Properties

Label 1875.2.a.o.1.3
Level $1875$
Weight $2$
Character 1875.1
Self dual yes
Analytic conductor $14.972$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1875,2,Mod(1,1875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1875, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1875.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1875 = 3 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1875.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.9719503790\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.13366265625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 12x^{6} + 10x^{5} + 41x^{4} - 20x^{3} - 48x^{2} + 8x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.895394\) of defining polynomial
Character \(\chi\) \(=\) 1875.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.895394 q^{2} +1.00000 q^{3} -1.19827 q^{4} -0.895394 q^{6} +5.08992 q^{7} +2.86371 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-0.895394 q^{2} +1.00000 q^{3} -1.19827 q^{4} -0.895394 q^{6} +5.08992 q^{7} +2.86371 q^{8} +1.00000 q^{9} +2.64310 q^{11} -1.19827 q^{12} +2.13295 q^{13} -4.55748 q^{14} -0.167607 q^{16} +7.75001 q^{17} -0.895394 q^{18} +3.08652 q^{19} +5.08992 q^{21} -2.36661 q^{22} -6.14107 q^{23} +2.86371 q^{24} -1.90983 q^{26} +1.00000 q^{27} -6.09909 q^{28} -4.13435 q^{29} -2.74277 q^{31} -5.57735 q^{32} +2.64310 q^{33} -6.93931 q^{34} -1.19827 q^{36} -0.0157706 q^{37} -2.76365 q^{38} +2.13295 q^{39} +3.72829 q^{41} -4.55748 q^{42} -3.81468 q^{43} -3.16715 q^{44} +5.49868 q^{46} -0.897385 q^{47} -0.167607 q^{48} +18.9072 q^{49} +7.75001 q^{51} -2.55585 q^{52} -9.26724 q^{53} -0.895394 q^{54} +14.5760 q^{56} +3.08652 q^{57} +3.70187 q^{58} -11.0693 q^{59} +6.38696 q^{61} +2.45585 q^{62} +5.08992 q^{63} +5.32913 q^{64} -2.36661 q^{66} -5.54154 q^{67} -9.28660 q^{68} -6.14107 q^{69} -0.0828976 q^{71} +2.86371 q^{72} -9.92024 q^{73} +0.0141209 q^{74} -3.69848 q^{76} +13.4532 q^{77} -1.90983 q^{78} +5.30049 q^{79} +1.00000 q^{81} -3.33829 q^{82} +0.723557 q^{83} -6.09909 q^{84} +3.41564 q^{86} -4.13435 q^{87} +7.56907 q^{88} -13.2548 q^{89} +10.8565 q^{91} +7.35867 q^{92} -2.74277 q^{93} +0.803513 q^{94} -5.57735 q^{96} -2.22836 q^{97} -16.9294 q^{98} +2.64310 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{2} + 8 q^{3} + 9 q^{4} + q^{6} + 12 q^{7} + 3 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + q^{2} + 8 q^{3} + 9 q^{4} + q^{6} + 12 q^{7} + 3 q^{8} + 8 q^{9} + 12 q^{11} + 9 q^{12} + 14 q^{13} + 16 q^{14} + 15 q^{16} - q^{17} + q^{18} + 16 q^{19} + 12 q^{21} + 18 q^{22} - 4 q^{23} + 3 q^{24} - 34 q^{26} + 8 q^{27} - 21 q^{28} + 2 q^{29} + 13 q^{31} - 18 q^{32} + 12 q^{33} - 37 q^{34} + 9 q^{36} - 8 q^{37} - 24 q^{38} + 14 q^{39} - 12 q^{41} + 16 q^{42} + 20 q^{43} + 47 q^{44} + 33 q^{46} - 15 q^{47} + 15 q^{48} + 30 q^{49} - q^{51} - q^{52} - 4 q^{53} + q^{54} + 60 q^{56} + 16 q^{57} + 2 q^{58} + 14 q^{59} + 10 q^{61} + 4 q^{62} + 12 q^{63} + 41 q^{64} + 18 q^{66} + 19 q^{67} - 33 q^{68} - 4 q^{69} + 21 q^{71} + 3 q^{72} - 19 q^{73} - 9 q^{74} - q^{76} - 11 q^{77} - 34 q^{78} + 10 q^{79} + 8 q^{81} + 24 q^{82} - 27 q^{83} - 21 q^{84} + 42 q^{86} + 2 q^{87} + 53 q^{88} - 9 q^{89} - 12 q^{91} - 63 q^{92} + 13 q^{93} + 14 q^{94} - 18 q^{96} + 24 q^{97} - 24 q^{98} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.895394 −0.633139 −0.316569 0.948569i \(-0.602531\pi\)
−0.316569 + 0.948569i \(0.602531\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.19827 −0.599135
\(5\) 0 0
\(6\) −0.895394 −0.365543
\(7\) 5.08992 1.92381 0.961904 0.273389i \(-0.0881446\pi\)
0.961904 + 0.273389i \(0.0881446\pi\)
\(8\) 2.86371 1.01247
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.64310 0.796925 0.398462 0.917185i \(-0.369544\pi\)
0.398462 + 0.917185i \(0.369544\pi\)
\(12\) −1.19827 −0.345911
\(13\) 2.13295 0.591575 0.295787 0.955254i \(-0.404418\pi\)
0.295787 + 0.955254i \(0.404418\pi\)
\(14\) −4.55748 −1.21804
\(15\) 0 0
\(16\) −0.167607 −0.0419018
\(17\) 7.75001 1.87965 0.939826 0.341653i \(-0.110987\pi\)
0.939826 + 0.341653i \(0.110987\pi\)
\(18\) −0.895394 −0.211046
\(19\) 3.08652 0.708096 0.354048 0.935227i \(-0.384805\pi\)
0.354048 + 0.935227i \(0.384805\pi\)
\(20\) 0 0
\(21\) 5.08992 1.11071
\(22\) −2.36661 −0.504564
\(23\) −6.14107 −1.28050 −0.640251 0.768166i \(-0.721170\pi\)
−0.640251 + 0.768166i \(0.721170\pi\)
\(24\) 2.86371 0.584552
\(25\) 0 0
\(26\) −1.90983 −0.374549
\(27\) 1.00000 0.192450
\(28\) −6.09909 −1.15262
\(29\) −4.13435 −0.767730 −0.383865 0.923389i \(-0.625407\pi\)
−0.383865 + 0.923389i \(0.625407\pi\)
