Properties

Label 1875.2.a.o.1.5
Level $1875$
Weight $2$
Character 1875.1
Self dual yes
Analytic conductor $14.972$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1875,2,Mod(1,1875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1875, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1875.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1875 = 3 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1875.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.9719503790\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.13366265625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 12x^{6} + 10x^{5} + 41x^{4} - 20x^{3} - 48x^{2} + 8x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.741379\) of defining polynomial
Character \(\chi\) \(=\) 1875.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.741379 q^{2} +1.00000 q^{3} -1.45036 q^{4} +0.741379 q^{6} +1.03586 q^{7} -2.55802 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+0.741379 q^{2} +1.00000 q^{3} -1.45036 q^{4} +0.741379 q^{6} +1.03586 q^{7} -2.55802 q^{8} +1.00000 q^{9} -0.513903 q^{11} -1.45036 q^{12} +3.54391 q^{13} +0.767968 q^{14} +1.00425 q^{16} -1.36691 q^{17} +0.741379 q^{18} +0.894573 q^{19} +1.03586 q^{21} -0.380997 q^{22} +5.45465 q^{23} -2.55802 q^{24} +2.62738 q^{26} +1.00000 q^{27} -1.50237 q^{28} -9.65038 q^{29} +10.4630 q^{31} +5.86057 q^{32} -0.513903 q^{33} -1.01340 q^{34} -1.45036 q^{36} -2.19473 q^{37} +0.663218 q^{38} +3.54391 q^{39} +3.12460 q^{41} +0.767968 q^{42} +10.2866 q^{43} +0.745343 q^{44} +4.04396 q^{46} +7.65509 q^{47} +1.00425 q^{48} -5.92699 q^{49} -1.36691 q^{51} -5.13993 q^{52} -10.5524 q^{53} +0.741379 q^{54} -2.64976 q^{56} +0.894573 q^{57} -7.15459 q^{58} +11.9238 q^{59} +7.85170 q^{61} +7.75704 q^{62} +1.03586 q^{63} +2.33641 q^{64} -0.380997 q^{66} +8.80731 q^{67} +1.98251 q^{68} +5.45465 q^{69} +5.00948 q^{71} -2.55802 q^{72} +5.82505 q^{73} -1.62713 q^{74} -1.29745 q^{76} -0.532334 q^{77} +2.62738 q^{78} -6.74036 q^{79} +1.00000 q^{81} +2.31651 q^{82} -7.99598 q^{83} -1.50237 q^{84} +7.62626 q^{86} -9.65038 q^{87} +1.31458 q^{88} +12.9917 q^{89} +3.67101 q^{91} -7.91118 q^{92} +10.4630 q^{93} +5.67533 q^{94} +5.86057 q^{96} -7.27747 q^{97} -4.39414 q^{98} -0.513903 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{2} + 8 q^{3} + 9 q^{4} + q^{6} + 12 q^{7} + 3 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + q^{2} + 8 q^{3} + 9 q^{4} + q^{6} + 12 q^{7} + 3 q^{8} + 8 q^{9} + 12 q^{11} + 9 q^{12} + 14 q^{13} + 16 q^{14} + 15 q^{16} - q^{17} + q^{18} + 16 q^{19} + 12 q^{21} + 18 q^{22} - 4 q^{23} + 3 q^{24} - 34 q^{26} + 8 q^{27} - 21 q^{28} + 2 q^{29} + 13 q^{31} - 18 q^{32} + 12 q^{33} - 37 q^{34} + 9 q^{36} - 8 q^{37} - 24 q^{38} + 14 q^{39} - 12 q^{41} + 16 q^{42} + 20 q^{43} + 47 q^{44} + 33 q^{46} - 15 q^{47} + 15 q^{48} + 30 q^{49} - q^{51} - q^{52} - 4 q^{53} + q^{54} + 60 q^{56} + 16 q^{57} + 2 q^{58} + 14 q^{59} + 10 q^{61} + 4 q^{62} + 12 q^{63} + 41 q^{64} + 18 q^{66} + 19 q^{67} - 33 q^{68} - 4 q^{69} + 21 q^{71} + 3 q^{72} - 19 q^{73} - 9 q^{74} - q^{76} - 11 q^{77} - 34 q^{78} + 10 q^{79} + 8 q^{81} + 24 q^{82} - 27 q^{83} - 21 q^{84} + 42 q^{86} + 2 q^{87} + 53 q^{88} - 9 q^{89} - 12 q^{91} - 63 q^{92} + 13 q^{93} + 14 q^{94} - 18 q^{96} + 24 q^{97} - 24 q^{98} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.741379 0.524234 0.262117 0.965036i \(-0.415579\pi\)
0.262117 + 0.965036i \(0.415579\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.45036 −0.725178
\(5\) 0 0
\(6\) 0.741379 0.302667
\(7\) 1.03586 0.391520 0.195760 0.980652i \(-0.437283\pi\)
0.195760 + 0.980652i \(0.437283\pi\)
\(8\) −2.55802 −0.904398
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −0.513903 −0.154948 −0.0774738 0.996994i \(-0.524685\pi\)
−0.0774738 + 0.996994i \(0.524685\pi\)
\(12\) −1.45036 −0.418682
\(13\) 3.54391 0.982904 0.491452 0.870905i \(-0.336466\pi\)
0.491452 + 0.870905i \(0.336466\pi\)
\(14\) 0.767968 0.205248
\(15\) 0 0
\(16\) 1.00425 0.251062
\(17\) −1.36691 −0.331525 −0.165762 0.986166i \(-0.553008\pi\)
−0.165762 + 0.986166i \(0.553008\pi\)
\(18\) 0.741379 0.174745
\(19\) 0.894573 0.205229 0.102615 0.994721i \(-0.467279\pi\)
0.102615 + 0.994721i \(0.467279\pi\)
\(20\) 0 0
\(21\) 1.03586 0.226044
\(22\) −0.380997 −0.0812289
\(23\) 5.45465 1.13737 0.568686 0.822554i \(-0.307452\pi\)
0.568686 + 0.822554i \(0.307452\pi\)
\(24\) −2.55802 −0.522154
\(25\) 0 0
\(26\) 2.62738 0.515272
\(27\) 1.00000 0.192450
\(28\) −1.50237 −0.283922
\(29\) −9.65038 −1.79203 −0.896015 0.444024i \(-0.853550\pi\)
−0.896015 + 0.444024i \(0.853550\pi\)
\(30\) 0 0
\(31\) 10.4630 1.87921 0.939604 0.342265i \(-0.111194\pi\)
0.939604 + 0.342265i \(0.111194\pi\)
\(32\) 5.86057 1.03601
\(33\) −0.513903 −0.0894591
\(34\) −1.01340 −0.173797
\(35\) 0 0
\(36\) −1.45036 −0.241726
\(37\) −2.19473 −0.360812 −0.180406 0.983592i \(-0.557741\pi\)
−0.180406 + 0.983592i \(0.557741\pi\)
\(38\) 0.663218 0.107588
\(39\) 3.54391 0.567480
