Newspace parameters
Level: | \( N \) | \(=\) | \( 1875 = 3 \cdot 5^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1875.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(14.9719503790\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{12} + 22x^{10} + 179x^{8} + 641x^{6} + 869x^{4} + 67x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 75) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{12} + 22x^{10} + 179x^{8} + 641x^{6} + 869x^{4} + 67x^{2} + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{10} + 19\nu^{8} + 122\nu^{6} + 289\nu^{4} + 156\nu^{2} + 5 ) / 14 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -9\nu^{10} - 157\nu^{8} - 902\nu^{6} - 1747\nu^{4} - 242\nu^{2} - 17 ) / 56 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 3\nu^{10} + 71\nu^{8} + 618\nu^{6} + 2337\nu^{4} + 3254\nu^{2} + 99 ) / 56 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 3\nu^{11} + 71\nu^{9} + 618\nu^{7} + 2337\nu^{5} + 3254\nu^{3} + 155\nu ) / 56 \)
|
\(\beta_{6}\) | \(=\) |
\( ( -3\nu^{10} - 71\nu^{8} - 618\nu^{6} - 2337\nu^{4} - 3198\nu^{2} + 69 ) / 56 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 3\nu^{11} + 71\nu^{9} + 618\nu^{7} + 2337\nu^{5} + 3198\nu^{3} - 181\nu ) / 56 \)
|
\(\beta_{8}\) | \(=\) |
\( ( \nu^{10} + 21\nu^{8} + 162\nu^{6} + 547\nu^{4} + 694\nu^{2} + 29 ) / 4 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 5\nu^{11} + 109\nu^{9} + 876\nu^{7} + 3083\nu^{5} + 4056\nu^{3} + 179\nu ) / 14 \)
|
\(\beta_{10}\) | \(=\) |
\( ( -11\nu^{11} - 251\nu^{9} - 2126\nu^{7} - 7953\nu^{5} - 11306\nu^{3} - 979\nu ) / 28 \)
|
\(\beta_{11}\) | \(=\) |
\( ( -59\nu^{11} - 1303\nu^{9} - 10642\nu^{7} - 38177\nu^{5} - 51246\nu^{3} - 1947\nu ) / 56 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{6} + \beta_{4} - 3 \)
|
\(\nu^{3}\) | \(=\) |
\( -\beta_{7} + \beta_{5} - 6\beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( \beta_{8} - 6\beta_{6} - 9\beta_{4} + \beta_{3} + \beta_{2} + 16 \)
|
\(\nu^{5}\) | \(=\) |
\( \beta_{11} - \beta_{10} + 2\beta_{9} + 10\beta_{7} - 11\beta_{5} + 37\beta_1 \)
|
\(\nu^{6}\) | \(=\) |
\( -11\beta_{8} + 37\beta_{6} + 71\beta_{4} - 12\beta_{3} - 14\beta_{2} - 90 \)
|
\(\nu^{7}\) | \(=\) |
\( -14\beta_{11} + 12\beta_{10} - 29\beta_{9} - 87\beta_{7} + 93\beta_{5} - 235\beta_1 \)
|
\(\nu^{8}\) | \(=\) |
\( 93\beta_{8} - 235\beta_{6} - 528\beta_{4} + 111\beta_{3} + 144\beta_{2} + 531 \)
|
\(\nu^{9}\) | \(=\) |
\( 144\beta_{11} - 111\beta_{10} + 303\beta_{9} + 712\beta_{7} - 714\beta_{5} + 1529\beta_1 \)
|
\(\nu^{10}\) | \(=\) |
\( -714\beta_{8} + 1529\beta_{6} + 3815\beta_{4} - 934\beta_{3} - 1303\beta_{2} - 3270 \)
|
\(\nu^{11}\) | \(=\) |
\( -1303\beta_{11} + 934\beta_{10} - 2755\beta_{9} - 5634\beta_{7} + 5243\beta_{5} - 10143\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1875\mathbb{Z}\right)^\times\).