\(30\) 0 0
\(31\) −2.74277 −0.492615 −0.246308 0.969192i \(-0.579217\pi\)
−0.246308 + 0.969192i \(0.579217\pi\)
\(32\) −5.57735 −0.985945
\(33\) 2.64310 0.460105
\(34\) −6.93931 −1.19008
\(35\) 0 0
\(36\) −1.19827 −0.199712
\(37\) −0.0157706 −0.00259267 −0.00129634 0.999999i \(-0.500413\pi\)
−0.00129634 + 0.999999i \(0.500413\pi\)
\(38\) −2.76365 −0.448323
\(39\) 2.13295 0.341546
\(40\) 0 0
\(41\) 3.72829 0.582262 0.291131 0.956683i \(-0.405969\pi\)
0.291131 + 0.956683i \(0.405969\pi\)
\(42\) −4.55748 −0.703234
\(43\) −3.81468 −0.581733 −0.290866 0.956764i \(-0.593944\pi\)
−0.290866 + 0.956764i \(0.593944\pi\)
\(44\) −3.16715 −0.477466
\(45\) 0 0
\(46\) 5.49868 0.810736
\(47\) −0.897385 −0.130897 −0.0654486 0.997856i \(-0.520848\pi\)
−0.0654486 + 0.997856i \(0.520848\pi\)
\(48\) −0.167607 −0.0241920
\(49\) 18.9072 2.70103
\(50\) 0 0
\(51\) 7.75001 1.08522
\(52\) −2.55585 −0.354433
\(53\) −9.26724 −1.27295 −0.636477 0.771296i \(-0.719609\pi\)
−0.636477 + 0.771296i \(0.719609\pi\)
\(54\) −0.895394 −0.121848
\(55\) 0 0
\(56\) 14.5760 1.94781
\(57\) 3.08652 0.408819
\(58\) 3.70187 0.486080
\(59\) −11.0693 −1.44111 −0.720553 0.693400i \(-0.756112\pi\)
−0.720553 + 0.693400i \(0.756112\pi\)
\(60\) 0 0
\(61\) 6.38696 0.817766 0.408883 0.912587i \(-0.365918\pi\)
0.408883 + 0.912587i \(0.365918\pi\)
\(62\) 2.45585 0.311894
\(63\) 5.08992 0.641269
\(64\) 5.32913 0.666142
\(65\) 0 0
\(66\) −2.36661 −0.291310
\(67\) −5.54154 −0.677007 −0.338504 0.940965i \(-0.609921\pi\)
−0.338504 + 0.940965i \(0.609921\pi\)
\(68\) −9.28660 −1.12617
\(69\) −6.14107 −0.739298
\(70\) 0 0
\(71\) −0.0828976 −0.00983814 −0.00491907 0.999988i \(-0.501566\pi\)
−0.00491907 + 0.999988i \(0.501566\pi\)
\(72\) 2.86371 0.337492
\(73\) −9.92024 −1.16108 −0.580538 0.814233i \(-0.697158\pi\)
−0.580538 + 0.814233i \(0.697158\pi\)
\(74\) 0.0141209 0.00164152
\(75\) 0 0
\(76\) −3.69848 −0.424245
\(77\) 13.4532 1.53313
\(78\) −1.90983 −0.216246
\(79\) 5.30049 0.596352 0.298176 0.954511i \(-0.403622\pi\)
0.298176 + 0.954511i \(0.403622\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −3.33829 −0.368652
\(83\) 0.723557 0.0794207 0.0397104 0.999211i \(-0.487356\pi\)
0.0397104 + 0.999211i \(0.487356\pi\)
\(84\) −6.09909 −0.665466
\(85\) 0 0
\(86\) 3.41564 0.368318
\(87\) −4.13435 −0.443249
\(88\) 7.56907 0.806866
\(89\) −13.2548 −1.40500 −0.702500 0.711683i \(-0.747933\pi\)
−0.702500 + 0.711683i \(0.747933\pi\)
\(90\) 0 0
\(91\) 10.8565 1.13808
\(92\) 7.35867 0.767194
\(93\) −2.74277 −0.284412
\(94\) 0.803513 0.0828760
\(95\) 0 0
\(96\) −5.57735 −0.569236
\(97\) −2.22836 −0.226256 −0.113128 0.993580i \(-0.536087\pi\)
−0.113128 + 0.993580i \(0.536087\pi\)
\(98\) −16.9294 −1.71013
\(99\) 2.64310 0.265642
\(100\) 0 0
\(101\) 15.4908 1.54140 0.770698 0.637201i \(-0.219908\pi\)
0.770698 + 0.637201i \(0.219908\pi\)
\(102\) −6.93931 −0.687094
\(103\) 11.5680 1.13983 0.569913 0.821705i \(-0.306977\pi\)
0.569913 + 0.821705i \(0.306977\pi\)
\(104\) 6.10816 0.598954
\(105\) 0 0
\(106\) 8.29783 0.805956
\(107\) 1.10562 0.106884 0.0534419 0.998571i \(-0.482981\pi\)
0.0534419 + 0.998571i \(0.482981\pi\)
\(108\) −1.19827 −0.115304
\(109\) 10.2626 0.982976 0.491488 0.870884i \(-0.336453\pi\)
0.491488 + 0.870884i \(0.336453\pi\)
\(110\) 0 0
\(111\) −0.0157706 −0.00149688
\(112\) −0.853106 −0.0806109
\(113\) 1.74010 0.163695 0.0818474 0.996645i \(-0.473918\pi\)
0.0818474 + 0.996645i \(0.473918\pi\)
\(114\) −2.76365 −0.258839
\(115\) 0 0
\(116\) 4.95407 0.459974
\(117\) 2.13295 0.197192
\(118\) 9.91142 0.912421
\(119\) 39.4469 3.61609
\(120\) 0 0
\(121\) −4.01402 −0.364911
\(122\) −5.71884 −0.517760
\(123\) 3.72829 0.336169
\(124\) 3.28657 0.295143
\(125\) 0 0
\(126\) −4.55748 −0.406012
\(127\) −9.77368 −0.867274 −0.433637 0.901088i \(-0.642770\pi\)
−0.433637 + 0.901088i \(0.642770\pi\)
\(128\) 6.38302 0.564185
\(129\) −3.81468 −0.335864
\(130\) 0 0
\(131\) −10.9407 −0.955893 −0.477947 0.878389i \(-0.658619\pi\)
−0.477947 + 0.878389i \(0.658619\pi\)
\(132\) −3.16715 −0.275665
\(133\) 15.7101 1.36224
\(134\) 4.96186 0.428640
\(135\) 0 0
\(136\) 22.1938 1.90310
\(137\) −16.7888 −1.43436 −0.717181 0.696887i \(-0.754568\pi\)
−0.717181 + 0.696887i \(0.754568\pi\)
\(138\) 5.49868 0.468078
\(139\) −5.48342 −0.465098 −0.232549 0.972585i \(-0.574707\pi\)
−0.232549 + 0.972585i \(0.574707\pi\)
\(140\) 0 0
\(141\) −0.897385 −0.0755735
\(142\) 0.0742260 0.00622891
\(143\) 5.63761 0.471440
\(144\) −0.167607 −0.0139673
\(145\) 0 0
\(146\) 8.88251 0.735122
\(147\) 18.9072 1.55944
\(148\) 0.0188974 0.00155336