\(40\) 0 0
\(41\) 3.12460 0.487980 0.243990 0.969778i \(-0.421544\pi\)
0.243990 + 0.969778i \(0.421544\pi\)
\(42\) 0.767968 0.118500
\(43\) 10.2866 1.56869 0.784345 0.620325i \(-0.212999\pi\)
0.784345 + 0.620325i \(0.212999\pi\)
\(44\) 0.745343 0.112365
\(45\) 0 0
\(46\) 4.04396 0.596250
\(47\) 7.65509 1.11661 0.558305 0.829636i \(-0.311452\pi\)
0.558305 + 0.829636i \(0.311452\pi\)
\(48\) 1.00425 0.144951
\(49\) −5.92699 −0.846712
\(50\) 0 0
\(51\) −1.36691 −0.191406
\(52\) −5.13993 −0.712780
\(53\) −10.5524 −1.44948 −0.724742 0.689020i \(-0.758041\pi\)
−0.724742 + 0.689020i \(0.758041\pi\)
\(54\) 0.741379 0.100889
\(55\) 0 0
\(56\) −2.64976 −0.354090
\(57\) 0.894573 0.118489
\(58\) −7.15459 −0.939443
\(59\) 11.9238 1.55234 0.776172 0.630521i \(-0.217159\pi\)
0.776172 + 0.630521i \(0.217159\pi\)
\(60\) 0 0
\(61\) 7.85170 1.00531 0.502653 0.864488i \(-0.332357\pi\)
0.502653 + 0.864488i \(0.332357\pi\)
\(62\) 7.75704 0.985145
\(63\) 1.03586 0.130507
\(64\) 2.33641 0.292052
\(65\) 0 0
\(66\) −0.380997 −0.0468975
\(67\) 8.80731 1.07598 0.537992 0.842950i \(-0.319183\pi\)
0.537992 + 0.842950i \(0.319183\pi\)
\(68\) 1.98251 0.240414
\(69\) 5.45465 0.656662
\(70\) 0 0
\(71\) 5.00948 0.594516 0.297258 0.954797i \(-0.403928\pi\)
0.297258 + 0.954797i \(0.403928\pi\)
\(72\) −2.55802 −0.301466
\(73\) 5.82505 0.681770 0.340885 0.940105i \(-0.389273\pi\)
0.340885 + 0.940105i \(0.389273\pi\)
\(74\) −1.62713 −0.189150
\(75\) 0 0
\(76\) −1.29745 −0.148828
\(77\) −0.532334 −0.0606651
\(78\) 2.62738 0.297492
\(79\) −6.74036 −0.758350 −0.379175 0.925325i \(-0.623792\pi\)
−0.379175 + 0.925325i \(0.623792\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 2.31651 0.255816
\(83\) −7.99598 −0.877673 −0.438837 0.898567i \(-0.644609\pi\)
−0.438837 + 0.898567i \(0.644609\pi\)
\(84\) −1.50237 −0.163922
\(85\) 0 0
\(86\) 7.62626 0.822361
\(87\) −9.65038 −1.03463
\(88\) 1.31458 0.140134
\(89\) 12.9917 1.37711 0.688557 0.725182i \(-0.258244\pi\)
0.688557 + 0.725182i \(0.258244\pi\)
\(90\) 0 0
\(91\) 3.67101 0.384826
\(92\) −7.91118 −0.824798
\(93\) 10.4630 1.08496
\(94\) 5.67533 0.585365
\(95\) 0 0
\(96\) 5.86057 0.598142
\(97\) −7.27747 −0.738916 −0.369458 0.929248i \(-0.620457\pi\)
−0.369458 + 0.929248i \(0.620457\pi\)
\(98\) −4.39414 −0.443876
\(99\) −0.513903 −0.0516492
\(100\) 0 0
\(101\) 11.5323 1.14751 0.573753 0.819028i \(-0.305487\pi\)
0.573753 + 0.819028i \(0.305487\pi\)
\(102\) −1.01340 −0.100341
\(103\) −1.95586 −0.192717 −0.0963585 0.995347i \(-0.530720\pi\)
−0.0963585 + 0.995347i \(0.530720\pi\)
\(104\) −9.06540 −0.888936
\(105\) 0 0
\(106\) −7.82333 −0.759869
\(107\) −15.2874 −1.47789 −0.738945 0.673766i \(-0.764676\pi\)
−0.738945 + 0.673766i \(0.764676\pi\)
\(108\) −1.45036 −0.139561
\(109\) −0.346596 −0.0331979 −0.0165989 0.999862i \(-0.505284\pi\)
−0.0165989 + 0.999862i \(0.505284\pi\)
\(110\) 0 0
\(111\) −2.19473 −0.208315
\(112\) 1.04026 0.0982958
\(113\) −3.91425 −0.368222 −0.184111 0.982905i \(-0.558941\pi\)
−0.184111 + 0.982905i \(0.558941\pi\)
\(114\) 0.663218 0.0621161
\(115\) 0 0
\(116\) 13.9965 1.29954
\(117\) 3.54391 0.327635
\(118\) 8.84004 0.813792
\(119\) −1.41593 −0.129798
\(120\) 0 0
\(121\) −10.7359 −0.975991
\(122\) 5.82108 0.527016
\(123\) 3.12460 0.281735
\(124\) −15.1751 −1.36276
\(125\) 0 0
\(126\) 0.767968 0.0684160
\(127\) −6.02350 −0.534499 −0.267249 0.963627i \(-0.586115\pi\)
−0.267249 + 0.963627i \(0.586115\pi\)
\(128\) −9.98898 −0.882910
\(129\) 10.2866 0.905683
\(130\) 0 0
\(131\) 1.26444 0.110474 0.0552372 0.998473i \(-0.482408\pi\)
0.0552372 + 0.998473i \(0.482408\pi\)
\(132\) 0.745343 0.0648738
\(133\) 0.926656 0.0803513
\(134\) 6.52956 0.564068
\(135\) 0 0
\(136\) 3.49659 0.299830
\(137\) 1.85695 0.158650 0.0793249 0.996849i \(-0.474724\pi\)
0.0793249 + 0.996849i \(0.474724\pi\)
\(138\) 4.04396 0.344245
\(139\) 17.4734 1.48207 0.741037 0.671464i \(-0.234334\pi\)
0.741037 + 0.671464i \(0.234334\pi\)
\(140\) 0 0
\(141\) 7.65509 0.644675
\(142\) 3.71392 0.311666
\(143\) −1.82123 −0.152299
\(144\) 1.00425 0.0836873
\(145\) 0 0
\(146\) 4.31857 0.357407
\(147\) −5.92699 −0.488850
\(148\) 3.18314 0.261653
\(149\) 20.5555 1.68397 0.841985 0.539502i \(-0.181387\pi\)
0.841985 + 0.539502i \(0.181387\pi\)
\(150\) 0 0
\(151\) 2.86944 0.233512 0.116756 0.993161i \(-0.462750\pi\)
0.116756 + 0.993161i \(0.462750\pi\)
\(152\) −2.28834 −0.185609
\(153\) −1.36691 −0.110508
\(154\) −0.394661 −0.0318027
\(155\) 0 0
\(156\) −5.13993 −0.411524
\(157\) −14.3887 −1.14834 −0.574172 0.818735i \(-0.694676\pi\)
−0.574172 + 0.818735i \(0.694676\pi\)
\(158\) −4.99716 −0.397553
\(159\) −10.5524 −0.836860
\(160\) 0 0
\(161\) 5.65027 0.445304
\(162\) 0.741379 0.0582483
\(163\) −7.90445 −0.619125 −0.309562 0.950879i \(-0.600183\pi\)
−0.309562 + 0.950879i \(0.600183\pi\)
\(164\) −4.53178 −0.353873
\(165\) 0 0
\(166\) −5.92806 −0.460106
\(167\) −18.9057 −1.46297 −0.731483 0.681859i \(-0.761172\pi\)
−0.731483 + 0.681859i \(0.761172\pi\)
