i \(0.418420\pi\)
\(840\) 0 0
\(841\) −27.9487 −0.963747
\(842\) −22.4124 −0.772384
\(843\) 0 0
\(844\) −49.2562 −1.69547
\(845\) 44.0858 1.51660
\(846\) 0 0
\(847\) 3.61829 0.124326
\(848\) 0.994441 0.0341493
\(849\) 0 0
\(850\) 99.3023 3.40604
\(851\) −50.0645 −1.71619
\(852\) 0 0
\(853\) −51.5775 −1.76598 −0.882990 0.469392i \(-0.844473\pi\)
−0.882990 + 0.469392i \(0.844473\pi\)
\(854\) −61.4303 −2.10210
\(855\) 0 0
\(856\) −54.0755 −1.84826
\(857\) 46.6355 1.59304 0.796520 0.604612i \(-0.206672\pi\)
0.796520 + 0.604612i \(0.206672\pi\)
\(858\) 0 0
\(859\) −18.6711 −0.637048 −0.318524 0.947915i \(-0.603187\pi\)
−0.318524 + 0.947915i \(0.603187\pi\)
\(860\) −105.945 −3.61271
\(861\) 0 0
\(862\) −11.1888 −0.381091
\(863\) −43.0160 −1.46428 −0.732141 0.681153i \(-0.761479\pi\)
−0.732141 + 0.681153i \(0.761479\pi\)
\(864\) 0 0
\(865\) 29.9462 1.01820
\(866\) 47.5712 1.61654
\(867\) 0 0
\(868\) 28.8184 0.978160
\(869\) 13.6725 0.463809
\(870\) 0 0
\(871\) 5.48533 0.185863
\(872\) −10.6830 −0.361771
\(873\) 0 0
\(874\) 19.4898 0.659253
\(875\) −97.6565 −3.30139
\(876\) 0 0
\(877\) 56.0429 1.89243 0.946217 0.323534i \(-0.104871\pi\)
0.946217 + 0.323534i \(0.104871\pi\)
\(878\) 76.9466 2.59682
\(879\) 0 0
\(880\) −39.3981 −1.32811
\(881\) −17.9947 −0.606257 −0.303128 0.952950i \(-0.598031\pi\)
−0.303128 + 0.952950i \(0.598031\pi\)
\(882\) 0 0
\(883\) 1.99550 0.0671540 0.0335770 0.999436i \(-0.489310\pi\)
0.0335770 + 0.999436i \(0.489310\pi\)
\(884\) −23.3498 −0.785339
\(885\) 0 0
\(886\) 63.6687 2.13899
\(887\) −7.20927 −0.242063 −0.121032 0.992649i \(-0.538620\pi\)
−0.121032 + 0.992649i \(0.538620\pi\)
\(888\) 0 0
\(889\) −16.9948 −0.569988
\(890\) 129.293 4.33390
\(891\) 0 0
\(892\) −1.26867 −0.0424782
\(893\) 3.71597 0.124350
\(894\) 0 0
\(895\) 38.9495 1.30194
\(896\) 0.140902 0.00470720
\(897\) 0 0
\(898\) −101.338 −3.38168
\(899\) −1.69102 −0.0563986
\(900\) 0 0
\(901\) 0.336492 0.0112102
\(902\) 10.2559 0.341485
\(903\) 0 0
\(904\) 89.0006 2.96012
\(905\) −24.5684 −0.816680
\(906\) 0 0
\(907\) −25.7832 −0.856116 −0.428058 0.903751i \(-0.640802\pi\)
−0.428058 + 0.903751i \(0.640802\pi\)
\(908\) −131.965 −4.37942
\(909\) 0 0
\(910\) 56.9974 1.88945
\(911\) −31.1334 −1.03149 −0.515747 0.856741i \(-0.672486\pi\)
−0.515747 + 0.856741i \(0.672486\pi\)
\(912\) 0 0
\(913\) −5.44061 −0.180058
\(914\) −19.5389 −0.646291
\(915\) 0 0
\(916\) −26.7146 −0.882676
\(917\) −13.5493 −0.447437
\(918\) 0 0
\(919\) 5.42725 0.179029 0.0895143 0.995986i \(-0.471469\pi\)
0.0895143 + 0.995986i \(0.471469\pi\)
\(920\) −224.810 −7.41176
\(921\) 0 0
\(922\) −41.7560 −1.37516
\(923\) 9.35887 0.308051
\(924\) 0 0
\(925\) −78.0063 −2.56483
\(926\) −15.9469 −0.524049
\(927\) 0 0
\(928\) −10.7323 −0.352305