\(149\) −0.273699 −0.0224223 −0.0112112 0.999937i \(-0.503569\pi\)
−0.0112112 + 0.999937i \(0.503569\pi\)
\(150\) 0 0
\(151\) 1.60377 0.130513 0.0652564 0.997869i \(-0.479213\pi\)
0.0652564 + 0.997869i \(0.479213\pi\)
\(152\) 8.83890 0.716929
\(153\) 7.75001 0.626551
\(154\) −12.0459 −0.970684
\(155\) 0 0
\(156\) −2.55585 −0.204632
\(157\) 16.5512 1.32093 0.660465 0.750857i \(-0.270359\pi\)
0.660465 + 0.750857i \(0.270359\pi\)
\(158\) −4.74603 −0.377574
\(159\) −9.26724 −0.734940
\(160\) 0 0
\(161\) −31.2575 −2.46344
\(162\) −0.895394 −0.0703488
\(163\) 22.9917 1.80085 0.900424 0.435014i \(-0.143257\pi\)
0.900424 + 0.435014i \(0.143257\pi\)
\(164\) −4.46750 −0.348853
\(165\) 0 0
\(166\) −0.647868 −0.0502843
\(167\) −17.1191 −1.32472 −0.662359 0.749187i \(-0.730445\pi\)
−0.662359 + 0.749187i \(0.730445\pi\)
\(168\) 14.5760 1.12457
\(169\) −8.45051 −0.650039
\(170\) 0 0
\(171\) 3.08652 0.236032
\(172\) 4.57101 0.348537
\(173\) 3.30634 0.251376 0.125688 0.992070i \(-0.459886\pi\)
0.125688 + 0.992070i \(0.459886\pi\)
\(174\) 3.70187 0.280638
\(175\) 0 0
\(176\) −0.443002 −0.0333926
\(177\) −11.0693 −0.832023
\(178\) 11.8682 0.889561
\(179\) 12.1351 0.907020 0.453510 0.891251i \(-0.350172\pi\)
0.453510 + 0.891251i \(0.350172\pi\)
\(180\) 0 0
\(181\) 15.5920 1.15894 0.579472 0.814992i \(-0.303259\pi\)
0.579472 + 0.814992i \(0.303259\pi\)
\(182\) −9.72088 −0.720560
\(183\) 6.38696 0.472138
\(184\) −17.5863 −1.29648
\(185\) 0 0
\(186\) 2.45585 0.180072
\(187\) 20.4840 1.49794
\(188\) 1.07531 0.0784251
\(189\) 5.08992 0.370237
\(190\) 0 0
\(191\) −4.82025 −0.348781 −0.174391 0.984677i \(-0.555796\pi\)
−0.174391 + 0.984677i \(0.555796\pi\)
\(192\) 5.32913 0.384597
\(193\) −17.7887 −1.28046 −0.640230 0.768183i \(-0.721161\pi\)
−0.640230 + 0.768183i \(0.721161\pi\)
\(194\) 1.99526 0.143251
\(195\) 0 0
\(196\) −22.6560 −1.61828
\(197\) −22.2222 −1.58327 −0.791633 0.610997i \(-0.790769\pi\)
−0.791633 + 0.610997i \(0.790769\pi\)
\(198\) −2.36661 −0.168188
\(199\) −16.3687 −1.16035 −0.580175 0.814492i \(-0.697016\pi\)
−0.580175 + 0.814492i \(0.697016\pi\)
\(200\) 0 0
\(201\) −5.54154 −0.390870
\(202\) −13.8704 −0.975918
\(203\) −21.0435 −1.47696
\(204\) −9.28660 −0.650192
\(205\) 0 0
\(206\) −10.3579 −0.721668
\(207\) −6.14107 −0.426834
\(208\) −0.357498 −0.0247880
\(209\) 8.15798 0.564299
\(210\) 0 0
\(211\) −14.7224 −1.01353 −0.506765 0.862084i \(-0.669159\pi\)
−0.506765 + 0.862084i \(0.669159\pi\)
\(212\) 11.1047 0.762671
\(213\) −0.0828976 −0.00568005
\(214\) −0.989961 −0.0676723
\(215\) 0 0
\(216\) 2.86371 0.194851
\(217\) −13.9604 −0.947697
\(218\) −9.18904 −0.622360
\(219\) −9.92024 −0.670347
\(220\) 0 0
\(221\) 16.5304 1.11196
\(222\) 0.0141209 0.000947732 0
\(223\) 21.7310 1.45521 0.727607 0.685994i \(-0.240632\pi\)
0.727607 + 0.685994i \(0.240632\pi\)
\(224\) −28.3882 −1.89677
\(225\) 0 0
\(226\) −1.55807 −0.103642
\(227\) 27.4127 1.81944 0.909722 0.415218i \(-0.136295\pi\)
0.909722 + 0.415218i \(0.136295\pi\)
\(228\) −3.69848 −0.244938
\(229\) 19.4643 1.28624 0.643118 0.765767i \(-0.277640\pi\)
0.643118 + 0.765767i \(0.277640\pi\)
\(230\) 0 0
\(231\) 13.4532 0.885152
\(232\) −11.8396 −0.777307
\(233\) −10.2000 −0.668224 −0.334112 0.942533i \(-0.608436\pi\)
−0.334112 + 0.942533i \(0.608436\pi\)
\(234\) −1.90983 −0.124850
\(235\) 0 0
\(236\) 13.2641 0.863418
\(237\) 5.30049 0.344304
\(238\) −35.3205 −2.28949
\(239\) −3.18653 −0.206120 −0.103060 0.994675i \(-0.532863\pi\)
−0.103060 + 0.994675i \(0.532863\pi\)
\(240\) 0 0
\(241\) 12.4630 0.802811 0.401405 0.915901i \(-0.368522\pi\)
0.401405 + 0.915901i \(0.368522\pi\)
\(242\) 3.59413 0.231040
\(243\) 1.00000 0.0641500
\(244\) −7.65330 −0.489953
\(245\) 0 0
\(246\) −3.33829 −0.212842
\(247\) 6.58340 0.418892
\(248\) −7.85449 −0.498760
\(249\) 0.723557 0.0458536
\(250\) 0 0
\(251\) 1.49139 0.0941357 0.0470679 0.998892i \(-0.485012\pi\)
0.0470679 + 0.998892i \(0.485012\pi\)
\(252\) −6.09909 −0.384207
\(253\) −16.2315 −1.02046
\(254\) 8.75129 0.549105
\(255\) 0 0
\(256\) −16.3736 −1.02335
\(257\) −19.3647 −1.20794 −0.603969 0.797008i \(-0.706415\pi\)
−0.603969 + 0.797008i \(0.706415\pi\)
\(258\) 3.41564 0.212648
\(259\) −0.0802710 −0.00498780
\(260\) 0 0
\(261\) −4.13435 −0.255910
\(262\) 9.79623 0.605213
\(263\) −13.7684 −0.848996 −0.424498 0.905429i \(-0.639549\pi\)
−0.424498 + 0.905429i \(0.639549\pi\)
\(264\) 7.56907 0.465844
\(265\) 0 0
\(266\) −14.0667 −0.862487
\(267\) −13.2548 −0.811178
\(268\) 6.64027 0.405619
\(269\) 2.85430 0.174030 0.0870149 0.996207i \(-0.472267\pi\)
0.0870149 + 0.996207i \(0.472267\pi\)
\(270\) 0 0
