Properties

Label 1881.2.a.n
Level $1881$
Weight $2$
Character orbit 1881.a
Self dual yes
Analytic conductor $15.020$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1881,2,Mod(1,1881)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1881, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1881.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1881 = 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1881.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.0198606202\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 9x^{5} + 7x^{4} + 22x^{3} - 12x^{2} - 9x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{6} q^{2} + ( - \beta_{3} + 1) q^{4} + (\beta_{2} + \beta_1 - 1) q^{5} + (\beta_{6} - \beta_{2} + \beta_1 - 1) q^{7} + (\beta_{5} + \beta_{3} - 1) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_{6} q^{2} + ( - \beta_{3} + 1) q^{4} + (\beta_{2} + \beta_1 - 1) q^{5} + (\beta_{6} - \beta_{2} + \beta_1 - 1) q^{7} + (\beta_{5} + \beta_{3} - 1) q^{8} + (\beta_{6} + \beta_{4} - 2 \beta_1 + 1) q^{10} + q^{11} + ( - \beta_{5} - \beta_{4} - \beta_1 - 1) q^{13} + (\beta_{6} - \beta_{4} + \beta_{3} + \cdots - 2) q^{14}+ \cdots + ( - 3 \beta_{6} + \beta_{5} + \cdots + 11) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 2 q^{2} + 6 q^{4} - 8 q^{5} - 2 q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 7 q - 2 q^{2} + 6 q^{4} - 8 q^{5} - 2 q^{7} - 6 q^{8} + 6 q^{10} + 7 q^{11} - 7 q^{13} - 6 q^{14} - 5 q^{17} + 7 q^{19} - 20 q^{20} - 2 q^{22} - 22 q^{23} + 3 q^{25} - 10 q^{26} + 2 q^{28} - 18 q^{29} - 14 q^{32} + 6 q^{34} - 8 q^{35} + 6 q^{37} - 2 q^{38} + 28 q^{40} - 6 q^{41} + 8 q^{43} + 6 q^{44} + 8 q^{46} - 14 q^{47} + 5 q^{49} - 24 q^{50} - 12 q^{52} + q^{53} - 8 q^{55} - 20 q^{56} - 2 q^{58} - 23 q^{59} - 28 q^{61} - 2 q^{62} - 26 q^{64} - 10 q^{65} + 14 q^{67} - 12 q^{68} - 18 q^{70} - 31 q^{71} - 12 q^{73} - 20 q^{74} + 6 q^{76} - 2 q^{77} - 17 q^{79} + 6 q^{80} + 12 q^{82} - 5 q^{83} - 12 q^{85} - 38 q^{86} - 6 q^{88} + 3 q^{89} - 12 q^{91} - 60 q^{94} - 8 q^{95} + 12 q^{97} + 62 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - x^{6} - 9x^{5} + 7x^{4} + 22x^{3} - 12x^{2} - 9x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{4} - \nu^{3} - 5\nu^{2} + 3\nu + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} - 2\nu^{3} - 4\nu^{2} + 8\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -\nu^{6} + 2\nu^{5} + 7\nu^{4} - 12\nu^{3} - 13\nu^{2} + 16\nu + 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\nu^{6} + \nu^{5} + 9\nu^{4} - 7\nu^{3} - 21\nu^{2} + 12\nu + 5 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( \nu^{6} - \nu^{5} - 9\nu^{4} + 8\nu^{3} + 21\nu^{2} - 17\nu - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + \beta_{5} + \beta_{3} - \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{6} + \beta_{5} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 6\beta_{6} + 6\beta_{5} + 5\beta_{3} - 4\beta_{2} + 2\beta _1 + 8 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 9\beta_{6} + 8\beta_{5} + \beta_{4} + 2\beta_{3} + 25\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 35\beta_{6} + 33\beta_{5} + \beta_{4} + 26\beta_{3} - 15\beta_{2} + 20\beta _1 + 36 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.327599