\(168\) −2.64976 −0.204434
\(169\) −0.440707 −0.0339006
\(170\) 0 0
\(171\) 0.894573 0.0684097
\(172\) −14.9192 −1.13758
\(173\) −4.41184 −0.335426 −0.167713 0.985836i \(-0.553638\pi\)
−0.167713 + 0.985836i \(0.553638\pi\)
\(174\) −7.15459 −0.542388
\(175\) 0 0
\(176\) −0.516086 −0.0389015
\(177\) 11.9238 0.896246
\(178\) 9.63175 0.721931
\(179\) −11.6515 −0.870876 −0.435438 0.900219i \(-0.643407\pi\)
−0.435438 + 0.900219i \(0.643407\pi\)
\(180\) 0 0
\(181\) 15.5625 1.15675 0.578375 0.815771i \(-0.303687\pi\)
0.578375 + 0.815771i \(0.303687\pi\)
\(182\) 2.72161 0.201739
\(183\) 7.85170 0.580414
\(184\) −13.9531 −1.02864
\(185\) 0 0
\(186\) 7.75704 0.568774
\(187\) 0.702460 0.0513690
\(188\) −11.1026 −0.809741
\(189\) 1.03586 0.0753480
\(190\) 0 0
\(191\) −21.4213 −1.54999 −0.774996 0.631966i \(-0.782248\pi\)
−0.774996 + 0.631966i \(0.782248\pi\)
\(192\) 2.33641 0.168616
\(193\) −3.32583 −0.239398 −0.119699 0.992810i \(-0.538193\pi\)
−0.119699 + 0.992810i \(0.538193\pi\)
\(194\) −5.39537 −0.387365
\(195\) 0 0
\(196\) 8.59624 0.614017
\(197\) 14.8102 1.05518 0.527591 0.849498i \(-0.323095\pi\)
0.527591 + 0.849498i \(0.323095\pi\)
\(198\) −0.380997 −0.0270763
\(199\) −15.3279 −1.08657 −0.543285 0.839549i \(-0.682820\pi\)
−0.543285 + 0.839549i \(0.682820\pi\)
\(200\) 0 0
\(201\) 8.80731 0.621220
\(202\) 8.54981 0.601562
\(203\) −9.99648 −0.701615
\(204\) 1.98251 0.138803
\(205\) 0 0
\(206\) −1.45004 −0.101029
\(207\) 5.45465 0.379124
\(208\) 3.55896 0.246770
\(209\) −0.459724 −0.0317998
\(210\) 0 0
\(211\) −0.377050 −0.0259572 −0.0129786 0.999916i \(-0.504131\pi\)
−0.0129786 + 0.999916i \(0.504131\pi\)
\(212\) 15.3047 1.05113
\(213\) 5.00948 0.343244
\(214\) −11.3338 −0.774761
\(215\) 0 0
\(216\) −2.55802 −0.174051
\(217\) 10.8382 0.735747
\(218\) −0.256959 −0.0174035
\(219\) 5.82505 0.393620
\(220\) 0 0
\(221\) −4.84421 −0.325857
\(222\) −1.62713 −0.109206
\(223\) 0.270144 0.0180902 0.00904509 0.999959i \(-0.497121\pi\)
0.00904509 + 0.999959i \(0.497121\pi\)
\(224\) 6.07076 0.405620
\(225\) 0 0
\(226\) −2.90194 −0.193034
\(227\) 7.14071 0.473946 0.236973 0.971516i \(-0.423845\pi\)
0.236973 + 0.971516i \(0.423845\pi\)
\(228\) −1.29745 −0.0859258
\(229\) 24.8881 1.64465 0.822325 0.569018i \(-0.192677\pi\)
0.822325 + 0.569018i \(0.192677\pi\)
\(230\) 0 0
\(231\) −0.532334 −0.0350250
\(232\) 24.6859 1.62071
\(233\) −16.9547 −1.11074 −0.555368 0.831604i \(-0.687423\pi\)
−0.555368 + 0.831604i \(0.687423\pi\)
\(234\) 2.62738 0.171757
\(235\) 0 0
\(236\) −17.2937 −1.12573
\(237\) −6.74036 −0.437833
\(238\) −1.04974 −0.0680448
\(239\) −4.12456 −0.266796 −0.133398 0.991063i \(-0.542589\pi\)
−0.133398 + 0.991063i \(0.542589\pi\)
\(240\) 0 0
\(241\) −5.94241 −0.382784 −0.191392 0.981514i \(-0.561300\pi\)
−0.191392 + 0.981514i \(0.561300\pi\)
\(242\) −7.95938 −0.511648
\(243\) 1.00000 0.0641500
\(244\) −11.3878 −0.729027
\(245\) 0 0
\(246\) 2.31651 0.147695
\(247\) 3.17029 0.201721
\(248\) −26.7646 −1.69955
\(249\) −7.99598 −0.506725
\(250\) 0 0
\(251\) −18.1052 −1.14279 −0.571394 0.820676i \(-0.693597\pi\)
−0.571394 + 0.820676i \(0.693597\pi\)
\(252\) −1.50237 −0.0946406
\(253\) −2.80316 −0.176233
\(254\) −4.46570 −0.280203
\(255\) 0 0
\(256\) −12.0784 −0.754903
\(257\) −23.9627 −1.49475 −0.747375 0.664402i \(-0.768686\pi\)
−0.747375 + 0.664402i \(0.768686\pi\)
\(258\) 7.62626 0.474790
\(259\) −2.27344 −0.141265
\(260\) 0 0
\(261\) −9.65038 −0.597343
\(262\) 0.937428 0.0579145
\(263\) −13.2525 −0.817184 −0.408592 0.912717i \(-0.633980\pi\)
−0.408592 + 0.912717i \(0.633980\pi\)
\(264\) 1.31458 0.0809066
\(265\) 0 0
\(266\) 0.687004 0.0421229
\(267\) 12.9917 0.795077
\(268\) −12.7737 −0.780281
\(269\) −0.728075 −0.0443915 −0.0221958 0.999754i \(-0.507066\pi\)
−0.0221958 + 0.999754i \(0.507066\pi\)
\(270\) 0 0
\(271\) −16.9085 −1.02712 −0.513558 0.858055i \(-0.671673\pi\)
−0.513558 + 0.858055i \(0.671673\pi\)
\(272\) −1.37272 −0.0832332
\(273\) 3.67101 0.222179
\(274\) 1.37670 0.0831697
\(275\) 0 0
\(276\) −7.91118 −0.476197
\(277\) 10.0386 0.603160 0.301580 0.953441i \(-0.402486\pi\)
0.301580 + 0.953441i \(0.402486\pi\)
\(278\) 12.9544 0.776954
\(279\) 10.4630 0.626402
\(280\) 0 0
\(281\) 20.5358 1.22507 0.612533 0.790445i \(-0.290151\pi\)
0.612533 + 0.790445i \(0.290151\pi\)
\(282\) 5.67533 0.337961
\(283\) 21.2483 1.26308 0.631541 0.775343i \(-0.282423\pi\)
0.631541 + 0.775343i \(0.282423\pi\)
\(284\) −7.26553 −0.431130
\(285\) 0 0
\(286\) −1.35022 −0.0798402
\(287\) 3.23666 0.191054
\(288\) 5.86057 0.345338
\(289\) −15.1316 −0.890091
\(290\) 0 0
\(291\) −7.27747 −0.426613
\(292\) −8.44840 −0.494405
\(293\) −29.8828 −1.74577 −0.872885 0.487927i \(-0.837753\pi\)
−0.872885 + 0.487927i \(0.837753\pi\)
\(294\) −4.39414 −0.256272
\(295\) 0 0
\(296\) 5.61417 0.326317
\(297\) −0.513903 −0.0298197
\(298\) 15.2394 0.882794
\(299\) 19.3308 1.11793
\(300\) 0 0
\(301\) 10.6555 0.614173
\(302\) 2.12735 0.122415
\(303\) 11.5323 0.662513