\(271\) 21.9647 1.33426 0.667131 0.744941i \(-0.267522\pi\)
0.667131 + 0.744941i \(0.267522\pi\)
\(272\) −1.29896 −0.0787608
\(273\) 10.8565 0.657068
\(274\) 15.0326 0.908150
\(275\) 0 0
\(276\) 7.35867 0.442940
\(277\) 2.63773 0.158486 0.0792428 0.996855i \(-0.474750\pi\)
0.0792428 + 0.996855i \(0.474750\pi\)
\(278\) 4.90982 0.294472
\(279\) −2.74277 −0.164205
\(280\) 0 0
\(281\) −8.16358 −0.486998 −0.243499 0.969901i \(-0.578295\pi\)
−0.243499 + 0.969901i \(0.578295\pi\)
\(282\) 0.803513 0.0478485
\(283\) −6.06194 −0.360345 −0.180173 0.983635i \(-0.557666\pi\)
−0.180173 + 0.983635i \(0.557666\pi\)
\(284\) 0.0993338 0.00589437
\(285\) 0 0
\(286\) −5.04788 −0.298487
\(287\) 18.9767 1.12016
\(288\) −5.57735 −0.328648
\(289\) 43.0626 2.53309
\(290\) 0 0
\(291\) −2.22836 −0.130629
\(292\) 11.8871 0.695641
\(293\) −16.5940 −0.969432 −0.484716 0.874672i \(-0.661077\pi\)
−0.484716 + 0.874672i \(0.661077\pi\)
\(294\) −16.9294 −0.987344
\(295\) 0 0
\(296\) −0.0451624 −0.00262501
\(297\) 2.64310 0.153368
\(298\) 0.245069 0.0141964
\(299\) −13.0986 −0.757513
\(300\) 0 0
\(301\) −19.4164 −1.11914
\(302\) −1.43600 −0.0826327
\(303\) 15.4908 0.889925
\(304\) −0.517323 −0.0296705
\(305\) 0 0
\(306\) −6.93931 −0.396694
\(307\) 14.8424 0.847098 0.423549 0.905873i \(-0.360784\pi\)
0.423549 + 0.905873i \(0.360784\pi\)
\(308\) −16.1205 −0.918552
\(309\) 11.5680 0.658079
\(310\) 0 0
\(311\) 13.6460 0.773796 0.386898 0.922123i \(-0.373547\pi\)
0.386898 + 0.922123i \(0.373547\pi\)
\(312\) 6.10816 0.345806
\(313\) 3.18194 0.179854 0.0899270 0.995948i \(-0.471337\pi\)
0.0899270 + 0.995948i \(0.471337\pi\)
\(314\) −14.8198 −0.836332
\(315\) 0 0
\(316\) −6.35142 −0.357295
\(317\) 3.70586 0.208142 0.104071 0.994570i \(-0.466813\pi\)
0.104071 + 0.994570i \(0.466813\pi\)
\(318\) 8.29783 0.465319
\(319\) −10.9275 −0.611823
\(320\) 0 0
\(321\) 1.10562 0.0617094
\(322\) 27.9878 1.55970
\(323\) 23.9205 1.33097
\(324\) −1.19827 −0.0665706
\(325\) 0 0
\(326\) −20.5866 −1.14019
\(327\) 10.2626 0.567522
\(328\) 10.6768 0.589525
\(329\) −4.56762 −0.251821
\(330\) 0 0
\(331\) −32.3878 −1.78020 −0.890098 0.455769i \(-0.849364\pi\)
−0.890098 + 0.455769i \(0.849364\pi\)
\(332\) −0.867017 −0.0475838
\(333\) −0.0157706 −0.000864223 0
\(334\) 15.3284 0.838730
\(335\) 0 0
\(336\) −0.853106 −0.0465408
\(337\) −21.9294 −1.19457 −0.597285 0.802029i \(-0.703754\pi\)
−0.597285 + 0.802029i \(0.703754\pi\)
\(338\) 7.56653 0.411565
\(339\) 1.74010 0.0945092
\(340\) 0 0
\(341\) −7.24940 −0.392577
\(342\) −2.76365 −0.149441
\(343\) 60.6068 3.27246
\(344\) −10.9241 −0.588990
\(345\) 0 0
\(346\) −2.96047 −0.159156
\(347\) −24.8312 −1.33301 −0.666503 0.745502i \(-0.732210\pi\)
−0.666503 + 0.745502i \(0.732210\pi\)
\(348\) 4.95407 0.265566
\(349\) −1.99222 −0.106641 −0.0533204 0.998577i \(-0.516980\pi\)
−0.0533204 + 0.998577i \(0.516980\pi\)
\(350\) 0 0
\(351\) 2.13295 0.113849
\(352\) −14.7415 −0.785724
\(353\) 2.00997 0.106980 0.0534900 0.998568i \(-0.482965\pi\)
0.0534900 + 0.998568i \(0.482965\pi\)
\(354\) 9.91142 0.526786
\(355\) 0 0
\(356\) 15.8828 0.841785
\(357\) 39.4469 2.08775
\(358\) −10.8657 −0.574270
\(359\) 24.2078 1.27764 0.638818 0.769358i \(-0.279424\pi\)
0.638818 + 0.769358i \(0.279424\pi\)
\(360\) 0 0
\(361\) −9.47340 −0.498600
\(362\) −13.9610 −0.733772
\(363\) −4.01402 −0.210682
\(364\) −13.0091 −0.681861
\(365\) 0 0
\(366\) −5.71884 −0.298929
\(367\) −0.592824 −0.0309452 −0.0154726 0.999880i \(-0.504925\pi\)
−0.0154726 + 0.999880i \(0.504925\pi\)
\(368\) 1.02929 0.0536553
\(369\) 3.72829 0.194087
\(370\) 0 0
\(371\) −47.1695 −2.44892
\(372\) 3.28657 0.170401
\(373\) 8.42516 0.436238 0.218119 0.975922i \(-0.430008\pi\)
0.218119 + 0.975922i \(0.430008\pi\)
\(374\) −18.3413 −0.948405
\(375\) 0 0
\(376\) −2.56985 −0.132530
\(377\) −8.81838 −0.454170
\(378\) −4.55748 −0.234411
\(379\) −18.6130 −0.956087 −0.478043 0.878336i \(-0.658654\pi\)
−0.478043 + 0.878336i \(0.658654\pi\)
\(380\) 0 0
\(381\) −9.77368 −0.500721
\(382\) 4.31602 0.220827
\(383\) −9.94283 −0.508055 −0.254027 0.967197i \(-0.581755\pi\)
−0.254027 + 0.967197i \(0.581755\pi\)
\(384\) 6.38302 0.325732
\(385\) 0 0
\(386\) 15.9279 0.810709
\(387\) −3.81468 −0.193911
\(388\) 2.67018 0.135558
\(389\) −5.93571 −0.300952 −0.150476 0.988614i \(-0.548081\pi\)
−0.150476 + 0.988614i \(0.548081\pi\)
\(390\) 0 0
\(391\) −47.5934 −2.40690
\(392\) 54.1449 2.73473
\(393\) −10.9407 −0.551885
\(394\) 19.8976 1.00243
\(395\) 0 0
\(396\) −3.16715 −0.159155
\(397\) −3.07681 −0.154421 −0.0772105 0.997015i \(-0.524601\pi\)
−0.0772105 + 0.997015i \(0.524601\pi\)
\(398\) 14.6565 0.734662