\(929\) 21.6025 0.708756 0.354378 0.935102i \(-0.384693\pi\)
0.354378 + 0.935102i \(0.384693\pi\)
\(930\) 0 0
\(931\) 6.09205 0.199659
\(932\) −132.678 −4.34603
\(933\) 0 0
\(934\) 69.6113 2.27775
\(935\) −13.3313 −0.435979
\(936\) 0 0
\(937\) 31.6840 1.03507 0.517536 0.855661i \(-0.326849\pi\)
0.517536 + 0.855661i \(0.326849\pi\)
\(938\) −35.0796 −1.14539
\(939\) 0 0
\(940\) −73.1612 −2.38626
\(941\) 5.63987 0.183854 0.0919272 0.995766i \(-0.470697\pi\)
0.0919272 + 0.995766i \(0.470697\pi\)
\(942\) 0 0
\(943\) 29.2687 0.953120
\(944\) −128.518 −4.18290
\(945\) 0 0
\(946\) 14.0625 0.457212
\(947\) 51.7369 1.68122 0.840611 0.541639i \(-0.182196\pi\)
0.840611 + 0.541639i \(0.182196\pi\)
\(948\) 0 0
\(949\) 2.03686 0.0661194
\(950\) 30.3674 0.985248
\(951\) 0 0
\(952\) 87.4850 2.83540
\(953\) 16.2553 0.526561 0.263281 0.964719i \(-0.415196\pi\)
0.263281 + 0.964719i \(0.415196\pi\)
\(954\) 0 0
\(955\) 72.1874 2.33593
\(956\) −6.77750 −0.219200
\(957\) 0 0
\(958\) 42.3601 1.36859
\(959\) 57.0225 1.84135
\(960\) 0 0
\(961\) −28.2801 −0.912261
\(962\) 25.9384 0.836289
\(963\) 0 0
\(964\) −100.304 −3.23057
\(965\) −15.0576 −0.484721
\(966\) 0 0
\(967\) −54.5004 −1.75261 −0.876307 0.481754i \(-0.840000\pi\)
−0.876307 + 0.481754i \(0.840000\pi\)
\(968\) 7.39397 0.237651
\(969\) 0 0
\(970\) 146.928 4.71758
\(971\) 34.2679 1.09971 0.549855 0.835260i \(-0.314683\pi\)
0.549855 + 0.835260i \(0.314683\pi\)
\(972\) 0 0
\(973\) −9.14783 −0.293266
\(974\) −12.6078 −0.403981
\(975\) 0 0
\(976\) −62.7834 −2.00965
\(977\) −55.5644 −1.77766 −0.888831 0.458234i \(-0.848482\pi\)
−0.888831 + 0.458234i \(0.848482\pi\)
\(978\) 0 0
\(979\) −12.1357 −0.387858
\(980\) −119.942 −3.83141
\(981\) 0 0
\(982\) 22.3066 0.711832
\(983\) 41.3971 1.32036 0.660181 0.751106i \(-0.270479\pi\)
0.660181 + 0.751106i \(0.270479\pi\)
\(984\) 0 0
\(985\) −105.095 −3.34862
\(986\) −8.76221 −0.279046
\(987\) 0 0
\(988\) −7.14054 −0.227171
\(989\) 40.1321 1.27613
\(990\) 0 0
\(991\) 60.8219 1.93207 0.966036 0.258406i \(-0.0831973\pi\)
0.966036 + 0.258406i \(0.0831973\pi\)
\(992\) 17.2623 0.548077
\(993\) 0 0
\(994\) −59.8515 −1.89837
\(995\) −77.0324 −2.44209
\(996\) 0 0
\(997\) 26.0627 0.825414 0.412707 0.910864i \(-0.364583\pi\)
0.412707 + 0.910864i \(0.364583\pi\)
\(998\) −35.1031 −1.11117
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1881.2.a.p.1.6 7
3.2 odd 2 209.2.a.d.1.2 7
12.11 even 2 3344.2.a.ba.1.4 7
15.14 odd 2 5225.2.a.n.1.6 7
33.32 even 2 2299.2.a.q.1.6 7
57.56 even 2 3971.2.a.i.1.6 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
209.2.a.d.1.2 7 3.2 odd 2
1881.2.a.p.1.6 7 1.1 even 1 trivial
2299.2.a.q.1.6 7 33.32 even 2
3344.2.a.ba.1.4 7 12.11 even 2
3971.2.a.i.1.6 7 57.56 even 2
5225.2.a.n.1.6 7 15.14 odd 2