\(n\) | \(626\) | \(1252\) |
\(\chi(n)\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1249.1 |
|
− | 2.68704i | 1.00000i | −5.22020 | 0 | 2.68704 | 1.68704i | 8.65280i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.2 | − | 2.44028i | − | 1.00000i | −3.95498 | 0 | −2.44028 | 3.44028i | 4.77071i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.3 | − | 2.16056i | − | 1.00000i | −2.66802 | 0 | −2.16056 | 3.16056i | 1.44329i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.4 | − | 2.01887i | 1.00000i | −2.07584 | 0 | 2.01887 | 1.01887i | 0.153106i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.5 | − | 0.246759i | − | 1.00000i | 1.93911 | 0 | −0.246759 | 1.24676i | − | 0.972011i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.6 | − | 0.141689i | 1.00000i | 1.97992 | 0 | 0.141689 | − | 0.858311i | − | 0.563913i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.7 | 0.141689i | − | 1.00000i | 1.97992 | 0 | 0.141689 | 0.858311i | 0.563913i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.8 | 0.246759i | 1.00000i | 1.93911 | 0 | −0.246759 | − | 1.24676i | 0.972011i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.9 | 2.01887i | − | 1.00000i | −2.07584 | 0 | 2.01887 | − | 1.01887i | − | 0.153106i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.10 | 2.16056i | 1.00000i | −2.66802 | 0 | −2.16056 | − | 3.16056i | − | 1.44329i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.11 | 2.44028i | 1.00000i | −3.95498 | 0 | −2.44028 | − | 3.44028i | − | 4.77071i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.12 | 2.68704i | − | 1.00000i | −5.22020 | 0 | 2.68704 | − | 1.68704i | − | 8.65280i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1875.2.b.f | 12 | |
5.b | even | 2 | 1 | inner | 1875.2.b.f | 12 | |
5.c | odd | 4 | 1 | 1875.2.a.j | 6 | ||
5.c | odd | 4 | 1 | 1875.2.a.k | 6 | ||
15.e | even | 4 | 1 | 5625.2.a.p | 6 | ||
15.e | even | 4 | 1 | 5625.2.a.q | 6 | ||
25.d | even | 5 | 2 | 375.2.i.d | 24 | ||
25.e | even | 10 | 2 | 375.2.i.d | 24 | ||
25.f | odd | 20 | 2 | 75.2.g.c | ✓ | 12 | |
25.f | odd | 20 | 2 | 375.2.g.c | 12 | ||
75.l | even | 20 | 2 | 225.2.h.d | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
75.2.g.c | ✓ | 12 | 25.f | odd | 20 | 2 | |
225.2.h.d | 12 | 75.l | even | 20 | 2 | ||
375.2.g.c | 12 | 25.f | odd | 20 | 2 | ||
375.2.i.d | 24 | 25.d | even | 5 | 2 | ||
375.2.i.d | 24 | 25.e | even | 10 | 2 | ||
1875.2.a.j | 6 | 5.c | odd | 4 | 1 | ||
1875.2.a.k | 6 | 5.c | odd | 4 | 1 | ||
1875.2.b.f | 12 | 1.a | even | 1 | 1 | trivial | |
1875.2.b.f | 12 | 5.b | even | 2 | 1 | inner | |
5625.2.a.p | 6 | 15.e | even | 4 | 1 | ||
5625.2.a.q | 6 | 15.e | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{12} + 22T_{2}^{10} + 179T_{2}^{8} + 641T_{2}^{6} + 869T_{2}^{4} + 67T_{2}^{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(1875, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{12} + 22 T^{10} + 179 T^{8} + 641 T^{6} + \cdots + 1 \)
$3$
\( (T^{2} + 1)^{6} \)
$5$
\( T^{12} \)
$7$
\( T^{12} + 28 T^{10} + 266 T^{8} + \cdots + 400 \)
$11$
\( (T^{6} - 3 T^{5} - 24 T^{4} + 66 T^{3} + \cdots + 244)^{2} \)
$13$
\( T^{12} + 88 T^{10} + 2954 T^{8} + \cdots + 10201 \)
$17$
\( T^{12} + 139 T^{10} + \cdots + 21520321 \)
$19$
\( (T^{6} + 11 T^{5} + 11 T^{4} - 169 T^{3} + \cdots - 380)^{2} \)
$23$
\( T^{12} + 157 T^{10} + 7866 T^{8} + \cdots + 4080400 \)
$29$
\( (T^{6} - 3 T^{5} - 41 T^{4} + 173 T^{3} + \cdots + 2105)^{2} \)
$31$
\( (T^{6} + 11 T^{5} - 46 T^{4} - 680 T^{3} + \cdots - 2900)^{2} \)
$37$
\( T^{12} + 163 T^{10} + \cdots + 36300625 \)
$41$
\( (T^{6} + T^{5} - 181 T^{4} + 110 T^{3} + \cdots - 82655)^{2} \)
$43$
\( T^{12} + 186 T^{10} + \cdots + 39488656 \)
$47$
\( T^{12} + 204 T^{10} + 14630 T^{8} + \cdots + 5216656 \)
$53$
\( T^{12} + 407 T^{10} + \cdots + 1189905025 \)
$59$
\( (T^{6} + 9 T^{5} - 89 T^{4} - 391 T^{3} + \cdots + 3920)^{2} \)
$61$
\( (T^{6} - 11 T^{5} - 139 T^{4} + \cdots + 168269)^{2} \)
$67$
\( T^{12} + 374 T^{10} + \cdots + 215619856 \)
$71$
\( (T^{6} + 8 T^{5} - 150 T^{4} - 1745 T^{3} + \cdots - 196)^{2} \)
$73$
\( T^{12} + 317 T^{10} + \cdots + 493062025 \)
$79$
\( (T^{6} - 5 T^{5} - 160 T^{4} + 530 T^{3} + \cdots - 8000)^{2} \)
$83$
\( T^{12} + 348 T^{10} + \cdots + 1683953296 \)
$89$
\( (T^{6} - 4 T^{5} - 464 T^{4} + \cdots - 377055)^{2} \)
$97$
\( T^{12} + 479 T^{10} + 90075 T^{8} + \cdots + 5755201 \)
show more
show less