\(399\) 15.7101 0.786490
\(400\) 0 0
\(401\) 20.6370 1.03056 0.515281 0.857021i \(-0.327687\pi\)
0.515281 + 0.857021i \(0.327687\pi\)
\(402\) 4.96186 0.247475
\(403\) −5.85019 −0.291419
\(404\) −18.5622 −0.923505
\(405\) 0 0
\(406\) 18.8422 0.935124
\(407\) −0.0416833 −0.00206616
\(408\) 22.1938 1.09876
\(409\) 20.8240 1.02968 0.514840 0.857286i \(-0.327851\pi\)
0.514840 + 0.857286i \(0.327851\pi\)
\(410\) 0 0
\(411\) −16.7888 −0.828129
\(412\) −13.8616 −0.682910
\(413\) −56.3421 −2.77241
\(414\) 5.49868 0.270245
\(415\) 0 0
\(416\) −11.8962 −0.583260
\(417\) −5.48342 −0.268524
\(418\) −7.30460 −0.357280
\(419\) 11.3349 0.553748 0.276874 0.960906i \(-0.410702\pi\)
0.276874 + 0.960906i \(0.410702\pi\)
\(420\) 0 0
\(421\) −2.03813 −0.0993323 −0.0496662 0.998766i \(-0.515816\pi\)
−0.0496662 + 0.998766i \(0.515816\pi\)
\(422\) 13.1823 0.641705
\(423\) −0.897385 −0.0436324
\(424\) −26.5387 −1.28883
\(425\) 0 0
\(426\) 0.0742260 0.00359626
\(427\) 32.5091 1.57322
\(428\) −1.32483 −0.0640379
\(429\) 5.63761 0.272186
\(430\) 0 0
\(431\) −17.9230 −0.863319 −0.431660 0.902037i \(-0.642072\pi\)
−0.431660 + 0.902037i \(0.642072\pi\)
\(432\) −0.167607 −0.00806400
\(433\) −14.0213 −0.673821 −0.336911 0.941537i \(-0.609382\pi\)
−0.336911 + 0.941537i \(0.609382\pi\)
\(434\) 12.5001 0.600024
\(435\) 0 0
\(436\) −12.2973 −0.588936
\(437\) −18.9545 −0.906718
\(438\) 8.88251 0.424423
\(439\) −1.35014 −0.0644385 −0.0322192 0.999481i \(-0.510257\pi\)
−0.0322192 + 0.999481i \(0.510257\pi\)
\(440\) 0 0
\(441\) 18.9072 0.900345
\(442\) −14.8012 −0.704022
\(443\) −8.53290 −0.405410 −0.202705 0.979240i \(-0.564973\pi\)
−0.202705 + 0.979240i \(0.564973\pi\)
\(444\) 0.0188974 0.000896833 0
\(445\) 0 0
\(446\) −19.4578 −0.921353
\(447\) −0.273699 −0.0129455
\(448\) 27.1248 1.28153
\(449\) −33.6080 −1.58606 −0.793030 0.609183i \(-0.791497\pi\)
−0.793030 + 0.609183i \(0.791497\pi\)
\(450\) 0 0
\(451\) 9.85425 0.464019
\(452\) −2.08511 −0.0980753
\(453\) 1.60377 0.0753516
\(454\) −24.5451 −1.15196
\(455\) 0 0
\(456\) 8.83890 0.413919
\(457\) 15.8701 0.742372 0.371186 0.928559i \(-0.378951\pi\)
0.371186 + 0.928559i \(0.378951\pi\)
\(458\) −17.4282 −0.814367
\(459\) 7.75001 0.361739
\(460\) 0 0
\(461\) 12.1978 0.568110 0.284055 0.958808i \(-0.408320\pi\)
0.284055 + 0.958808i \(0.408320\pi\)
\(462\) −12.0459 −0.560424
\(463\) −12.6538 −0.588070 −0.294035 0.955795i \(-0.594998\pi\)
−0.294035 + 0.955795i \(0.594998\pi\)
\(464\) 0.692947 0.0321693
\(465\) 0 0
\(466\) 9.13301 0.423078
\(467\) 11.1891 0.517769 0.258884 0.965908i \(-0.416645\pi\)
0.258884 + 0.965908i \(0.416645\pi\)
\(468\) −2.55585 −0.118144
\(469\) −28.2060 −1.30243
\(470\) 0 0
\(471\) 16.5512 0.762639
\(472\) −31.6994 −1.45908
\(473\) −10.0826 −0.463597
\(474\) −4.74603 −0.217992
\(475\) 0 0
\(476\) −47.2680 −2.16653
\(477\) −9.26724 −0.424318
\(478\) 2.85320 0.130502
\(479\) 12.5593 0.573848 0.286924 0.957953i \(-0.407367\pi\)
0.286924 + 0.957953i \(0.407367\pi\)
\(480\) 0 0
\(481\) −0.0336379 −0.00153376
\(482\) −11.1593 −0.508291
\(483\) −31.2575 −1.42227
\(484\) 4.80989 0.218631
\(485\) 0 0
\(486\) −0.895394 −0.0406159
\(487\) −25.3662 −1.14945 −0.574726 0.818346i \(-0.694891\pi\)
−0.574726 + 0.818346i \(0.694891\pi\)
\(488\) 18.2904 0.827968
\(489\) 22.9917 1.03972
\(490\) 0 0
\(491\) 20.6927 0.933847 0.466924 0.884298i \(-0.345362\pi\)
0.466924 + 0.884298i \(0.345362\pi\)
\(492\) −4.46750 −0.201411
\(493\) −32.0413 −1.44307
\(494\) −5.89473 −0.265217
\(495\) 0 0
\(496\) 0.459707 0.0206415
\(497\) −0.421942 −0.0189267
\(498\) −0.647868 −0.0290317
\(499\) 40.3649 1.80698 0.903490 0.428608i \(-0.140996\pi\)
0.903490 + 0.428608i \(0.140996\pi\)
\(500\) 0 0
\(501\) −17.1191 −0.764826
\(502\) −1.33538 −0.0596010
\(503\) 4.91088 0.218966 0.109483 0.993989i \(-0.465081\pi\)
0.109483 + 0.993989i \(0.465081\pi\)
\(504\) 14.5760 0.649269
\(505\) 0 0
\(506\) 14.5335 0.646095
\(507\) −8.45051 −0.375300
\(508\) 11.7115 0.519614
\(509\) 16.5254 0.732476 0.366238 0.930521i \(-0.380646\pi\)
0.366238 + 0.930521i \(0.380646\pi\)
\(510\) 0 0
\(511\) −50.4932 −2.23369
\(512\) 1.89476 0.0837373
\(513\) 3.08652 0.136273
\(514\) 17.3390 0.764792
\(515\) 0 0
\(516\) 4.57101 0.201228
\(517\) −2.37188 −0.104315
\(518\) 0.0718741 0.00315797
\(519\) 3.30634 0.145132
\(520\) 0 0
\(521\) 10.2405 0.448646 0.224323 0.974515i \(-0.427983\pi\)
0.224323 + 0.974515i \(0.427983\pi\)
\(522\) 3.70187 0.162027
\(523\) −18.5451 −0.810919 −0.405459 0.914113i \(-0.632888\pi\)
−0.405459 + 0.914113i \(0.632888\pi\)
\(524\) 13.1099 0.572709
\(525\) 0 0
\(526\) 12.3281 0.537532