−1.91991
2.45198
−2.07449
1.11111
1.90647
−0.147559
−2.44300 0 3.96824 −0.800323 0 0.588123 −4.80840 0 1.95519
1.2 −2.31577 0 3.36278 −4.44606 0 0.922010 −3.15587 0 10.2960
1.3 −0.877508 0 −1.22998 2.15163 0 1.62983 2.83433 0 −1.88807
1.4 −0.659361 0 −1.56524 −1.36783 0 −4.12178 2.35078 0 0.901896
1.5 0.518355 0 −1.73131 −0.575947 0 0.279802 −1.93414 0 −0.298545
1.6 1.71314 0 0.934849 −3.26605 0 3.36585 −1.82475 0 −5.59520
1.7 2.06414 0 2.26067 0.304582 0 −4.66384 0.538053 0 0.628700
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(11\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1881.2.a.n 7
3.b odd 2 1 1881.2.a.r yes 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1881.2.a.n 7 1.a even 1 1 trivial
1881.2.a.r yes 7 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1881))\):

\( T_{2}^{7} + 2T_{2}^{6} - 8T_{2}^{5} - 14T_{2}^{4} + 17T_{2}^{3} + 24T_{2}^{2} - 3T_{2} - 6 \) Copy content Toggle raw display
\( T_{5}^{7} + 8T_{5}^{6} + 13T_{5}^{5} - 28T_{5}^{4} - 80T_{5}^{3} - 48T_{5}^{2} + 3T_{5} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} + 2 T^{6} + \cdots - 6 \) Copy content Toggle raw display
$3$ \( T^{7} \) Copy content Toggle raw display
$5$ \( T^{7} + 8 T^{6} + \cdots + 6 \) Copy content Toggle raw display
$7$ \( T^{7} + 2 T^{6} + \cdots - 16 \) Copy content Toggle raw display
$11$ \( (T - 1)^{7} \) Copy content Toggle raw display
$13$ \( T^{7} + 7 T^{6} + \cdots - 97 \) Copy content Toggle raw display
$17$ \( T^{7} + 5 T^{6} + \cdots + 7827 \) Copy content Toggle raw display
$19$ \( (T - 1)^{7} \) Copy content Toggle raw display
$23$ \( T^{7} + 22 T^{6} + \cdots - 4332 \) Copy content Toggle raw display
$29$ \( T^{7} + 18 T^{6} + \cdots + 906 \) Copy content Toggle raw display
$31$ \( T^{7} - 74 T^{5} + \cdots + 2092 \) Copy content Toggle raw display
$37$ \( T^{7} - 6 T^{6} + \cdots + 78824 \) Copy content Toggle raw display
$41$ \( T^{7} + 6 T^{6} + \cdots - 67044 \) Copy content Toggle raw display
$43$ \( T^{7} - 8 T^{6} + \cdots - 196 \) Copy content Toggle raw display
$47$ \( T^{7} + 14 T^{6} + \cdots + 3558 \) Copy content Toggle raw display
$53$ \( T^{7} - T^{6} + \cdots - 60177 \) Copy content Toggle raw display
$59$ \( T^{7} + 23 T^{6} + \cdots + 1160193 \) Copy content Toggle raw display
$61$ \( T^{7} + 28 T^{6} + \cdots + 5255906 \) Copy content Toggle raw display
$67$ \( T^{7} - 14 T^{6} + \cdots + 463208 \) Copy content Toggle raw display
$71$ \( T^{7} + 31 T^{6} + \cdots + 1585779 \) Copy content Toggle raw display
$73$ \( T^{7} + 12 T^{6} + \cdots + 259184 \) Copy content Toggle raw display
$79$ \( T^{7} + 17 T^{6} + \cdots - 50681 \) Copy content Toggle raw display
$83$ \( T^{7} + 5 T^{6} + \cdots - 15399 \) Copy content Toggle raw display
$89$ \( T^{7} - 3 T^{6} + \cdots - 1646619 \) Copy content Toggle raw display
$97$ \( T^{7} - 12 T^{6} + \cdots + 511388 \) Copy content Toggle raw display
show more
show less