\(304\) 0.898374 0.0515253
\(305\) 0 0
\(306\) −1.01340 −0.0579322
\(307\) −0.531050 −0.0303086 −0.0151543 0.999885i \(-0.504824\pi\)
−0.0151543 + 0.999885i \(0.504824\pi\)
\(308\) 0.772074 0.0439930
\(309\) −1.95586 −0.111265
\(310\) 0 0
\(311\) −18.2322 −1.03385 −0.516927 0.856030i \(-0.672924\pi\)
−0.516927 + 0.856030i \(0.672924\pi\)
\(312\) −9.06540 −0.513227
\(313\) 29.3523 1.65909 0.829546 0.558439i \(-0.188599\pi\)
0.829546 + 0.558439i \(0.188599\pi\)
\(314\) −10.6675 −0.602001
\(315\) 0 0
\(316\) 9.77593 0.549939
\(317\) −32.8989 −1.84778 −0.923892 0.382653i \(-0.875011\pi\)
−0.923892 + 0.382653i \(0.875011\pi\)
\(318\) −7.82333 −0.438711
\(319\) 4.95936 0.277671
\(320\) 0 0
\(321\) −15.2874 −0.853260
\(322\) 4.18899 0.233444
\(323\) −1.22280 −0.0680385
\(324\) −1.45036 −0.0805754
\(325\) 0 0
\(326\) −5.86020 −0.324566
\(327\) −0.346596 −0.0191668
\(328\) −7.99279 −0.441328
\(329\) 7.92963 0.437175
\(330\) 0 0
\(331\) −3.75461 −0.206372 −0.103186 0.994662i \(-0.532904\pi\)
−0.103186 + 0.994662i \(0.532904\pi\)
\(332\) 11.5970 0.636470
\(333\) −2.19473 −0.120271
\(334\) −14.0163 −0.766937
\(335\) 0 0
\(336\) 1.04026 0.0567511
\(337\) −14.3206 −0.780095 −0.390047 0.920795i \(-0.627541\pi\)
−0.390047 + 0.920795i \(0.627541\pi\)
\(338\) −0.326731 −0.0177718
\(339\) −3.91425 −0.212593
\(340\) 0 0
\(341\) −5.37696 −0.291179
\(342\) 0.663218 0.0358627
\(343\) −13.3906 −0.723024
\(344\) −26.3133 −1.41872
\(345\) 0 0
\(346\) −3.27085 −0.175842
\(347\) 5.91568 0.317571 0.158785 0.987313i \(-0.449242\pi\)
0.158785 + 0.987313i \(0.449242\pi\)
\(348\) 13.9965 0.750290
\(349\) 26.2468 1.40496 0.702479 0.711705i \(-0.252077\pi\)
0.702479 + 0.711705i \(0.252077\pi\)
\(350\) 0 0
\(351\) 3.54391 0.189160
\(352\) −3.01177 −0.160528
\(353\) 14.3082 0.761546 0.380773 0.924669i \(-0.375658\pi\)
0.380773 + 0.924669i \(0.375658\pi\)
\(354\) 8.84004 0.469843
\(355\) 0 0
\(356\) −18.8426 −0.998653
\(357\) −1.41593 −0.0749392
\(358\) −8.63820 −0.456543
\(359\) 36.3183 1.91681 0.958404 0.285416i \(-0.0921318\pi\)
0.958404 + 0.285416i \(0.0921318\pi\)
\(360\) 0 0
\(361\) −18.1997 −0.957881
\(362\) 11.5377 0.606408
\(363\) −10.7359 −0.563489
\(364\) −5.32427 −0.279068
\(365\) 0 0
\(366\) 5.82108 0.304273
\(367\) 27.3604 1.42820 0.714100 0.700043i \(-0.246836\pi\)
0.714100 + 0.700043i \(0.246836\pi\)
\(368\) 5.47782 0.285551
\(369\) 3.12460 0.162660
\(370\) 0 0
\(371\) −10.9309 −0.567502
\(372\) −15.1751 −0.786790
\(373\) −30.3763 −1.57283 −0.786413 0.617702i \(-0.788064\pi\)
−0.786413 + 0.617702i \(0.788064\pi\)
\(374\) 0.520789 0.0269294
\(375\) 0 0
\(376\) −19.5819 −1.00986
\(377\) −34.2001 −1.76139
\(378\) 0.767968 0.0395000
\(379\) 27.5797 1.41668 0.708338 0.705873i \(-0.249445\pi\)
0.708338 + 0.705873i \(0.249445\pi\)
\(380\) 0 0
\(381\) −6.02350 −0.308593
\(382\) −15.8813 −0.812559
\(383\) 14.6341 0.747765 0.373883 0.927476i \(-0.378026\pi\)
0.373883 + 0.927476i \(0.378026\pi\)
\(384\) −9.98898 −0.509748
\(385\) 0 0
\(386\) −2.46570 −0.125501
\(387\) 10.2866 0.522896
\(388\) 10.5549 0.535846
\(389\) −22.0844 −1.11972 −0.559862 0.828586i \(-0.689146\pi\)
−0.559862 + 0.828586i \(0.689146\pi\)
\(390\) 0 0
\(391\) −7.45602 −0.377067
\(392\) 15.1614 0.765765
\(393\) 1.26444 0.0637824
\(394\) 10.9800 0.553163
\(395\) 0 0
\(396\) 0.745343 0.0374549
\(397\) 10.3527 0.519589 0.259794 0.965664i \(-0.416345\pi\)
0.259794 + 0.965664i \(0.416345\pi\)
\(398\) −11.3638 −0.569617
\(399\) 0.926656 0.0463908
\(400\) 0 0
\(401\) −19.8832 −0.992919 −0.496460 0.868060i \(-0.665367\pi\)
−0.496460 + 0.868060i \(0.665367\pi\)
\(402\) 6.52956 0.325665
\(403\) 37.0799 1.84708
\(404\) −16.7259 −0.832147
\(405\) 0 0
\(406\) −7.41118 −0.367811
\(407\) 1.12788 0.0559069
\(408\) 3.49659 0.173107
\(409\) −7.05843 −0.349017 −0.174509 0.984656i \(-0.555834\pi\)
−0.174509 + 0.984656i \(0.555834\pi\)
\(410\) 0 0
\(411\) 1.85695 0.0915966
\(412\) 2.83670 0.139754
\(413\) 12.3514 0.607773
\(414\) 4.04396 0.198750
\(415\) 0 0
\(416\) 20.7693 1.01830
\(417\) 17.4734 0.855676
\(418\) −0.340830 −0.0166705
\(419\) −9.67801 −0.472802 −0.236401 0.971656i \(-0.575968\pi\)
−0.236401 + 0.971656i \(0.575968\pi\)
\(420\) 0 0
\(421\) 4.30464 0.209795 0.104898 0.994483i \(-0.466548\pi\)
0.104898 + 0.994483i \(0.466548\pi\)
\(422\) −0.279537 −0.0136076
\(423\) 7.65509 0.372203
\(424\) 26.9933 1.31091
\(425\) 0 0
\(426\) 3.71392 0.179940
\(427\) 8.13329 0.393597
\(428\) 22.1722 1.07173
\(429\) −1.82123 −0.0879296
\(430\) 0 0
\(431\) −5.53549 −0.266635 −0.133318 0.991073i \(-0.542563\pi\)
−0.133318 + 0.991073i \(0.542563\pi\)
\(432\) 1.00425 0.0483169
\(433\) 28.1770 1.35410 0.677051 0.735936i \(-0.263258\pi\)
0.677051 + 0.735936i \(0.263258\pi\)
\(434\) 8.03524 0.385704
\(435\) 0 0
\(436\) 0.502688 0.0240744
\(437\) 4.87958 0.233422
\(438\) 4.31857 0.206349
\(439\) −10.5674 −0.504353 −0.252176 0.967681i \(-0.581146\pi\)
−0.252176 + 0.967681i \(0.581146\pi\)
\(440\) 0 0
\(441\) −5.92699 −0.282237