\(527\) −21.2564 −0.925945
\(528\) −0.443002 −0.0192792
\(529\) 14.7128 0.639686
\(530\) 0 0
\(531\) −11.0693 −0.480369
\(532\) −18.8250 −0.816166
\(533\) 7.95228 0.344451
\(534\) 11.8682 0.513588
\(535\) 0 0
\(536\) −15.8694 −0.685453
\(537\) 12.1351 0.523669
\(538\) −2.55572 −0.110185
\(539\) 49.9737 2.15252
\(540\) 0 0
\(541\) −22.9520 −0.986782 −0.493391 0.869808i \(-0.664243\pi\)
−0.493391 + 0.869808i \(0.664243\pi\)
\(542\) −19.6671 −0.844773
\(543\) 15.5920 0.669116
\(544\) −43.2245 −1.85323
\(545\) 0 0
\(546\) −9.72088 −0.416015
\(547\) 31.3724 1.34139 0.670693 0.741735i \(-0.265997\pi\)
0.670693 + 0.741735i \(0.265997\pi\)
\(548\) 20.1175 0.859377
\(549\) 6.38696 0.272589
\(550\) 0 0
\(551\) −12.7608 −0.543627
\(552\) −17.5863 −0.748521
\(553\) 26.9791 1.14727
\(554\) −2.36180 −0.100343
\(555\) 0 0
\(556\) 6.57063 0.278657
\(557\) −19.4590 −0.824506 −0.412253 0.911069i \(-0.635258\pi\)
−0.412253 + 0.911069i \(0.635258\pi\)
\(558\) 2.45585 0.103965
\(559\) −8.13653 −0.344138
\(560\) 0 0
\(561\) 20.4840 0.864837
\(562\) 7.30962 0.308338
\(563\) −14.0217 −0.590944 −0.295472 0.955351i \(-0.595477\pi\)
−0.295472 + 0.955351i \(0.595477\pi\)
\(564\) 1.07531 0.0452787
\(565\) 0 0
\(566\) 5.42783 0.228149
\(567\) 5.08992 0.213756
\(568\) −0.237395 −0.00996086
\(569\) −40.4550 −1.69596 −0.847982 0.530025i \(-0.822182\pi\)
−0.847982 + 0.530025i \(0.822182\pi\)
\(570\) 0 0
\(571\) −10.9176 −0.456886 −0.228443 0.973557i \(-0.573363\pi\)
−0.228443 + 0.973557i \(0.573363\pi\)
\(572\) −6.75538 −0.282457
\(573\) −4.82025 −0.201369
\(574\) −16.9916 −0.709216
\(575\) 0 0
\(576\) 5.32913 0.222047
\(577\) 18.0389 0.750968 0.375484 0.926829i \(-0.377476\pi\)
0.375484 + 0.926829i \(0.377476\pi\)
\(578\) −38.5580 −1.60380
\(579\) −17.7887 −0.739274
\(580\) 0 0
\(581\) 3.68285 0.152790
\(582\) 1.99526 0.0827062
\(583\) −24.4942 −1.01445
\(584\) −28.4087 −1.17556
\(585\) 0 0
\(586\) 14.8582 0.613785
\(587\) 10.1243 0.417874 0.208937 0.977929i \(-0.433000\pi\)
0.208937 + 0.977929i \(0.433000\pi\)
\(588\) −22.6560 −0.934317
\(589\) −8.46560 −0.348819
\(590\) 0 0
\(591\) −22.2222 −0.914099
\(592\) 0.00264326 0.000108637 0
\(593\) 8.24833 0.338718 0.169359 0.985554i \(-0.445830\pi\)
0.169359 + 0.985554i \(0.445830\pi\)
\(594\) −2.36661 −0.0971034
\(595\) 0 0
\(596\) 0.327966 0.0134340
\(597\) −16.3687 −0.669928
\(598\) 11.7284 0.479611
\(599\) 33.3982 1.36461 0.682307 0.731066i \(-0.260977\pi\)
0.682307 + 0.731066i \(0.260977\pi\)
\(600\) 0 0
\(601\) 23.7251 0.967767 0.483884 0.875132i \(-0.339226\pi\)
0.483884 + 0.875132i \(0.339226\pi\)
\(602\) 17.3853 0.708572
\(603\) −5.54154 −0.225669
\(604\) −1.92175 −0.0781948
\(605\) 0 0
\(606\) −13.8704 −0.563446
\(607\) −30.5545 −1.24017 −0.620084 0.784535i \(-0.712902\pi\)
−0.620084 + 0.784535i \(0.712902\pi\)
\(608\) −17.2146 −0.698144
\(609\) −21.0435 −0.852726
\(610\) 0 0
\(611\) −1.91408 −0.0774354
\(612\) −9.28660 −0.375389
\(613\) −9.49041 −0.383314 −0.191657 0.981462i \(-0.561386\pi\)
−0.191657 + 0.981462i \(0.561386\pi\)
\(614\) −13.2898 −0.536331
\(615\) 0 0
\(616\) 38.5259 1.55225
\(617\) −28.4765 −1.14642 −0.573210 0.819408i \(-0.694302\pi\)
−0.573210 + 0.819408i \(0.694302\pi\)
\(618\) −10.3579 −0.416655
\(619\) −6.76342 −0.271845 −0.135922 0.990719i \(-0.543400\pi\)
−0.135922 + 0.990719i \(0.543400\pi\)
\(620\) 0 0
\(621\) −6.14107 −0.246433
\(622\) −12.2186 −0.489920
\(623\) −67.4656 −2.70295
\(624\) −0.357498 −0.0143114
\(625\) 0 0
\(626\) −2.84909 −0.113873
\(627\) 8.15798 0.325798
\(628\) −19.8328 −0.791415
\(629\) −0.122222 −0.00487332
\(630\) 0 0
\(631\) −11.2740 −0.448812 −0.224406 0.974496i \(-0.572044\pi\)
−0.224406 + 0.974496i \(0.572044\pi\)
\(632\) 15.1791 0.603791
\(633\) −14.7224 −0.585162
\(634\) −3.31821 −0.131783
\(635\) 0 0
\(636\) 11.1047 0.440328
\(637\) 40.3282 1.59786
\(638\) 9.78442 0.387369
\(639\) −0.0828976 −0.00327938
\(640\) 0 0
\(641\) 12.4989 0.493676 0.246838 0.969057i \(-0.420609\pi\)
0.246838 + 0.969057i \(0.420609\pi\)
\(642\) −0.989961 −0.0390706
\(643\) −15.6325 −0.616487 −0.308244 0.951307i \(-0.599741\pi\)
−0.308244 + 0.951307i \(0.599741\pi\)
\(644\) 37.4550 1.47593
\(645\) 0 0
\(646\) −21.4183 −0.842692
\(647\) −34.4383 −1.35391 −0.676955 0.736025i \(-0.736701\pi\)
−0.676955 + 0.736025i \(0.736701\pi\)
\(648\) 2.86371 0.112497
\(649\) −29.2574 −1.14845
\(650\) 0 0
\(651\) −13.9604 −0.547153
\(652\) −27.5503 −1.07895
\(653\) 34.6831 1.35725 0.678627 0.734483i \(-0.262575\pi\)
0.678627 + 0.734483i \(0.262575\pi\)
\(654\) −9.18904 −0.359320
\(655\) 0 0
\(656\) −0.624889 −0.0243978
