Newspace parameters
Level: | \( N \) | \(=\) | \( 1875 = 3 \cdot 5^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1875.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(14.9719503790\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{16} + 20x^{14} + 156x^{12} + 610x^{10} + 1286x^{8} + 1440x^{6} + 761x^{4} + 130x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 2^{8} \) |
Twist minimal: | no (minimal twist has level 75) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{16} + 20x^{14} + 156x^{12} + 610x^{10} + 1286x^{8} + 1440x^{6} + 761x^{4} + 130x^{2} + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( -3\nu^{14} - 53\nu^{12} - 345\nu^{10} - 1037\nu^{8} - 1518\nu^{6} - 1020\nu^{4} - 245\nu^{2} - 8 ) / 2 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -4\nu^{15} - 69\nu^{13} - 430\nu^{11} - 1183\nu^{9} - 1413\nu^{7} - 483\nu^{5} + 179\nu^{3} + 45\nu ) / 2 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 7\nu^{15} + 124\nu^{13} + 810\nu^{11} + 2444\nu^{9} + 3583\nu^{7} + 2400\nu^{5} + 595\nu^{3} + 47\nu ) / 2 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -9\nu^{14} - 158\nu^{12} - 1017\nu^{10} - 2991\nu^{8} - 4185\nu^{6} - 2527\nu^{4} - 435\nu^{2} - 2 ) / 2 \)
|
\(\beta_{6}\) | \(=\) |
\( ( -10\nu^{15} - 177\nu^{13} - 1154\nu^{11} - 3465\nu^{9} - 5013\nu^{7} - 3225\nu^{5} - 675\nu^{3} - 19\nu ) / 2 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 11\nu^{14} + 194\nu^{12} + 1257\nu^{10} + 3731\nu^{8} + 5277\nu^{6} + 3223\nu^{4} + 565\nu^{2} + 2 ) / 2 \)
|
\(\beta_{8}\) | \(=\) |
\( ( -16\nu^{14} - 282\nu^{12} - 1826\nu^{10} - 5419\nu^{8} - 7680\nu^{6} - 4732\nu^{4} - 865\nu^{2} - 13 ) / 2 \)
|
\(\beta_{9}\) | \(=\) |
\( ( -19\nu^{15} - 335\nu^{13} - 2170\nu^{11} - 6440\nu^{9} - 9110\nu^{7} - 5557\nu^{5} - 945\nu^{3} + 15\nu ) / 2 \)
|
\(\beta_{10}\) | \(=\) |
\( ( -22\nu^{15} - 387\nu^{13} - 2498\nu^{11} - 7373\nu^{9} - 10347\nu^{7} - 6237\nu^{5} - 1041\nu^{3} + 7\nu ) / 2 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 26\nu^{15} + 459\nu^{13} + 2980\nu^{11} + 8884\nu^{9} + 12693\nu^{7} + 7957\nu^{5} + 1542\nu^{3} + 40\nu ) / 2 \)
|
\(\beta_{12}\) | \(=\) |
\( ( 29\nu^{15} + 512\nu^{13} + 3325\nu^{11} + 9921\nu^{9} + 14211\nu^{7} + 8977\nu^{5} + 1785\nu^{3} + 40\nu ) / 2 \)
|
\(\beta_{13}\) | \(=\) |
\( 16\nu^{14} + 282\nu^{12} + 1826\nu^{10} + 5419\nu^{8} + 7680\nu^{6} + 4731\nu^{4} + 858\nu^{2} + 6 \)
|
\(\beta_{14}\) | \(=\) |
\( ( -45\nu^{14} - 794\nu^{12} - 5150\nu^{10} - 15324\nu^{8} - 21803\nu^{6} - 13514\nu^{4} - 2487\nu^{2} - 23 ) / 2 \)
|
\(\beta_{15}\) | \(=\) |
\( ( -45\nu^{14} - 794\nu^{12} - 5150\nu^{10} - 15324\nu^{8} - 21803\nu^{6} - 13514\nu^{4} - 2485\nu^{2} - 19 ) / 2 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{15} - \beta_{14} - 2 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{11} + \beta_{9} - \beta_{4} - 4\beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( -7\beta_{15} + 7\beta_{14} - \beta_{13} - 2\beta_{8} + 7 \)
|
\(\nu^{5}\) | \(=\) |
\( -7\beta_{11} + \beta_{10} - 9\beta_{9} + 3\beta_{6} + 9\beta_{4} + 21\beta_1 \)
|
\(\nu^{6}\) | \(=\) |
\( 46\beta_{15} - 44\beta_{14} + 12\beta_{13} + 16\beta_{8} - \beta_{7} + 3\beta_{5} - 33 \)
|
\(\nu^{7}\) | \(=\) |
\( -4\beta_{12} + 44\beta_{11} - 13\beta_{10} + 64\beta_{9} - 34\beta_{6} - 62\beta_{4} + \beta_{3} - 123\beta_1 \)