\(442\) −3.59140 −0.170825
\(443\) −36.7964 −1.74825 −0.874126 0.485699i \(-0.838565\pi\)
−0.874126 + 0.485699i \(0.838565\pi\)
\(444\) 3.18314 0.151065
\(445\) 0 0
\(446\) 0.200279 0.00948350
\(447\) 20.5555 0.972240
\(448\) 2.42021 0.114344
\(449\) 26.9341 1.27110 0.635549 0.772060i \(-0.280774\pi\)
0.635549 + 0.772060i \(0.280774\pi\)
\(450\) 0 0
\(451\) −1.60574 −0.0756114
\(452\) 5.67706 0.267026
\(453\) 2.86944 0.134818
\(454\) 5.29398 0.248459
\(455\) 0 0
\(456\) −2.28834 −0.107161
\(457\) 24.6289 1.15209 0.576046 0.817417i \(-0.304595\pi\)
0.576046 + 0.817417i \(0.304595\pi\)
\(458\) 18.4515 0.862182
\(459\) −1.36691 −0.0638019
\(460\) 0 0
\(461\) 24.6914 1.14999 0.574996 0.818156i \(-0.305004\pi\)
0.574996 + 0.818156i \(0.305004\pi\)
\(462\) −0.394661 −0.0183613
\(463\) −22.7190 −1.05584 −0.527921 0.849293i \(-0.677028\pi\)
−0.527921 + 0.849293i \(0.677028\pi\)
\(464\) −9.69137 −0.449911
\(465\) 0 0
\(466\) −12.5698 −0.582286
\(467\) 10.8747 0.503222 0.251611 0.967829i \(-0.419040\pi\)
0.251611 + 0.967829i \(0.419040\pi\)
\(468\) −5.13993 −0.237593
\(469\) 9.12318 0.421269
\(470\) 0 0
\(471\) −14.3887 −0.662996
\(472\) −30.5013 −1.40394
\(473\) −5.28631 −0.243065
\(474\) −4.99716 −0.229527
\(475\) 0 0
\(476\) 2.05361 0.0941270
\(477\) −10.5524 −0.483161
\(478\) −3.05786 −0.139863
\(479\) 0.739002 0.0337659 0.0168829 0.999857i \(-0.494626\pi\)
0.0168829 + 0.999857i \(0.494626\pi\)
\(480\) 0 0
\(481\) −7.77793 −0.354643
\(482\) −4.40558 −0.200669
\(483\) 5.65027 0.257096
\(484\) 15.5709 0.707768
\(485\) 0 0
\(486\) 0.741379 0.0336296
\(487\) −29.1699 −1.32181 −0.660907 0.750468i \(-0.729828\pi\)
−0.660907 + 0.750468i \(0.729828\pi\)
\(488\) −20.0848 −0.909197
\(489\) −7.90445 −0.357452
\(490\) 0 0
\(491\) −31.6811 −1.42975 −0.714875 0.699252i \(-0.753516\pi\)
−0.714875 + 0.699252i \(0.753516\pi\)
\(492\) −4.53178 −0.204308
\(493\) 13.1912 0.594102
\(494\) 2.35038 0.105749
\(495\) 0 0
\(496\) 10.5074 0.471798
\(497\) 5.18914 0.232765
\(498\) −5.92806 −0.265643
\(499\) −8.89261 −0.398088 −0.199044 0.979991i \(-0.563784\pi\)
−0.199044 + 0.979991i \(0.563784\pi\)
\(500\) 0 0
\(501\) −18.9057 −0.844644
\(502\) −13.4228 −0.599088
\(503\) −17.0282 −0.759248 −0.379624 0.925141i \(-0.623947\pi\)
−0.379624 + 0.925141i \(0.623947\pi\)
\(504\) −2.64976 −0.118030
\(505\) 0 0
\(506\) −2.07821 −0.0923875
\(507\) −0.440707 −0.0195725
\(508\) 8.73622 0.387607
\(509\) −18.6709 −0.827571 −0.413786 0.910374i \(-0.635794\pi\)
−0.413786 + 0.910374i \(0.635794\pi\)
\(510\) 0 0
\(511\) 6.03396 0.266927
\(512\) 11.0233 0.487164
\(513\) 0.894573 0.0394964
\(514\) −17.7654 −0.783600
\(515\) 0 0
\(516\) −14.9192 −0.656782
\(517\) −3.93398 −0.173016
\(518\) −1.68548 −0.0740559
\(519\) −4.41184 −0.193658
\(520\) 0 0
\(521\) 4.44863 0.194898 0.0974489 0.995241i \(-0.468932\pi\)
0.0974489 + 0.995241i \(0.468932\pi\)
\(522\) −7.15459 −0.313148
\(523\) 20.4791 0.895490 0.447745 0.894161i \(-0.352227\pi\)
0.447745 + 0.894161i \(0.352227\pi\)
\(524\) −1.83389 −0.0801137
\(525\) 0 0
\(526\) −9.82513 −0.428396
\(527\) −14.3020 −0.623003
\(528\) −0.516086 −0.0224598
\(529\) 6.75318 0.293616
\(530\) 0 0
\(531\) 11.9238 0.517448
\(532\) −1.34398 −0.0582690
\(533\) 11.0733 0.479637
\(534\) 9.63175 0.416807
\(535\) 0 0
\(536\) −22.5293 −0.973118
\(537\) −11.6515 −0.502801
\(538\) −0.539780 −0.0232716
\(539\) 3.04590 0.131196
\(540\) 0 0
\(541\) 19.4764 0.837355 0.418678 0.908135i \(-0.362494\pi\)
0.418678 + 0.908135i \(0.362494\pi\)
\(542\) −12.5356 −0.538450
\(543\) 15.5625 0.667850
\(544\) −8.01088 −0.343464
\(545\) 0 0
\(546\) 2.72161 0.116474
\(547\) 40.3751 1.72631 0.863157 0.504936i \(-0.168484\pi\)
0.863157 + 0.504936i \(0.168484\pi\)
\(548\) −2.69324 −0.115049
\(549\) 7.85170 0.335102
\(550\) 0 0
\(551\) −8.63297 −0.367777
\(552\) −13.9531 −0.593884
\(553\) −6.98210 −0.296909
\(554\) 7.44240 0.316197
\(555\) 0 0
\(556\) −25.3427 −1.07477
\(557\) −1.34777 −0.0571067 −0.0285534 0.999592i \(-0.509090\pi\)
−0.0285534 + 0.999592i \(0.509090\pi\)
\(558\) 7.75704 0.328382
\(559\) 36.4547 1.54187
\(560\) 0 0
\(561\) 0.702460 0.0296579
\(562\) 15.2249 0.642222
\(563\) −9.88833 −0.416744 −0.208372 0.978050i \(-0.566816\pi\)
−0.208372 + 0.978050i \(0.566816\pi\)
\(564\) −11.1026 −0.467504
\(565\) 0 0
\(566\) 15.7531 0.662150
\(567\) 1.03586 0.0435022
\(568\) −12.8144 −0.537679
\(569\) 9.70429 0.406825 0.203413 0.979093i \(-0.434797\pi\)
0.203413 + 0.979093i \(0.434797\pi\)
\(570\) 0 0
\(571\) 4.61768 0.193244 0.0966219 0.995321i \(-0.469196\pi\)
0.0966219 + 0.995321i \(0.469196\pi\)
\(572\) 2.64143 0.110444
\(573\) −21.4213 −0.894888
\(574\) 2.39959 0.100157
\(575\) 0 0
\(576\) 2.33641 0.0973505
\(577\) 2.05700 0.0856338 0.0428169 0.999083i \(-0.486367\pi\)
0.0428169 + 0.999083i \(0.486367\pi\)
\(578\) −11.2182 −0.466616
\(579\) −3.32583 −0.138217
\(580\) 0 0
\(581\) −8.28275 −0.343626
\(582\) −5.39537 −0.223645
\(583\) 5.42291 0.224594
\(584\) −14.9006 −0.616592
\(585\) 0 0
