Newspace parameters
Level: | \( N \) | \(=\) | \( 1875 = 3 \cdot 5^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1875.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(14.9719503790\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(i, \sqrt{5})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} + 3x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 75) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} + 3x^{2} + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{2} + 1 \)
|
\(\beta_{3}\) | \(=\) |
\( \nu^{3} + 2\nu \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{2} - 1 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{3} - 2\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1875\mathbb{Z}\right)^\times\).
\(n\) | \(626\) | \(1252\) |
\(\chi(n)\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1249.1 |
|
− | 1.00000i | 1.00000i | 1.00000 | 0 | 1.00000 | − | 4.47214i | − | 3.00000i | −1.00000 | 0 | |||||||||||||||||||||||||||
1249.2 | − | 1.00000i | 1.00000i | 1.00000 | 0 | 1.00000 | 4.47214i | − | 3.00000i | −1.00000 | 0 | |||||||||||||||||||||||||||||
1249.3 | 1.00000i | − | 1.00000i | 1.00000 | 0 | 1.00000 | − | 4.47214i | 3.00000i | −1.00000 | 0 | |||||||||||||||||||||||||||||
1249.4 | 1.00000i | − | 1.00000i | 1.00000 | 0 | 1.00000 | 4.47214i | 3.00000i | −1.00000 | 0 | ||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1875.2.b.b | 4 | |
5.b | even | 2 | 1 | inner | 1875.2.b.b | 4 | |
5.c | odd | 4 | 1 | 1875.2.a.a | 2 | ||
5.c | odd | 4 | 1 | 1875.2.a.d | 2 | ||
15.e | even | 4 | 1 | 5625.2.a.a | 2 | ||
15.e | even | 4 | 1 | 5625.2.a.h | 2 | ||
25.d | even | 5 | 2 | 375.2.i.a | 8 | ||
25.e | even | 10 | 2 | 375.2.i.a | 8 | ||
25.f | odd | 20 | 2 | 75.2.g.a | ✓ | 4 | |
25.f | odd | 20 | 2 | 375.2.g.a | 4 | ||
75.l | even | 20 | 2 | 225.2.h.a | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
75.2.g.a | ✓ | 4 | 25.f | odd | 20 | 2 | |
225.2.h.a | 4 | 75.l | even | 20 | 2 | ||
375.2.g.a | 4 | 25.f | odd | 20 | 2 | ||
375.2.i.a | 8 | 25.d | even | 5 | 2 | ||
375.2.i.a | 8 | 25.e | even | 10 | 2 | ||
1875.2.a.a | 2 | 5.c | odd | 4 | 1 | ||
1875.2.a.d | 2 | 5.c | odd | 4 | 1 | ||
1875.2.b.b | 4 | 1.a | even | 1 | 1 | trivial | |
1875.2.b.b | 4 | 5.b | even | 2 | 1 | inner | |
5625.2.a.a | 2 | 15.e | even | 4 | 1 | ||
5625.2.a.h | 2 | 15.e | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(1875, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} + 1)^{2} \)
$3$
\( (T^{2} + 1)^{2} \)
$5$
\( T^{4} \)
$7$
\( (T^{2} + 20)^{2} \)
$11$
\( (T^{2} - 2 T - 4)^{2} \)
$13$
\( T^{4} + 43T^{2} + 361 \)
$17$
\( T^{4} + 23T^{2} + 121 \)
$19$
\( (T^{2} - 2 T - 4)^{2} \)
$23$
\( (T^{2} + 20)^{2} \)
$29$
\( (T^{2} + 11 T + 29)^{2} \)
$31$
\( (T^{2} - 10 T + 20)^{2} \)
$37$
\( T^{4} + 75T^{2} + 625 \)
$41$
\( (T^{2} + 5 T + 5)^{2} \)
$43$
\( T^{4} + 92T^{2} + 1936 \)
$47$
\( T^{4} + 28T^{2} + 16 \)
$53$
\( T^{4} + 15T^{2} + 25 \)
$59$
\( (T - 4)^{4} \)
$61$
\( (T^{2} - T - 1)^{2} \)
$67$
\( T^{4} + 28T^{2} + 16 \)
$71$
\( (T^{2} + 6 T + 4)^{2} \)
$73$
\( T^{4} + 75T^{2} + 625 \)
$79$
\( T^{4} \)
$83$
\( T^{4} + 168T^{2} + 1936 \)
$89$
\( (T^{2} + 13 T + 41)^{2} \)
$97$
\( T^{4} + 83T^{2} + 361 \)
show more
show less