\(657\) −9.92024 −0.387025
\(658\) 4.08981 0.159438
\(659\) −4.40271 −0.171505 −0.0857526 0.996316i \(-0.527329\pi\)
−0.0857526 + 0.996316i \(0.527329\pi\)
\(660\) 0 0
\(661\) 14.4318 0.561333 0.280666 0.959805i \(-0.409445\pi\)
0.280666 + 0.959805i \(0.409445\pi\)
\(662\) 28.9999 1.12711
\(663\) 16.5304 0.641988
\(664\) 2.07206 0.0804115
\(665\) 0 0
\(666\) 0.0141209 0.000547173 0
\(667\) 25.3894 0.983080
\(668\) 20.5133 0.793685
\(669\) 21.7310 0.840169
\(670\) 0 0
\(671\) 16.8814 0.651698
\(672\) −28.3882 −1.09510
\(673\) 2.75839 0.106328 0.0531640 0.998586i \(-0.483069\pi\)
0.0531640 + 0.998586i \(0.483069\pi\)
\(674\) 19.6354 0.756328
\(675\) 0 0
\(676\) 10.1260 0.389461
\(677\) 25.9431 0.997073 0.498537 0.866869i \(-0.333871\pi\)
0.498537 + 0.866869i \(0.333871\pi\)
\(678\) −1.55807 −0.0598375
\(679\) −11.3422 −0.435273
\(680\) 0 0
\(681\) 27.4127 1.05046
\(682\) 6.49107 0.248556
\(683\) −16.5958 −0.635019 −0.317510 0.948255i \(-0.602847\pi\)
−0.317510 + 0.948255i \(0.602847\pi\)
\(684\) −3.69848 −0.141415
\(685\) 0 0
\(686\) −54.2670 −2.07192
\(687\) 19.4643 0.742609
\(688\) 0.639367 0.0243756
\(689\) −19.7666 −0.753047
\(690\) 0 0
\(691\) 12.4942 0.475300 0.237650 0.971351i \(-0.423623\pi\)
0.237650 + 0.971351i \(0.423623\pi\)
\(692\) −3.96189 −0.150608
\(693\) 13.4532 0.511043
\(694\) 22.2337 0.843978
\(695\) 0 0
\(696\) −11.8396 −0.448779
\(697\) 28.8943 1.09445
\(698\) 1.78382 0.0675185
\(699\) −10.2000 −0.385799
\(700\) 0 0
\(701\) 50.7235 1.91580 0.957900 0.287101i \(-0.0926917\pi\)
0.957900 + 0.287101i \(0.0926917\pi\)
\(702\) −1.90983 −0.0720820
\(703\) −0.0486762 −0.00183586
\(704\) 14.0854 0.530865
\(705\) 0 0
\(706\) −1.79971 −0.0677331
\(707\) 78.8470 2.96535
\(708\) 13.2641 0.498494
\(709\) −11.7870 −0.442671 −0.221335 0.975198i \(-0.571042\pi\)
−0.221335 + 0.975198i \(0.571042\pi\)
\(710\) 0 0
\(711\) 5.30049 0.198784
\(712\) −37.9578 −1.42253
\(713\) 16.8435 0.630795
\(714\) −35.3205 −1.32184
\(715\) 0 0
\(716\) −14.5411 −0.543428
\(717\) −3.18653 −0.119003
\(718\) −21.6755 −0.808921
\(719\) 7.52191 0.280520 0.140260 0.990115i \(-0.455206\pi\)
0.140260 + 0.990115i \(0.455206\pi\)
\(720\) 0 0
\(721\) 58.8800 2.19281
\(722\) 8.48242 0.315683
\(723\) 12.4630 0.463503
\(724\) −18.6834 −0.694364
\(725\) 0 0
\(726\) 3.59413 0.133391
\(727\) −7.51316 −0.278648 −0.139324 0.990247i \(-0.544493\pi\)
−0.139324 + 0.990247i \(0.544493\pi\)
\(728\) 31.0900 1.15227
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −29.5638 −1.09346
\(732\) −7.65330 −0.282874
\(733\) −4.39758 −0.162428 −0.0812141 0.996697i \(-0.525880\pi\)
−0.0812141 + 0.996697i \(0.525880\pi\)
\(734\) 0.530811 0.0195926
\(735\) 0 0
\(736\) 34.2509 1.26250
\(737\) −14.6469 −0.539524
\(738\) −3.33829 −0.122884
\(739\) −45.4541 −1.67206 −0.836028 0.548686i \(-0.815128\pi\)
−0.836028 + 0.548686i \(0.815128\pi\)
\(740\) 0 0
\(741\) 6.58340 0.241847
\(742\) 42.2352 1.55050
\(743\) 45.0800 1.65382 0.826912 0.562331i \(-0.190095\pi\)
0.826912 + 0.562331i \(0.190095\pi\)
\(744\) −7.85449 −0.287959
\(745\) 0 0
\(746\) −7.54384 −0.276199
\(747\) 0.723557 0.0264736
\(748\) −24.5454 −0.897469
\(749\) 5.62749 0.205624
\(750\) 0 0
\(751\) −14.7555 −0.538435 −0.269217 0.963079i \(-0.586765\pi\)
−0.269217 + 0.963079i \(0.586765\pi\)
\(752\) 0.150408 0.00548482
\(753\) 1.49139 0.0543493
\(754\) 7.89592 0.287552
\(755\) 0 0
\(756\) −6.09909 −0.221822
\(757\) −41.8730 −1.52190 −0.760950 0.648811i \(-0.775267\pi\)
−0.760950 + 0.648811i \(0.775267\pi\)
\(758\) 16.6660 0.605336
\(759\) −16.2315 −0.589165
\(760\) 0 0
\(761\) −1.58549 −0.0574738 −0.0287369 0.999587i \(-0.509149\pi\)
−0.0287369 + 0.999587i \(0.509149\pi\)
\(762\) 8.75129 0.317026
\(763\) 52.2356 1.89106
\(764\) 5.77596 0.208967
\(765\) 0 0
\(766\) 8.90275 0.321669
\(767\) −23.6104 −0.852522
\(768\) −16.3736 −0.590831
\(769\) 17.0820 0.615993 0.307996 0.951388i \(-0.400342\pi\)
0.307996 + 0.951388i \(0.400342\pi\)
\(770\) 0 0
\(771\) −19.3647 −0.697403
\(772\) 21.3157 0.767169
\(773\) 51.0507 1.83617 0.918083 0.396388i \(-0.129737\pi\)
0.918083 + 0.396388i \(0.129737\pi\)
\(774\) 3.41564 0.122773
\(775\) 0 0
\(776\) −6.38138 −0.229078
\(777\) −0.0802710 −0.00287971
\(778\) 5.31479 0.190545
\(779\) 11.5075 0.412297
\(780\) 0 0
\(781\) −0.219107 −0.00784025
\(782\) 42.6148 1.52390
\(783\) −4.13435 −0.147750
\(784\) −3.16899 −0.113178
\(785\) 0 0
\(786\) 9.79623 0.349420
\(787\) −41.2363 −1.46992 −0.734958 0.678113i \(-0.762798\pi\)
−0.734958 + 0.678113i \(0.762798\pi\)
\(788\) 26.6282 0.948590
\(789\) −13.7684 −0.490168
\(790\) 0 0