\(586\) −22.1545 −0.915192
\(587\) −18.7955 −0.775774 −0.387887 0.921707i \(-0.626795\pi\)
−0.387887 + 0.921707i \(0.626795\pi\)
\(588\) 8.59624 0.354503
\(589\) 9.35990 0.385668
\(590\) 0 0
\(591\) 14.8102 0.609210
\(592\) −2.20405 −0.0905861
\(593\) 23.8873 0.980934 0.490467 0.871460i \(-0.336826\pi\)
0.490467 + 0.871460i \(0.336826\pi\)
\(594\) −0.380997 −0.0156325
\(595\) 0 0
\(596\) −29.8128 −1.22118
\(597\) −15.3279 −0.627331
\(598\) 14.3314 0.586056
\(599\) −0.641179 −0.0261979 −0.0130989 0.999914i \(-0.504170\pi\)
−0.0130989 + 0.999914i \(0.504170\pi\)
\(600\) 0 0
\(601\) 28.1316 1.14751 0.573755 0.819027i \(-0.305486\pi\)
0.573755 + 0.819027i \(0.305486\pi\)
\(602\) 7.89977 0.321971
\(603\) 8.80731 0.358661
\(604\) −4.16172 −0.169338
\(605\) 0 0
\(606\) 8.54981 0.347312
\(607\) 0.0458025 0.00185907 0.000929533 1.00000i \(-0.499704\pi\)
0.000929533 1.00000i \(0.499704\pi\)
\(608\) 5.24271 0.212620
\(609\) −9.99648 −0.405078
\(610\) 0 0
\(611\) 27.1289 1.09752
\(612\) 1.98251 0.0801382
\(613\) −23.3986 −0.945062 −0.472531 0.881314i \(-0.656660\pi\)
−0.472531 + 0.881314i \(0.656660\pi\)
\(614\) −0.393710 −0.0158888
\(615\) 0 0
\(616\) 1.36172 0.0548654
\(617\) 5.62099 0.226292 0.113146 0.993578i \(-0.463907\pi\)
0.113146 + 0.993578i \(0.463907\pi\)
\(618\) −1.45004 −0.0583290
\(619\) −9.38706 −0.377298 −0.188649 0.982045i \(-0.560411\pi\)
−0.188649 + 0.982045i \(0.560411\pi\)
\(620\) 0 0
\(621\) 5.45465 0.218887
\(622\) −13.5170 −0.541981
\(623\) 13.4576 0.539167
\(624\) 3.55896 0.142473
\(625\) 0 0
\(626\) 21.7612 0.869753
\(627\) −0.459724 −0.0183596
\(628\) 20.8687 0.832754
\(629\) 3.00000 0.119618
\(630\) 0 0
\(631\) −0.494043 −0.0196675 −0.00983376 0.999952i \(-0.503130\pi\)
−0.00983376 + 0.999952i \(0.503130\pi\)
\(632\) 17.2420 0.685850
\(633\) −0.377050 −0.0149864
\(634\) −24.3905 −0.968672
\(635\) 0 0
\(636\) 15.3047 0.606873
\(637\) −21.0047 −0.832237
\(638\) 3.67677 0.145565
\(639\) 5.00948 0.198172
\(640\) 0 0
\(641\) −29.9045 −1.18116 −0.590578 0.806981i \(-0.701100\pi\)
−0.590578 + 0.806981i \(0.701100\pi\)
\(642\) −11.3338 −0.447308
\(643\) −17.8273 −0.703039 −0.351519 0.936181i \(-0.614335\pi\)
−0.351519 + 0.936181i \(0.614335\pi\)
\(644\) −8.19491 −0.322925
\(645\) 0 0
\(646\) −0.906560 −0.0356681
\(647\) −6.25123 −0.245761 −0.122881 0.992421i \(-0.539213\pi\)
−0.122881 + 0.992421i \(0.539213\pi\)
\(648\) −2.55802 −0.100489
\(649\) −6.12767 −0.240532
\(650\) 0 0
\(651\) 10.8382 0.424784
\(652\) 11.4643 0.448976
\(653\) −3.40836 −0.133379 −0.0666897 0.997774i \(-0.521244\pi\)
−0.0666897 + 0.997774i \(0.521244\pi\)
\(654\) −0.256959 −0.0100479
\(655\) 0 0
\(656\) 3.13787 0.122513
\(657\) 5.82505 0.227257
\(658\) 5.87886 0.229182
\(659\) −8.85617 −0.344988 −0.172494 0.985011i \(-0.555182\pi\)
−0.172494 + 0.985011i \(0.555182\pi\)
\(660\) 0 0
\(661\) −16.5504 −0.643735 −0.321867 0.946785i \(-0.604311\pi\)
−0.321867 + 0.946785i \(0.604311\pi\)
\(662\) −2.78359 −0.108187
\(663\) −4.84421 −0.188133
\(664\) 20.4539 0.793766
\(665\) 0 0
\(666\) −1.62713 −0.0630499
\(667\) −52.6394 −2.03821
\(668\) 27.4200 1.06091
\(669\) 0.270144 0.0104444
\(670\) 0 0
\(671\) −4.03501 −0.155770
\(672\) 6.07076 0.234185
\(673\) −50.3337 −1.94022 −0.970110 0.242665i \(-0.921979\pi\)
−0.970110 + 0.242665i \(0.921979\pi\)
\(674\) −10.6170 −0.408952
\(675\) 0 0
\(676\) 0.639183 0.0245840
\(677\) −0.624178 −0.0239891 −0.0119946 0.999928i \(-0.503818\pi\)
−0.0119946 + 0.999928i \(0.503818\pi\)
\(678\) −2.90194 −0.111448
\(679\) −7.53847 −0.289300
\(680\) 0 0
\(681\) 7.14071 0.273633
\(682\) −3.98637 −0.152646
\(683\) −41.3608 −1.58263 −0.791313 0.611411i \(-0.790602\pi\)
−0.791313 + 0.611411i \(0.790602\pi\)
\(684\) −1.29745 −0.0496093
\(685\) 0 0
\(686\) −9.92751 −0.379034
\(687\) 24.8881 0.949539
\(688\) 10.3303 0.393838
\(689\) −37.3968 −1.42470
\(690\) 0 0
\(691\) −40.0489 −1.52353 −0.761767 0.647851i \(-0.775668\pi\)
−0.761767 + 0.647851i \(0.775668\pi\)
\(692\) 6.39874 0.243244
\(693\) −0.532334 −0.0202217
\(694\) 4.38577 0.166481
\(695\) 0 0
\(696\) 24.6859 0.935716
\(697\) −4.27105 −0.161777
\(698\) 19.4588 0.736527
\(699\) −16.9547 −0.641284
\(700\) 0 0
\(701\) 39.8261 1.50421 0.752106 0.659043i \(-0.229038\pi\)
0.752106 + 0.659043i \(0.229038\pi\)
\(702\) 2.62738 0.0991641
\(703\) −1.96335 −0.0740491
\(704\) −1.20069 −0.0452527
\(705\) 0 0
\(706\) 10.6078 0.399229
\(707\) 11.9459 0.449272
\(708\) −17.2937 −0.649938
\(709\) 25.1649 0.945087 0.472543 0.881307i \(-0.343336\pi\)
0.472543 + 0.881307i \(0.343336\pi\)
\(710\) 0 0
\(711\) −6.74036 −0.252783
\(712\) −33.2330 −1.24546
\(713\) 57.0719 2.13736
\(714\) −1.04974 −0.0392857
\(715\) 0 0
\(716\) 16.8989 0.631541
\(717\) −4.12456 −0.154034
\(718\) 26.9256 1.00486
\(719\) 19.1076 0.712593 0.356297 0.934373i \(-0.384039\pi\)
0.356297 + 0.934373i \(0.384039\pi\)
\(720\) 0 0
\(721\) −2.02601 −0.0754525
\(722\) −13.4929 −0.502154
\(723\) −5.94241 −0.221001
\(724\) −22.5711 −0.838850
