Newspace parameters
Level: | \( N \) | \(=\) | \( 1875 = 3 \cdot 5^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1875.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(14.9719503790\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | 8.0.324000000.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} + 9x^{6} + 26x^{4} + 24x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} + 9x^{6} + 26x^{4} + 24x^{2} + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{2} + 2 \)
|
\(\beta_{3}\) | \(=\) |
\( \nu^{3} + 3\nu \)
|
\(\beta_{4}\) | \(=\) |
\( \nu^{4} + 4\nu^{2} + 2 \)
|
\(\beta_{5}\) | \(=\) |
\( \nu^{5} + 5\nu^{3} + 5\nu \)
|
\(\beta_{6}\) | \(=\) |
\( \nu^{6} + 6\nu^{4} + 9\nu^{2} + 2 \)
|
\(\beta_{7}\) | \(=\) |
\( \nu^{7} + 7\nu^{5} + 14\nu^{3} + 7\nu \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{2} - 2 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{3} - 3\beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( \beta_{4} - 4\beta_{2} + 6 \)
|
\(\nu^{5}\) | \(=\) |
\( \beta_{5} - 5\beta_{3} + 10\beta_1 \)
|
\(\nu^{6}\) | \(=\) |
\( \beta_{6} - 6\beta_{4} + 15\beta_{2} - 20 \)
|
\(\nu^{7}\) | \(=\) |
\( \beta_{7} - 7\beta_{5} + 21\beta_{3} - 35\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1875\mathbb{Z}\right)^\times\).
\(n\) | \(626\) | \(1252\) |
\(\chi(n)\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1249.1 |
|
− | 1.95630i | 1.00000i | −1.82709 | 0 | 1.95630 | 4.57433i | − | 0.338261i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||
1249.2 | − | 1.82709i | − | 1.00000i | −1.33826 | 0 | −1.82709 | 1.44512i | − | 1.20906i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||
1249.3 | − | 1.33826i | − | 1.00000i | 0.209057 | 0 | −1.33826 | − | 1.27977i | − | 2.95630i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||
1249.4 | − | 0.209057i | 1.00000i | 1.95630 | 0 | 0.209057 | 0.591023i | − | 0.827091i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||
1249.5 | 0.209057i | − | 1.00000i | 1.95630 | 0 | 0.209057 | − | 0.591023i | 0.827091i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||
1249.6 | 1.33826i | 1.00000i | 0.209057 | 0 | −1.33826 | 1.27977i | 2.95630i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1249.7 | 1.82709i | 1.00000i | −1.33826 | 0 | −1.82709 | − | 1.44512i | 1.20906i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||
1249.8 | 1.95630i | − | 1.00000i | −1.82709 | 0 | 1.95630 | − | 4.57433i | 0.338261i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1875.2.b.d | 8 | |
5.b | even | 2 | 1 | inner | 1875.2.b.d | 8 | |
5.c | odd | 4 | 1 | 1875.2.a.f | ✓ | 4 | |
5.c | odd | 4 | 1 | 1875.2.a.g | yes | 4 | |
15.e | even | 4 | 1 | 5625.2.a.j | 4 | ||
15.e | even | 4 | 1 | 5625.2.a.m | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1875.2.a.f | ✓ | 4 | 5.c | odd | 4 | 1 | |
1875.2.a.g | yes | 4 | 5.c | odd | 4 | 1 | |
1875.2.b.d | 8 | 1.a | even | 1 | 1 | trivial | |
1875.2.b.d | 8 | 5.b | even | 2 | 1 | inner | |
5625.2.a.j | 4 | 15.e | even | 4 | 1 | ||
5625.2.a.m | 4 | 15.e | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} + 9T_{2}^{6} + 26T_{2}^{4} + 24T_{2}^{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(1875, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} + 9 T^{6} + 26 T^{4} + 24 T^{2} + \cdots + 1 \)
$3$
\( (T^{2} + 1)^{4} \)
$5$
\( T^{8} \)
$7$
\( T^{8} + 25 T^{6} + 90 T^{4} + 100 T^{2} + \cdots + 25 \)
$11$
\( (T^{4} + 6 T^{3} + 6 T^{2} - 9 T - 9)^{2} \)
$13$
\( T^{8} + 61 T^{6} + 1146 T^{4} + \cdots + 7921 \)
$17$
\( T^{8} + 81 T^{6} + 2366 T^{4} + \cdots + 128881 \)
$19$
\( (T^{4} - 9 T^{3} + 6 T^{2} + 36 T - 9)^{2} \)
$23$
\( T^{8} + 60 T^{6} + 590 T^{4} + \cdots + 25 \)
$29$
\( (T^{4} - 28 T^{3} + 284 T^{2} - 1217 T + 1801)^{2} \)
$31$
\( (T^{4} + 10 T^{3} - 125 T - 125)^{2} \)
$37$
\( T^{8} + 280 T^{6} + 25650 T^{4} + \cdots + 2175625 \)
$41$
\( (T^{4} - 70 T^{2} - 135 T + 145)^{2} \)
$43$
\( T^{8} + 159 T^{6} + 4721 T^{4} + \cdots + 175561 \)
$47$
\( T^{8} + 351 T^{6} + \cdots + 37075921 \)
$53$
\( T^{8} + 290 T^{6} + 27015 T^{4} + \cdots + 8970025 \)
$59$
\( (T^{4} + 4 T^{3} - 154 T^{2} - 421 T + 1531)^{2} \)
$61$
\( (T^{4} + 43 T^{3} + 669 T^{2} + \cdots + 10261)^{2} \)
$67$
\( T^{8} + 186 T^{6} + 11351 T^{4} + \cdots + 22801 \)
$71$
\( (T^{4} + 27 T^{3} + 134 T^{2} - 672 T + 271)^{2} \)
$73$
\( T^{8} + 345 T^{6} + 36090 T^{4} + \cdots + 7535025 \)
$79$
\( (T^{4} + 10 T^{3} - 105 T^{2} - 1370 T - 3155)^{2} \)
$83$
\( T^{8} + 501 T^{6} + \cdots + 182007081 \)
$89$
\( (T^{4} - 9 T^{3} - 4 T^{2} + 96 T + 61)^{2} \)
$97$
\( T^{8} + 601 T^{6} + \cdots + 216119401 \)
show more
show less