Newspace parameters
Level: | \( N \) | \(=\) | \( 1875 = 3 \cdot 5^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1875.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(14.9719503790\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{12} + 23x^{10} + 199x^{8} + 794x^{6} + 1399x^{4} + 783x^{2} + 81 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{2} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{12} + 23x^{10} + 199x^{8} + 794x^{6} + 1399x^{4} + 783x^{2} + 81 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{2} + 4 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{11} + 20\nu^{9} + 139\nu^{7} + 377\nu^{5} + 268\nu^{3} - 93\nu ) / 72 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 2\nu^{10} + 37\nu^{8} + 227\nu^{6} + 490\nu^{4} + 161\nu^{2} - 9 ) / 36 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 2\nu^{11} + 37\nu^{9} + 227\nu^{7} + 490\nu^{5} + 161\nu^{3} - 45\nu ) / 36 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 5\nu^{11} + 97\nu^{9} + 662\nu^{7} + 1873\nu^{5} + 1937\nu^{3} + 522\nu ) / 108 \)
|
\(\beta_{7}\) | \(=\) |
\( ( \nu^{10} + 23\nu^{8} + 190\nu^{6} + 677\nu^{4} + 967\nu^{2} + 342 ) / 36 \)
|
\(\beta_{8}\) | \(=\) |
\( ( -\nu^{11} - 16\nu^{9} - 71\nu^{7} - \nu^{5} + 472\nu^{3} + 409\nu ) / 24 \)
|
\(\beta_{9}\) | \(=\) |
\( ( -2\nu^{11} - 55\nu^{9} - 551\nu^{7} - 2434\nu^{5} - 4355\nu^{3} - 1683\nu ) / 108 \)
|
\(\beta_{10}\) | \(=\) |
\( ( \nu^{10} + 18\nu^{8} + 109\nu^{6} + 249\nu^{4} + 154\nu^{2} + 21 ) / 8 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 2\nu^{10} + 37\nu^{8} + 233\nu^{6} + 562\nu^{4} + 377\nu^{2} + 45 ) / 12 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{2} - 4 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{9} + \beta_{8} + \beta_{6} + \beta_{3} - 5\beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( -2\beta_{11} + 2\beta_{10} + \beta_{7} + \beta_{4} - 7\beta_{2} + 21 \)
|
\(\nu^{5}\) | \(=\) |
\( -10\beta_{9} - 9\beta_{8} - 10\beta_{6} + 2\beta_{5} - 15\beta_{3} + 29\beta_1 \)
|
\(\nu^{6}\) | \(=\) |
\( 26\beta_{11} - 24\beta_{10} - 12\beta_{7} - 18\beta_{4} + 48\beta_{2} - 117 \)
|
\(\nu^{7}\) | \(=\) |
\( 86\beta_{9} + 72\beta_{8} + 92\beta_{6} - 30\beta_{5} + 144\beta_{3} - 183\beta_1 \)
|
\(\nu^{8}\) | \(=\) |
\( -250\beta_{11} + 216\beta_{10} + 116\beta_{7} + 206\beta_{4} - 341\beta_{2} + 684 \)
|
\(\nu^{9}\) | \(=\) |
\( -707\beta_{9} - 557\beta_{8} - 809\beta_{6} + 322\beta_{5} - 1205\beta_{3} + 1231\beta_1 \)
|
\(\nu^{10}\) | \(=\) |
\( 2164\beta_{11} - 1762\beta_{10} - 1029\beta_{7} - 1995\beta_{4} + 2495\beta_{2} - 4193 \)
|
\(\nu^{11}\) | \(=\) |
\( 5688\beta_{9} + 4257\beta_{8} + 6894\beta_{6} - 3024\beta_{5} + 9543\beta_{3} - 8683\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1875\mathbb{Z}\right)^\times\).