\(725\) 0 0
\(726\) −7.95938 −0.295400
\(727\) 22.4025 0.830862 0.415431 0.909625i \(-0.363631\pi\)
0.415431 + 0.909625i \(0.363631\pi\)
\(728\) −9.39052 −0.348036
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −14.0608 −0.520059
\(732\) −11.3878 −0.420904
\(733\) −45.4058 −1.67710 −0.838551 0.544823i \(-0.816597\pi\)
−0.838551 + 0.544823i \(0.816597\pi\)
\(734\) 20.2844 0.748712
\(735\) 0 0
\(736\) 31.9674 1.17833
\(737\) −4.52611 −0.166721
\(738\) 2.31651 0.0852720
\(739\) 41.4109 1.52332 0.761662 0.647974i \(-0.224384\pi\)
0.761662 + 0.647974i \(0.224384\pi\)
\(740\) 0 0
\(741\) 3.17029 0.116463
\(742\) −8.10391 −0.297504
\(743\) −12.1759 −0.446689 −0.223344 0.974740i \(-0.571697\pi\)
−0.223344 + 0.974740i \(0.571697\pi\)
\(744\) −26.7646 −0.981236
\(745\) 0 0
\(746\) −22.5204 −0.824529
\(747\) −7.99598 −0.292558
\(748\) −1.01882 −0.0372517
\(749\) −15.8357 −0.578623
\(750\) 0 0
\(751\) −31.1833 −1.13789 −0.568947 0.822374i \(-0.692649\pi\)
−0.568947 + 0.822374i \(0.692649\pi\)
\(752\) 7.68761 0.280338
\(753\) −18.1052 −0.659789
\(754\) −25.3552 −0.923382
\(755\) 0 0
\(756\) −1.50237 −0.0546408
\(757\) −25.8685 −0.940207 −0.470104 0.882611i \(-0.655783\pi\)
−0.470104 + 0.882611i \(0.655783\pi\)
\(758\) 20.4471 0.742670
\(759\) −2.80316 −0.101748
\(760\) 0 0
\(761\) 31.2246 1.13189 0.565945 0.824443i \(-0.308511\pi\)
0.565945 + 0.824443i \(0.308511\pi\)
\(762\) −4.46570 −0.161775
\(763\) −0.359026 −0.0129976
\(764\) 31.0686 1.12402
\(765\) 0 0
\(766\) 10.8494 0.392004
\(767\) 42.2568 1.52580
\(768\) −12.0784 −0.435843
\(769\) −1.72556 −0.0622253 −0.0311127 0.999516i \(-0.509905\pi\)
−0.0311127 + 0.999516i \(0.509905\pi\)
\(770\) 0 0
\(771\) −23.9627 −0.862995
\(772\) 4.82363 0.173606
\(773\) 39.2992 1.41349 0.706747 0.707466i \(-0.250162\pi\)
0.706747 + 0.707466i \(0.250162\pi\)
\(774\) 7.62626 0.274120
\(775\) 0 0
\(776\) 18.6159 0.668274
\(777\) −2.27344 −0.0815593
\(778\) −16.3729 −0.586998
\(779\) 2.79518 0.100148
\(780\) 0 0
\(781\) −2.57439 −0.0921188
\(782\) −5.52774 −0.197671
\(783\) −9.65038 −0.344876
\(784\) −5.95216 −0.212577
\(785\) 0 0
\(786\) 0.937428 0.0334369
\(787\) 50.7384 1.80863 0.904315 0.426866i \(-0.140383\pi\)
0.904315 + 0.426866i \(0.140383\pi\)
\(788\) −21.4801 −0.765195
\(789\) −13.2525 −0.471802
\(790\) 0 0
\(791\) −4.05463 −0.144166
\(792\) 1.31458 0.0467114
\(793\) 27.8257 0.988120
\(794\) 7.67530 0.272386
\(795\) 0 0
\(796\) 22.2310 0.787957
\(797\) 1.77689 0.0629405 0.0314703 0.999505i \(-0.489981\pi\)
0.0314703 + 0.999505i \(0.489981\pi\)
\(798\) 0.687004 0.0243197
\(799\) −10.4638 −0.370184
\(800\) 0 0
\(801\) 12.9917 0.459038
\(802\) −14.7410 −0.520522
\(803\) −2.99351 −0.105639
\(804\) −12.7737 −0.450495
\(805\) 0 0
\(806\) 27.4902 0.968302
\(807\) −0.728075 −0.0256295
\(808\) −29.4999 −1.03780
\(809\) −50.7926 −1.78577 −0.892887 0.450281i \(-0.851324\pi\)
−0.892887 + 0.450281i \(0.851324\pi\)
\(810\) 0 0
\(811\) −26.4748 −0.929655 −0.464827 0.885401i \(-0.653884\pi\)
−0.464827 + 0.885401i \(0.653884\pi\)
\(812\) 14.4985 0.508796
\(813\) −16.9085 −0.593006
\(814\) 0.836186 0.0293083
\(815\) 0 0
\(816\) −1.37272 −0.0480547
\(817\) 9.20210 0.321941
\(818\) −5.23298 −0.182967
\(819\) 3.67101 0.128275
\(820\) 0 0
\(821\) 30.1888 1.05359 0.526797 0.849991i \(-0.323393\pi\)
0.526797 + 0.849991i \(0.323393\pi\)
\(822\) 1.37670 0.0480181
\(823\) 10.5256 0.366901 0.183450 0.983029i \(-0.441273\pi\)
0.183450 + 0.983029i \(0.441273\pi\)
\(824\) 5.00314 0.174293
\(825\) 0 0
\(826\) 9.15708 0.318616
\(827\) 48.0149 1.66964 0.834820 0.550523i \(-0.185572\pi\)
0.834820 + 0.550523i \(0.185572\pi\)
\(828\) −7.91118 −0.274933
\(829\) −27.0527 −0.939581 −0.469790 0.882778i \(-0.655671\pi\)
−0.469790 + 0.882778i \(0.655671\pi\)
\(830\) 0 0
\(831\) 10.0386 0.348235
\(832\) 8.28003 0.287059
\(833\) 8.10166 0.280706
\(834\) 12.9544 0.448575
\(835\) 0 0
\(836\) 0.666764 0.0230605
\(837\) 10.4630 0.361654
\(838\) −7.17508 −0.247859
\(839\) 48.1448 1.66214 0.831072 0.556165i \(-0.187728\pi\)
0.831072 + 0.556165i \(0.187728\pi\)
\(840\) 0 0
\(841\) 64.1297 2.21137
\(842\) 3.19137 0.109982
\(843\) 20.5358 0.707292
\(844\) 0.546856 0.0188236
\(845\) 0 0
\(846\) 5.67533 0.195122
\(847\) −11.1209 −0.382120
\(848\) −10.5972 −0.363910
\(849\) 21.2483 0.729240
\(850\) 0 0
\(851\) −11.9715 −0.410377
\(852\) −7.26553 −0.248913
\(853\) 6.56698 0.224849 0.112425 0.993660i \(-0.464138\pi\)
0.112425 + 0.993660i \(0.464138\pi\)
\(854\) 6.02985 0.206337
\(855\) 0 0
\(856\) 39.1056 1.33660
\(857\) −26.7026 −0.912143 −0.456072 0.889943i \(-0.650744\pi\)
−0.456072 + 0.889943i \(0.650744\pi\)
\(858\) −1.35022 −0.0460957
\(859\) −12.6095 −0.430231 −0.215116 0.976589i \(-0.569013\pi\)
−0.215116 + 0.976589i \(0.569013\pi\)
\(860\) 0 0
\(861\) 3.23666 0.110305
\(862\) −4.10390 −0.139779
\(863\) −7.76101 −0.264188 −0.132094 0.991237i \(-0.542170\pi\)
−0.132094 + 0.991237i \(0.542170\pi\)
\(864\) 5.86057 0.199381
\(865\) 0 0
