Properties

Label 1881.2.a.d
Level $1881$
Weight $2$
Character orbit 1881.a
Self dual yes
Analytic conductor $15.020$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1881,2,Mod(1,1881)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1881, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1881.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1881 = 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1881.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.0198606202\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 209)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + q^{5} + (\beta - 2) q^{7} - 2 \beta q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{2} + q^{5} + (\beta - 2) q^{7} - 2 \beta q^{8} + \beta q^{10} + q^{11} + ( - 3 \beta - 2) q^{13} + ( - 2 \beta + 2) q^{14} - 4 q^{16} + (\beta - 2) q^{17} - q^{19} + \beta q^{22} + 3 q^{23} - 4 q^{25} + ( - 2 \beta - 6) q^{26} + ( - 3 \beta + 2) q^{29} + (\beta - 5) q^{31} + ( - 2 \beta + 2) q^{34} + (\beta - 2) q^{35} + ( - 5 \beta + 3) q^{37} - \beta q^{38} - 2 \beta q^{40} + ( - 4 \beta - 4) q^{41} + (4 \beta + 6) q^{43} + 3 \beta q^{46} + (2 \beta - 6) q^{47} + ( - 4 \beta - 1) q^{49} - 4 \beta q^{50} + ( - 6 \beta - 4) q^{53} + q^{55} + (4 \beta - 4) q^{56} + (2 \beta - 6) q^{58} + (\beta + 3) q^{59} + (5 \beta - 4) q^{61} + ( - 5 \beta + 2) q^{62} + 8 q^{64} + ( - 3 \beta - 2) q^{65} + (\beta - 9) q^{67} + ( - 2 \beta + 2) q^{70} + ( - \beta + 11) q^{71} + (6 \beta + 4) q^{73} + (3 \beta - 10) q^{74} + (\beta - 2) q^{77} + ( - \beta - 16) q^{79} - 4 q^{80} + ( - 4 \beta - 8) q^{82} + (\beta - 2) q^{83} + (\beta - 2) q^{85} + (6 \beta + 8) q^{86} - 2 \beta q^{88} + (7 \beta + 5) q^{89} + (4 \beta - 2) q^{91} + ( - 6 \beta + 4) q^{94} - q^{95} + ( - \beta + 1) q^{97} + ( - \beta - 8) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{5} - 4 q^{7} + 2 q^{11} - 4 q^{13} + 4 q^{14} - 8 q^{16} - 4 q^{17} - 2 q^{19} + 6 q^{23} - 8 q^{25} - 12 q^{26} + 4 q^{29} - 10 q^{31} + 4 q^{34} - 4 q^{35} + 6 q^{37} - 8 q^{41} + 12 q^{43} - 12 q^{47} - 2 q^{49} - 8 q^{53} + 2 q^{55} - 8 q^{56} - 12 q^{58} + 6 q^{59} - 8 q^{61} + 4 q^{62} + 16 q^{64} - 4 q^{65} - 18 q^{67} + 4 q^{70} + 22 q^{71} + 8 q^{73} - 20 q^{74} - 4 q^{77} - 32 q^{79} - 8 q^{80} - 16 q^{82} - 4 q^{83} - 4 q^{85} + 16 q^{86} + 10 q^{89} - 4 q^{91} + 8 q^{94} - 2 q^{95} + 2 q^{97} - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−1.41421 0 0 1.00000 0 −3.41421 2.82843 0 −1.41421
1.2 1.41421 0 0 1.00000 0 −0.585786 −2.82843 0 1.41421
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(11\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1881.2.a.d 2
3.b odd 2 1 209.2.a.b 2
12.b even 2 1 3344.2.a.n 2
15.d odd 2 1 5225.2.a.f 2
33.d even 2 1 2299.2.a.f 2
57.d even 2 1 3971.2.a.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
209.2.a.b 2 3.b odd 2 1
1881.2.a.d 2 1.a even 1 1 trivial
2299.2.a.f 2 33.d even 2 1
3344.2.a.n 2 12.b even 2 1
3971.2.a.d 2 57.d even 2 1
5225.2.a.f 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1881))\):

\( T_{2}^{2} - 2 \) Copy content Toggle raw display
\( T_{5} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 4T + 2 \) Copy content Toggle raw display
$11$ \( (T - 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4T - 14 \) Copy content Toggle raw display
$17$ \( T^{2} + 4T + 2 \) Copy content Toggle raw display
$19$ \( (T + 1)^{2} \) Copy content Toggle raw display
$23$ \( (T - 3)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 4T - 14 \) Copy content Toggle raw display
$31$ \( T^{2} + 10T + 23 \) Copy content Toggle raw display
$37$ \( T^{2} - 6T - 41 \) Copy content Toggle raw display
$41$ \( T^{2} + 8T - 16 \) Copy content Toggle raw display
$43$ \( T^{2} - 12T + 4 \) Copy content Toggle raw display
$47$ \( T^{2} + 12T + 28 \) Copy content Toggle raw display
$53$ \( T^{2} + 8T - 56 \) Copy content Toggle raw display
$59$ \( T^{2} - 6T + 7 \) Copy content Toggle raw display
$61$ \( T^{2} + 8T - 34 \) Copy content Toggle raw display
$67$ \( T^{2} + 18T + 79 \) Copy content Toggle raw display
$71$ \( T^{2} - 22T + 119 \) Copy content Toggle raw display
$73$ \( T^{2} - 8T - 56 \) Copy content Toggle raw display
$79$ \( T^{2} + 32T + 254 \) Copy content Toggle raw display
$83$ \( T^{2} + 4T + 2 \) Copy content Toggle raw display
$89$ \( T^{2} - 10T - 73 \) Copy content Toggle raw display
$97$ \( T^{2} - 2T - 1 \) Copy content Toggle raw display
show more
show less