|
\(\nu^{8}\) | \(=\) |
\( -297\beta_{15} + 273\beta_{14} - 104\beta_{13} - 106\beta_{8} + 18\beta_{7} - 38\beta_{5} - 4\beta_{2} + 181 \)
|
\(\nu^{9}\) | \(=\) |
\( 60\beta_{12} - 273\beta_{11} + 122\beta_{10} - 423\beta_{9} + 286\beta_{6} + 399\beta_{4} - 18\beta_{3} + 751\beta_1 \)
|
\(\nu^{10}\) | \(=\) |
\( 1906\beta_{15} - 1696\beta_{14} + 803\beta_{13} + 672\beta_{8} - 200\beta_{7} + 346\beta_{5} + 60\beta_{2} - 1061 \)
|
\(\nu^{11}\) | \(=\) |
\( - 606 \beta_{12} + 1696 \beta_{11} - 1003 \beta_{10} + 2728 \beta_{9} - 2167 \beta_{6} - 2518 \beta_{4} + 200 \beta_{3} - 4663 \beta_1 \)
|
\(\nu^{12}\) | \(=\) |
\( - 12211 \beta_{15} + 10573 \beta_{14} - 5869 \beta_{13} - 4214 \beta_{8} + 1809 \beta_{7} - 2773 \beta_{5} - 606 \beta_{2} + 6402 \)
|
\(\nu^{13}\) | \(=\) |
\( 5188 \beta_{12} - 10573 \beta_{11} + 7678 \beta_{10} - 17457 \beta_{9} + 15629 \beta_{6} + 15819 \beta_{4} - 1809 \beta_{3} + 29186 \beta_1 \)
|
\(\nu^{14}\) | \(=\) |
\( 78223 \beta_{15} - 66151 \beta_{14} + 41558 \beta_{13} + 26392 \beta_{8} - 14675 \beta_{7} + 20817 \beta_{5} + 5188 \beta_{2} - 39174 \)
|
\(\nu^{15}\) | \(=\) |
\( - 40680 \beta_{12} + 66151 \beta_{11} - 56233 \beta_{10} + 111499 \beta_{9} - 109584 \beta_{6} - 99427 \beta_{4} + 14675 \beta_{3} - 183548 \beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1875\mathbb{Z}\right)^\times\).
\(n\) | \(626\) | \(1252\) |
\(\chi(n)\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1249.1 |
|
− | 2.53767i | − | 1.00000i | −4.43979 | 0 | −2.53767 | − | 1.04054i | 6.19138i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.2 | − | 2.35083i | − | 1.00000i | −3.52640 | 0 | −2.35083 | − | 3.48189i | 3.58831i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.3 | − | 1.53767i | 1.00000i | −0.364440 | 0 | 1.53767 | 1.68601i | − | 2.51496i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.4 | − | 1.53655i | − | 1.00000i | −0.360976 | 0 | −1.53655 | − | 1.49550i | − | 2.51844i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.5 | − | 1.35083i | 1.00000i | 0.175259 | 0 | 1.35083 | 1.59580i | − | 2.93840i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.6 | − | 1.08982i | − | 1.00000i | 0.812294 | 0 | −1.08982 | 3.08724i | − | 3.06489i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.7 | − | 0.536547i | 1.00000i | 1.71212 | 0 | 0.536547 | − | 2.57318i | − | 1.99173i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.8 | − | 0.0898194i | 1.00000i | 1.99193 | 0 | 0.0898194 | 4.36070i | − | 0.358553i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.9 | 0.0898194i | − | 1.00000i | 1.99193 | 0 | 0.0898194 | − | 4.36070i | 0.358553i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.10 | 0.536547i | − | 1.00000i | 1.71212 | 0 | 0.536547 | 2.57318i | 1.99173i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.11 | 1.08982i | 1.00000i | 0.812294 | 0 | −1.08982 | − | 3.08724i | 3.06489i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.12 | 1.35083i | − | 1.00000i | 0.175259 | 0 | 1.35083 | − | 1.59580i | 2.93840i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.13 | 1.53655i | 1.00000i | −0.360976 | 0 | −1.53655 | 1.49550i | 2.51844i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.14 | 1.53767i | − | 1.00000i | −0.364440 | 0 | 1.53767 | − | 1.68601i | 2.51496i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.15 | 2.35083i | 1.00000i | −3.52640 | 0 | −2.35083 | 3.48189i | − | 3.58831i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.16 | 2.53767i | 1.00000i | −4.43979 | 0 | −2.53767 | 1.04054i | − | 6.19138i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1875.2.b.h | 16 | |