\(866\) 20.8899 0.709867
\(867\) −15.1316 −0.513895
\(868\) −15.7193 −0.533548
\(869\) 3.46389 0.117505
\(870\) 0 0
\(871\) 31.2123 1.05759
\(872\) 0.886601 0.0300241
\(873\) −7.27747 −0.246305
\(874\) 3.61762 0.122368
\(875\) 0 0
\(876\) −8.44840 −0.285445
\(877\) 15.3303 0.517667 0.258834 0.965922i \(-0.416662\pi\)
0.258834 + 0.965922i \(0.416662\pi\)
\(878\) −7.83443 −0.264399
\(879\) −29.8828 −1.00792
\(880\) 0 0
\(881\) 37.4961 1.26328 0.631638 0.775263i \(-0.282383\pi\)
0.631638 + 0.775263i \(0.282383\pi\)
\(882\) −4.39414 −0.147959
\(883\) −1.99657 −0.0671899 −0.0335950 0.999436i \(-0.510696\pi\)
−0.0335950 + 0.999436i \(0.510696\pi\)
\(884\) 7.02583 0.236304
\(885\) 0 0
\(886\) −27.2801 −0.916494
\(887\) −13.0003 −0.436506 −0.218253 0.975892i \(-0.570036\pi\)
−0.218253 + 0.975892i \(0.570036\pi\)
\(888\) 5.61417 0.188399
\(889\) −6.23952 −0.209267
\(890\) 0 0
\(891\) −0.513903 −0.0172164
\(892\) −0.391805 −0.0131186
\(893\) 6.84804 0.229161
\(894\) 15.2394 0.509682
\(895\) 0 0
\(896\) −10.3472 −0.345677
\(897\) 19.3308 0.645436
\(898\) 19.9684 0.666354
\(899\) −100.972 −3.36760
\(900\) 0 0
\(901\) 14.4242 0.480539
\(902\) −1.19046 −0.0396381
\(903\) 10.6555 0.354593
\(904\) 10.0127 0.333019
\(905\) 0 0
\(906\) 2.12735 0.0706764
\(907\) 15.3852 0.510857 0.255429 0.966828i \(-0.417783\pi\)
0.255429 + 0.966828i \(0.417783\pi\)
\(908\) −10.3566 −0.343695
\(909\) 11.5323 0.382502
\(910\) 0 0
\(911\) −0.397650 −0.0131747 −0.00658736 0.999978i \(-0.502097\pi\)
−0.00658736 + 0.999978i \(0.502097\pi\)
\(912\) 0.898374 0.0297481
\(913\) 4.10916 0.135993
\(914\) 18.2594 0.603966
\(915\) 0 0
\(916\) −36.0966 −1.19266
\(917\) 1.30979 0.0432529
\(918\) −1.01340 −0.0334472
\(919\) 4.87620 0.160851 0.0804255 0.996761i \(-0.474372\pi\)
0.0804255 + 0.996761i \(0.474372\pi\)
\(920\) 0 0
\(921\) −0.531050 −0.0174987
\(922\) 18.3057 0.602865
\(923\) 17.7531 0.584352
\(924\) 0.772074 0.0253994
\(925\) 0 0
\(926\) −16.8434 −0.553509
\(927\) −1.95586 −0.0642390
\(928\) −56.5567 −1.85657
\(929\) 25.0861 0.823048 0.411524 0.911399i \(-0.364997\pi\)
0.411524 + 0.911399i \(0.364997\pi\)
\(930\) 0 0
\(931\) −5.30212 −0.173770
\(932\) 24.5903 0.805482
\(933\) −18.2322 −0.596895
\(934\) 8.06229 0.263806
\(935\) 0 0
\(936\) −9.06540 −0.296312
\(937\) 39.6519 1.29537 0.647686 0.761907i \(-0.275737\pi\)
0.647686 + 0.761907i \(0.275737\pi\)
\(938\) 6.76373 0.220844
\(939\) 29.3523 0.957877
\(940\) 0 0
\(941\) 10.8852 0.354847 0.177424 0.984135i \(-0.443224\pi\)
0.177424 + 0.984135i \(0.443224\pi\)
\(942\) −10.6675 −0.347565
\(943\) 17.0436 0.555015
\(944\) 11.9744 0.389735
\(945\) 0 0
\(946\) −3.91916 −0.127423
\(947\) −34.0211 −1.10554 −0.552768 0.833335i \(-0.686429\pi\)
−0.552768 + 0.833335i \(0.686429\pi\)
\(948\) 9.77593 0.317507
\(949\) 20.6434 0.670115
\(950\) 0 0
\(951\) −32.8989 −1.06682
\(952\) 3.62199 0.117389
\(953\) −40.0497 −1.29734 −0.648669 0.761071i \(-0.724674\pi\)
−0.648669 + 0.761071i \(0.724674\pi\)
\(954\) −7.82333 −0.253290
\(955\) 0 0
\(956\) 5.98208 0.193474
\(957\) 4.95936 0.160313
\(958\) 0.547881 0.0177012
\(959\) 1.92355 0.0621146
\(960\) 0 0
\(961\) 78.4740 2.53142
\(962\) −5.76639 −0.185916
\(963\) −15.2874 −0.492630
\(964\) 8.61862 0.277587
\(965\) 0 0
\(966\) 4.18899 0.134779
\(967\) −1.82683 −0.0587469 −0.0293734 0.999569i \(-0.509351\pi\)
−0.0293734 + 0.999569i \(0.509351\pi\)
\(968\) 27.4627 0.882684
\(969\) −1.22280 −0.0392821
\(970\) 0 0
\(971\) 40.4775 1.29899 0.649493 0.760368i \(-0.274981\pi\)
0.649493 + 0.760368i \(0.274981\pi\)
\(972\) −1.45036 −0.0465202
\(973\) 18.1001 0.580261
\(974\) −21.6259 −0.692940
\(975\) 0 0
\(976\) 7.88505 0.252394
\(977\) −20.8782 −0.667954 −0.333977 0.942581i \(-0.608391\pi\)
−0.333977 + 0.942581i \(0.608391\pi\)
\(978\) −5.86020 −0.187388
\(979\) −6.67646 −0.213381
\(980\) 0 0
\(981\) −0.346596 −0.0110660
\(982\) −23.4877 −0.749524
\(983\) −21.0491 −0.671361 −0.335680 0.941976i \(-0.608966\pi\)
−0.335680 + 0.941976i \(0.608966\pi\)
\(984\) −7.99279 −0.254801
\(985\) 0 0
\(986\) 9.77968 0.311449
\(987\) 7.92963 0.252403
\(988\) −4.59805 −0.146283
\(989\) 56.1097 1.78418
\(990\) 0 0
\(991\) 42.2138 1.34097 0.670483 0.741925i \(-0.266087\pi\)
0.670483 + 0.741925i \(0.266087\pi\)
\(992\) 61.3191 1.94688
\(993\) −3.75461 −0.119149
\(994\) 3.84712 0.122023
\(995\) 0 0
\(996\) 11.5970 0.367466
\(997\) 32.3301 1.02390 0.511952 0.859014i \(-0.328923\pi\)
0.511952 + 0.859014i \(0.328923\pi\)
\(998\) −6.59280 −0.208691
\(999\) −2.19473 −0.0694382
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1875.2.a.o.1.5 yes 8
3.2 odd 2 5625.2.a.u.1.4 8
5.2 odd 4 1875.2.b.g.1249.9 16
5.3 odd 4 1875.2.b.g.1249.8 16
5.4 even 2 1875.2.a.n.1.4 8
15.14 odd 2 5625.2.a.bc.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1875.2.a.n.1.4 8 5.4 even 2
1875.2.a.o.1.5 yes 8 1.1 even 1 trivial
1875.2.b.g.1249.8 16 5.3 odd 4
1875.2.b.g.1249.9 16 5.2 odd 4
5625.2.a.u.1.4 8 3.2 odd 2
5625.2.a.bc.1.5 8 15.14 odd 2