\(n\) | \(626\) | \(1252\) |
\(\chi(n)\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1249.1 |
|
− | 2.78712i | − | 1.00000i | −5.76803 | 0 | −2.78712 | 3.15000i | 10.5020i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.2 | − | 2.38719i | 1.00000i | −3.69868 | 0 | 2.38719 | − | 3.31671i | 4.05506i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.3 | − | 2.13324i | − | 1.00000i | −2.55073 | 0 | −2.13324 | 2.16876i | 1.17484i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.4 | − | 2.02791i | 1.00000i | −2.11242 | 0 | 2.02791 | 0.505614i | 0.227977i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.5 | − | 0.858825i | − | 1.00000i | 1.26242 | 0 | −0.858825 | − | 3.88045i | − | 2.80185i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||
1249.6 | − | 0.364088i | 1.00000i | 1.86744 | 0 | 0.364088 | 2.24941i | − | 1.40809i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.7 | 0.364088i | − | 1.00000i | 1.86744 | 0 | 0.364088 | − | 2.24941i | 1.40809i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.8 | 0.858825i | 1.00000i | 1.26242 | 0 | −0.858825 | 3.88045i | 2.80185i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.9 | 2.02791i | − | 1.00000i | −2.11242 | 0 | 2.02791 | − | 0.505614i | − | 0.227977i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.10 | 2.13324i | 1.00000i | −2.55073 | 0 | −2.13324 | − | 2.16876i | − | 1.17484i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.11 | 2.38719i | − | 1.00000i | −3.69868 | 0 | 2.38719 | 3.31671i | − | 4.05506i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1249.12 | 2.78712i | 1.00000i | −5.76803 | 0 | −2.78712 | − | 3.15000i | − | 10.5020i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1875.2.b.e | 12 | |
5.b | even | 2 | 1 | inner | 1875.2.b.e | 12 | |
5.c | odd | 4 | 1 | 1875.2.a.i | ✓ | 6 | |
5.c | odd | 4 | 1 | 1875.2.a.l | yes | 6 | |
15.e | even | 4 | 1 | 5625.2.a.o | 6 | ||
15.e | even | 4 | 1 | 5625.2.a.r | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1875.2.a.i | ✓ | 6 | 5.c | odd | 4 | 1 | |
1875.2.a.l | yes | 6 | 5.c | odd | 4 | 1 | |
1875.2.b.e | 12 | 1.a | even | 1 | 1 | trivial | |
1875.2.b.e | 12 | 5.b | even | 2 | 1 | inner | |
5625.2.a.o | 6 | 15.e | even | 4 | 1 | ||
5625.2.a.r | 6 | 15.e | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{12} + 23T_{2}^{10} + 199T_{2}^{8} + 794T_{2}^{6} + 1399T_{2}^{4} + 783T_{2}^{2} + 81 \)
acting on \(S_{2}^{\mathrm{new}}(1875, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{12} + 23 T^{10} + 199 T^{8} + \cdots + 81 \)
$3$
\( (T^{2} + 1)^{6} \)
$5$
\( T^{12} \)
$7$
\( T^{12} + 46 T^{10} + 811 T^{8} + \cdots + 10000 \)
$11$
\( (T^{6} - 29 T^{4} - 8 T^{3} + 184 T^{2} + \cdots - 144)^{2} \)
$13$
\( T^{12} + 112 T^{10} + 4784 T^{8} + \cdots + 121801 \)
$17$
\( T^{12} + 114 T^{10} + 4705 T^{8} + \cdots + 331776 \)
$19$
\( (T^{6} - 2 T^{5} - 74 T^{4} + 120 T^{3} + \cdots - 5725)^{2} \)
$23$
\( T^{12} + 139 T^{10} + 6121 T^{8} + \cdots + 518400 \)
$29$
\( (T^{6} + 31 T^{5} + 379 T^{4} + 2320 T^{3} + \cdots + 6480)^{2} \)
$31$
\( (T^{6} + 2 T^{5} - 86 T^{4} + 28 T^{3} + \cdots + 3155)^{2} \)
$37$
\( T^{12} + 366 T^{10} + \cdots + 2125210000 \)
$41$
\( (T^{6} - 33 T^{5} + 399 T^{4} - 2192 T^{3} + \cdots + 720)^{2} \)
$43$
\( T^{12} + 161 T^{10} + 7790 T^{8} + \cdots + 1661521 \)
$47$
\( T^{12} + 404 T^{10} + \cdots + 6410244096 \)
$53$
\( T^{12} + 524 T^{10} + \cdots + 207360000 \)
$59$
\( (T^{6} - 8 T^{5} - 69 T^{4} + 600 T^{3} + \cdots - 2880)^{2} \)
$61$
\( (T^{6} - 34 T^{5} + 406 T^{4} + \cdots - 72001)^{2} \)
$67$
\( T^{12} + 224 T^{10} + 13840 T^{8} + \cdots + 3481 \)
$71$
\( (T^{6} + 3 T^{5} - 225 T^{4} + 160 T^{3} + \cdots - 12816)^{2} \)
$73$
\( T^{12} + 434 T^{10} + \cdots + 415344400 \)
$79$
\( (T^{6} + 25 T^{5} + 150 T^{4} - 395 T^{3} + \cdots + 2725)^{2} \)
$83$
\( T^{12} + 402 T^{10} + \cdots + 557715456 \)
$89$
\( (T^{6} + 18 T^{5} - 219 T^{4} + \cdots - 42480)^{2} \)
$97$
\( T^{12} + 669 T^{10} + \cdots + 1042708681 \)
show more
show less