Newspace parameters
Level: | \( N \) | \(=\) | \( 1875 = 3 \cdot 5^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1875.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(14.9719503790\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | 8.0.6724000000.12 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} + 16x^{6} + 86x^{4} + 181x^{2} + 121 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 75) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} + 16x^{6} + 86x^{4} + 181x^{2} + 121 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{6} + 8\nu^{4} + 4\nu^{2} - 22 ) / 9 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -5\nu^{7} - 58\nu^{5} - 155\nu^{3} - 25\nu ) / 99 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -2\nu^{7} - 43\nu^{5} - 260\nu^{3} - 406\nu ) / 99 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -2\nu^{6} - 25\nu^{4} - 80\nu^{2} - 46 ) / 9 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 2\nu^{6} + 25\nu^{4} + 89\nu^{2} + 82 ) / 9 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 2\nu^{7} + 25\nu^{5} + 89\nu^{3} + 91\nu ) / 9 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{6} + \beta_{5} - 4 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{7} + \beta_{4} + 4\beta_{3} - 5\beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( -8\beta_{6} - 9\beta_{5} - 2\beta_{2} + 22 \)
|
\(\nu^{5}\) | \(=\) |
\( -10\beta_{7} - 15\beta_{4} - 38\beta_{3} + 30\beta_1 \)
|
\(\nu^{6}\) | \(=\) |
\( 60\beta_{6} + 68\beta_{5} + 25\beta_{2} - 138 \)
|
\(\nu^{7}\) | \(=\) |
\( 85\beta_{7} + 143\beta_{4} + 297\beta_{3} - 198\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1875\mathbb{Z}\right)^\times\).
\(n\) | \(626\) | \(1252\) |
\(\chi(n)\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1249.1 |
|
− | 2.70636i | 1.00000i | −5.32440 | 0 | 2.70636 | − | 0.470294i | 8.99702i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||
1249.2 | − | 2.12233i | 1.00000i | −2.50430 | 0 | 2.12233 | − | 4.35840i | 1.07029i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||
1249.3 | − | 1.70636i | − | 1.00000i | −0.911672 | 0 | −1.70636 | − | 3.94243i | − | 1.85708i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||
1249.4 | − | 1.12233i | − | 1.00000i | 0.740367 | 0 | −1.12233 | 1.11373i | − | 3.07561i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||
1249.5 | 1.12233i | 1.00000i | 0.740367 | 0 | −1.12233 | − | 1.11373i | 3.07561i | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||
1249.6 | 1.70636i | 1.00000i | −0.911672 | 0 | −1.70636 | 3.94243i | 1.85708i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1249.7 | 2.12233i | − | 1.00000i | −2.50430 | 0 | 2.12233 | 4.35840i | − | 1.07029i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||
1249.8 | 2.70636i | − | 1.00000i | −5.32440 | 0 | 2.70636 | 0.470294i | − | 8.99702i | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1875.2.b.c | 8 | |
5.b | even | 2 | 1 | inner | 1875.2.b.c | 8 | |
5.c | odd | 4 | 1 | 1875.2.a.e | 4 | ||
5.c | odd | 4 | 1 | 1875.2.a.h | 4 | ||
15.e | even | 4 | 1 | 5625.2.a.i | 4 | ||
15.e | even | 4 | 1 | 5625.2.a.n | 4 | ||
25.d | even | 5 | 2 | 375.2.i.b | 16 | ||
25.e | even | 10 | 2 | 375.2.i.b | 16 | ||
25.f | odd | 20 | 2 | 75.2.g.b | ✓ | 8 | |
25.f | odd | 20 | 2 | 375.2.g.b | 8 | ||
75.l | even | 20 | 2 | 225.2.h.c | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
75.2.g.b | ✓ | 8 | 25.f | odd | 20 | 2 | |
225.2.h.c | 8 | 75.l | even | 20 | 2 | ||
375.2.g.b | 8 | 25.f | odd | 20 | 2 | ||
375.2.i.b | 16 | 25.d | even | 5 | 2 | ||
375.2.i.b | 16 | 25.e | even | 10 | 2 | ||
1875.2.a.e | 4 | 5.c | odd | 4 | 1 | ||
1875.2.a.h | 4 | 5.c | odd | 4 | 1 | ||
1875.2.b.c | 8 | 1.a | even | 1 | 1 | trivial | |
1875.2.b.c | 8 | 5.b | even | 2 | 1 | inner | |
5625.2.a.i | 4 | 15.e | even | 4 | 1 | ||
5625.2.a.n | 4 | 15.e | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} + 16T_{2}^{6} + 86T_{2}^{4} + 181T_{2}^{2} + 121 \)
acting on \(S_{2}^{\mathrm{new}}(1875, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} + 16 T^{6} + 86 T^{4} + \cdots + 121 \)
$3$
\( (T^{2} + 1)^{4} \)
$5$
\( T^{8} \)
$7$
\( T^{8} + 36 T^{6} + 346 T^{4} + \cdots + 81 \)
$11$
\( (T^{4} + 7 T^{3} - 6 T^{2} - 92 T - 109)^{2} \)
$13$
\( T^{8} + 29 T^{6} + 226 T^{4} + \cdots + 81 \)
$17$
\( T^{8} + 16 T^{6} + 86 T^{4} + \cdots + 121 \)
$19$
\( (T^{4} + 5 T^{3} - 35 T^{2} - 75 T + 275)^{2} \)
$23$
\( T^{8} + 49 T^{6} + 446 T^{4} + \cdots + 361 \)
$29$
\( (T^{4} - 20 T^{3} + 140 T^{2} - 405 T + 405)^{2} \)
$31$
\( (T^{4} - 23 T^{3} + 184 T^{2} - 612 T + 711)^{2} \)
$37$
\( T^{8} + 96 T^{6} + 2306 T^{4} + \cdots + 1 \)
$41$
\( (T^{2} + 6 T - 11)^{4} \)
$43$
\( T^{8} + 134 T^{6} + 4291 T^{4} + \cdots + 9801 \)
$47$
\( T^{8} + 76 T^{6} + 2066 T^{4} + \cdots + 96721 \)
$53$
\( T^{8} + 84 T^{6} + 2086 T^{4} + \cdots + 68121 \)
$59$
\( (T^{4} - 15 T^{3} - 45 T^{2} + 1215 T - 3645)^{2} \)
$61$
\( (T^{4} + 2 T^{3} - 56 T^{2} + 78 T - 9)^{2} \)
$67$
\( T^{8} + 66 T^{6} + 1351 T^{4} + \cdots + 29241 \)
$71$
\( (T^{4} + 2 T^{3} - 216 T^{2} - 1237 T + 911)^{2} \)
$73$
\( T^{8} + 354 T^{6} + \cdots + 23707161 \)
$79$
\( (T^{4} + 35 T^{3} + 320 T^{2} - 350 T - 9845)^{2} \)
$83$
\( T^{8} + 364 T^{6} + 42686 T^{4} + \cdots + 958441 \)
$89$
\( (T^{4} - 35 T^{3} + 420 T^{2} - 2030 T + 3305)^{2} \)
$97$
\( T^{8} + 316 T^{6} + 29166 T^{4} + \cdots + 4414201 \)
show more
show less