Properties

Label 1881.2.a.l
Level $1881$
Weight $2$
Character orbit 1881.a
Self dual yes
Analytic conductor $15.020$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1881,2,Mod(1,1881)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1881, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1881.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1881 = 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1881.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.0198606202\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.2179633.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 7x^{3} + 4x^{2} + 9x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 627)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{2} + 1) q^{4} + (\beta_{4} - 1) q^{5} - \beta_{3} q^{7} + ( - \beta_{3} - \beta_{2} - 1) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{2} + (\beta_{2} + 1) q^{4} + (\beta_{4} - 1) q^{5} - \beta_{3} q^{7} + ( - \beta_{3} - \beta_{2} - 1) q^{8} + ( - \beta_{3} + \beta_{2} + \beta_1 + 1) q^{10} + q^{11} + (\beta_1 + 3) q^{13} + (\beta_{4} + 2 \beta_{2} + 1) q^{14} + (\beta_{4} + \beta_{3} + \cdots + 2 \beta_1) q^{16}+ \cdots + ( - \beta_{2} - 2 \beta_1 + 1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} + 5 q^{4} - 3 q^{5} - q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - q^{2} + 5 q^{4} - 3 q^{5} - q^{7} - 6 q^{8} + 5 q^{10} + 5 q^{11} + 16 q^{13} + 7 q^{14} + 5 q^{16} - q^{17} + 5 q^{19} - 10 q^{20} - q^{22} + 5 q^{23} + 16 q^{25} - 18 q^{26} - 9 q^{28} - 4 q^{29} + 4 q^{31} - 28 q^{32} + 14 q^{35} + 7 q^{37} - q^{38} + 24 q^{40} - 7 q^{41} + 12 q^{43} + 5 q^{44} + 14 q^{46} - 2 q^{47} + 2 q^{49} + 4 q^{50} + 23 q^{52} - 21 q^{53} - 3 q^{55} + 46 q^{56} - 5 q^{58} - 14 q^{59} + 13 q^{61} + 21 q^{62} + 20 q^{64} - 14 q^{65} + 13 q^{67} + 21 q^{68} + 21 q^{70} + 7 q^{71} + 16 q^{73} + 48 q^{74} + 5 q^{76} - q^{77} - 11 q^{79} + 7 q^{80} - 2 q^{82} + 20 q^{83} + 7 q^{85} + 17 q^{86} - 6 q^{88} - 7 q^{89} - 10 q^{91} - 24 q^{92} - 18 q^{94} - 3 q^{95} + 12 q^{97} + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 7x^{3} + 4x^{2} + 9x - 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 4\nu + 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - \nu^{3} - 6\nu^{2} + 2\nu + 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 4\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + \beta_{3} + 7\beta_{2} + 2\beta _1 + 14 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.66695
1.29410
0.426019
−1.30941
−2.07765
−2.66695 0 5.11262 −1.72144 0 −3.18859 −8.30122 0 4.59098
1.2 −1.29410 0 −0.325316 −2.82255 0 2.68387 3.00918 0 3.65264
1.3 −0.426019 0 −1.81851 3.71870 0 −0.191751 1.62676 0 −1.58424
1.4 1.30941 0 −0.285435 −3.72141 0 −3.27802 −2.99258 0 −4.87286
1.5 2.07765 0 2.31663 1.54669 0 2.97449 0.657857 0 3.21348
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(11\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1881.2.a.l 5
3.b odd 2 1 627.2.a.i 5
33.d even 2 1 6897.2.a.r 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
627.2.a.i 5 3.b odd 2 1
1881.2.a.l 5 1.a even 1 1 trivial
6897.2.a.r 5 33.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1881))\):

\( T_{2}^{5} + T_{2}^{4} - 7T_{2}^{3} - 4T_{2}^{2} + 9T_{2} + 4 \) Copy content Toggle raw display
\( T_{5}^{5} + 3T_{5}^{4} - 16T_{5}^{3} - 49T_{5}^{2} + 30T_{5} + 104 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} + T^{4} - 7 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$3$ \( T^{5} \) Copy content Toggle raw display
$5$ \( T^{5} + 3 T^{4} + \cdots + 104 \) Copy content Toggle raw display
$7$ \( T^{5} + T^{4} + \cdots + 16 \) Copy content Toggle raw display
$11$ \( (T - 1)^{5} \) Copy content Toggle raw display
$13$ \( T^{5} - 16 T^{4} + \cdots - 130 \) Copy content Toggle raw display
$17$ \( T^{5} + T^{4} + \cdots - 74 \) Copy content Toggle raw display
$19$ \( (T - 1)^{5} \) Copy content Toggle raw display
$23$ \( T^{5} - 5 T^{4} + \cdots + 128 \) Copy content Toggle raw display
$29$ \( T^{5} + 4 T^{4} + \cdots + 4696 \) Copy content Toggle raw display
$31$ \( T^{5} - 4 T^{4} + \cdots + 128 \) Copy content Toggle raw display
$37$ \( T^{5} - 7 T^{4} + \cdots - 22516 \) Copy content Toggle raw display
$41$ \( T^{5} + 7 T^{4} + \cdots - 404 \) Copy content Toggle raw display
$43$ \( T^{5} - 12 T^{4} + \cdots - 640 \) Copy content Toggle raw display
$47$ \( T^{5} + 2 T^{4} + \cdots + 16 \) Copy content Toggle raw display
$53$ \( T^{5} + 21 T^{4} + \cdots - 11542 \) Copy content Toggle raw display
$59$ \( T^{5} + 14 T^{4} + \cdots + 43420 \) Copy content Toggle raw display
$61$ \( T^{5} - 13 T^{4} + \cdots - 28124 \) Copy content Toggle raw display
$67$ \( T^{5} - 13 T^{4} + \cdots - 28936 \) Copy content Toggle raw display
$71$ \( T^{5} - 7 T^{4} + \cdots + 3904 \) Copy content Toggle raw display
$73$ \( T^{5} - 16 T^{4} + \cdots - 1976 \) Copy content Toggle raw display
$79$ \( T^{5} + 11 T^{4} + \cdots + 19456 \) Copy content Toggle raw display
$83$ \( T^{5} - 20 T^{4} + \cdots - 9140 \) Copy content Toggle raw display
$89$ \( T^{5} + 7 T^{4} + \cdots + 79582 \) Copy content Toggle raw display
$97$ \( T^{5} - 12 T^{4} + \cdots - 11164 \) Copy content Toggle raw display
show more
show less