5.b | even | 2 | 1 | inner | 1875.2.b.h | 16 | |
5.c | odd | 4 | 1 | 1875.2.a.m | 8 | ||
5.c | odd | 4 | 1 | 1875.2.a.p | 8 | ||
15.e | even | 4 | 1 | 5625.2.a.t | 8 | ||
15.e | even | 4 | 1 | 5625.2.a.bd | 8 | ||
25.d | even | 5 | 1 | 75.2.i.a | ✓ | 16 | |
25.d | even | 5 | 1 | 375.2.i.c | 16 | ||
25.e | even | 10 | 1 | 75.2.i.a | ✓ | 16 | |
25.e | even | 10 | 1 | 375.2.i.c | 16 | ||
25.f | odd | 20 | 2 | 375.2.g.d | 16 | ||
25.f | odd | 20 | 2 | 375.2.g.e | 16 | ||
75.h | odd | 10 | 1 | 225.2.m.b | 16 | ||
75.j | odd | 10 | 1 | 225.2.m.b | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
75.2.i.a | ✓ | 16 | 25.d | even | 5 | 1 | |
75.2.i.a | ✓ | 16 | 25.e | even | 10 | 1 | |
225.2.m.b | 16 | 75.h | odd | 10 | 1 | ||
225.2.m.b | 16 | 75.j | odd | 10 | 1 | ||
375.2.g.d | 16 | 25.f | odd | 20 | 2 | ||
375.2.g.e | 16 | 25.f | odd | 20 | 2 | ||
375.2.i.c | 16 | 25.d | even | 5 | 1 | ||
375.2.i.c | 16 | 25.e | even | 10 | 1 | ||
1875.2.a.m | 8 | 5.c | odd | 4 | 1 | ||
1875.2.a.p | 8 | 5.c | odd | 4 | 1 | ||
1875.2.b.h | 16 | 1.a | even | 1 | 1 | trivial | |
1875.2.b.h | 16 | 5.b | even | 2 | 1 | inner | |
5625.2.a.t | 8 | 15.e | even | 4 | 1 | ||
5625.2.a.bd | 8 | 15.e | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{16} + 20T_{2}^{14} + 156T_{2}^{12} + 610T_{2}^{10} + 1286T_{2}^{8} + 1440T_{2}^{6} + 761T_{2}^{4} + 130T_{2}^{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(1875, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{16} + 20 T^{14} + 156 T^{12} + 610 T^{10} + \cdots + 1 \)
$3$
\( (T^{2} + 1)^{8} \)
$5$
\( T^{16} \)
$7$
\( T^{16} + 56 T^{14} + 1236 T^{12} + \cdots + 255025 \)
$11$
\( (T^{8} - 2 T^{7} - 43 T^{6} + 90 T^{5} + \cdots + 5281)^{2} \)
$13$
\( T^{16} + 110 T^{14} + 4141 T^{12} + \cdots + 78961 \)
$17$
\( T^{16} + 172 T^{14} + \cdots + 53860921 \)
$19$
\( (T^{8} - 14 T^{7} + 11 T^{6} + 516 T^{5} + \cdots + 2525)^{2} \)
$23$
\( T^{16} + 174 T^{14} + 10761 T^{12} + \cdots + 4389025 \)
$29$
\( (T^{8} + 2 T^{7} - 106 T^{6} - 162 T^{5} + \cdots - 395)^{2} \)
$31$
\( (T^{8} + 22 T^{7} + 169 T^{6} + 548 T^{5} + \cdots + 125)^{2} \)
$37$
\( T^{16} + 376 T^{14} + \cdots + 8653650625 \)
$41$
\( (T^{8} - 8 T^{7} - 56 T^{6} + 428 T^{5} + \cdots + 4705)^{2} \)
$43$
\( T^{16} + 388 T^{14} + \cdots + 527207521 \)
$47$
\( T^{16} + 472 T^{14} + \cdots + 36687479166361 \)
$53$
\( T^{16} + 444 T^{14} + \cdots + 40398990025 \)
$59$
\( (T^{8} + 14 T^{7} - 29 T^{6} - 886 T^{5} + \cdots - 3595)^{2} \)
$61$
\( (T^{8} + 20 T^{7} - 136 T^{6} + \cdots + 16604261)^{2} \)
$67$
\( T^{16} + 532 T^{14} + \cdots + 13980121 \)
$71$
\( (T^{8} - 16 T^{7} - 78 T^{6} + \cdots - 159779)^{2} \)
$73$
\( T^{16} + 644 T^{14} + \cdots + 757413387025 \)
$79$
\( (T^{8} - 30 T^{7} + 145 T^{6} + \cdots - 1984975)^{2} \)
$83$
\( T^{16} + 520 T^{14} + \cdots + 2356228681 \)
$89$
\( (T^{8} + 16 T^{7} - 39 T^{6} - 1454 T^{5} + \cdots + 5)^{2} \)
$97$
\( T^{16} + 472 T^{14} + \cdots + 216648961 \)
show more
show less