\(791\) 8.85696 0.314917
\(792\) 7.56907 0.268955
\(793\) 13.6231 0.483770
\(794\) 2.75496 0.0977699
\(795\) 0 0
\(796\) 19.6142 0.695206
\(797\) 38.0725 1.34860 0.674299 0.738458i \(-0.264446\pi\)
0.674299 + 0.738458i \(0.264446\pi\)
\(798\) −14.0667 −0.497957
\(799\) −6.95474 −0.246041
\(800\) 0 0
\(801\) −13.2548 −0.468334
\(802\) −18.4782 −0.652489
\(803\) −26.2202 −0.925290
\(804\) 6.64027 0.234184
\(805\) 0 0
\(806\) 5.23822 0.184508
\(807\) 2.85430 0.100476
\(808\) 44.3613 1.56062
\(809\) 33.8845 1.19131 0.595657 0.803239i \(-0.296892\pi\)
0.595657 + 0.803239i \(0.296892\pi\)
\(810\) 0 0
\(811\) 9.04529 0.317623 0.158812 0.987309i \(-0.449234\pi\)
0.158812 + 0.987309i \(0.449234\pi\)
\(812\) 25.2158 0.884902
\(813\) 21.9647 0.770336
\(814\) 0.0373229 0.00130817
\(815\) 0 0
\(816\) −1.29896 −0.0454726
\(817\) −11.7741 −0.411923
\(818\) −18.6457 −0.651930
\(819\) 10.8565 0.379359
\(820\) 0 0
\(821\) 42.7195 1.49092 0.745461 0.666549i \(-0.232229\pi\)
0.745461 + 0.666549i \(0.232229\pi\)
\(822\) 15.0326 0.524321
\(823\) −47.3852 −1.65174 −0.825872 0.563858i \(-0.809317\pi\)
−0.825872 + 0.563858i \(0.809317\pi\)
\(824\) 33.1273 1.15404
\(825\) 0 0
\(826\) 50.4483 1.75532
\(827\) −39.0928 −1.35939 −0.679695 0.733495i \(-0.737888\pi\)
−0.679695 + 0.733495i \(0.737888\pi\)
\(828\) 7.35867 0.255731
\(829\) 30.5779 1.06202 0.531008 0.847367i \(-0.321814\pi\)
0.531008 + 0.847367i \(0.321814\pi\)
\(830\) 0 0
\(831\) 2.63773 0.0915017
\(832\) 11.3668 0.394073
\(833\) 146.531 5.07701
\(834\) 4.90982 0.170013
\(835\) 0 0
\(836\) −9.77546 −0.338091
\(837\) −2.74277 −0.0948038
\(838\) −10.1492 −0.350599
\(839\) 30.3660 1.04835 0.524176 0.851610i \(-0.324373\pi\)
0.524176 + 0.851610i \(0.324373\pi\)
\(840\) 0 0
\(841\) −11.9071 −0.410590
\(842\) 1.82493 0.0628911
\(843\) −8.16358 −0.281169
\(844\) 17.6414 0.607241
\(845\) 0 0
\(846\) 0.803513 0.0276253
\(847\) −20.4310 −0.702019
\(848\) 1.55326 0.0533390
\(849\) −6.06194 −0.208045
\(850\) 0 0
\(851\) 0.0968484 0.00331992
\(852\) 0.0993338 0.00340312
\(853\) −3.41673 −0.116987 −0.0584933 0.998288i \(-0.518630\pi\)
−0.0584933 + 0.998288i \(0.518630\pi\)
\(854\) −29.1084 −0.996070
\(855\) 0 0
\(856\) 3.16616 0.108217
\(857\) −42.0948 −1.43793 −0.718966 0.695045i \(-0.755384\pi\)
−0.718966 + 0.695045i \(0.755384\pi\)
\(858\) −5.04788 −0.172332
\(859\) −33.1680 −1.13168 −0.565840 0.824515i \(-0.691448\pi\)
−0.565840 + 0.824515i \(0.691448\pi\)
\(860\) 0 0
\(861\) 18.9767 0.646724
\(862\) 16.0481 0.546601
\(863\) −15.5446 −0.529143 −0.264572 0.964366i \(-0.585231\pi\)
−0.264572 + 0.964366i \(0.585231\pi\)
\(864\) −5.57735 −0.189745
\(865\) 0 0
\(866\) 12.5546 0.426622
\(867\) 43.0626 1.46248
\(868\) 16.7284 0.567798
\(869\) 14.0097 0.475248
\(870\) 0 0
\(871\) −11.8199 −0.400500
\(872\) 29.3890 0.995238
\(873\) −2.22836 −0.0754186
\(874\) 16.9718 0.574079
\(875\) 0 0
\(876\) 11.8871 0.401629
\(877\) −35.7948 −1.20871 −0.604353 0.796717i \(-0.706568\pi\)
−0.604353 + 0.796717i \(0.706568\pi\)
\(878\) 1.20890 0.0407985
\(879\) −16.5940 −0.559702
\(880\) 0 0
\(881\) 32.9640 1.11059 0.555293 0.831655i \(-0.312606\pi\)
0.555293 + 0.831655i \(0.312606\pi\)
\(882\) −16.9294 −0.570043
\(883\) 19.2788 0.648784 0.324392 0.945923i \(-0.394840\pi\)
0.324392 + 0.945923i \(0.394840\pi\)
\(884\) −19.8079 −0.666211
\(885\) 0 0
\(886\) 7.64030 0.256681
\(887\) −26.4213 −0.887141 −0.443571 0.896239i \(-0.646288\pi\)
−0.443571 + 0.896239i \(0.646288\pi\)
\(888\) −0.0451624 −0.00151555
\(889\) −49.7472 −1.66847
\(890\) 0 0
\(891\) 2.64310 0.0885472
\(892\) −26.0396 −0.871870
\(893\) −2.76980 −0.0926877
\(894\) 0.245069 0.00819632
\(895\) 0 0
\(896\) 32.4890 1.08538
\(897\) −13.0986 −0.437350
\(898\) 30.0924 1.00420
\(899\) 11.3396 0.378196
\(900\) 0 0
\(901\) −71.8212 −2.39271
\(902\) −8.82343 −0.293788
\(903\) −19.4164 −0.646137
\(904\) 4.98314 0.165737
\(905\) 0 0
\(906\) −1.43600 −0.0477080
\(907\) 4.32841 0.143722 0.0718612 0.997415i \(-0.477106\pi\)
0.0718612 + 0.997415i \(0.477106\pi\)
\(908\) −32.8478 −1.09009
\(909\) 15.4908 0.513799
\(910\) 0 0
\(911\) 32.8983 1.08997 0.544985 0.838446i \(-0.316535\pi\)
0.544985 + 0.838446i \(0.316535\pi\)
\(912\) −0.517323 −0.0171303
\(913\) 1.91243 0.0632923
\(914\) −14.2100 −0.470024
\(915\) 0 0
\(916\) −23.3235 −0.770630
\(917\) −55.6872 −1.83895
\(918\) −6.93931 −0.229031
\(919\) 49.8351 1.64391 0.821954 0.569554i \(-0.192884\pi\)
0.821954 + 0.569554i \(0.192884\pi\)
\(920\) 0 0
\(921\) 14.8424 0.489072
\(922\) −10.9219 −0.359692
\(923\) −0.176817 −0.00581999
\(924\) −16.1205 −0.530326
\(925\) 0 0
\(926\) 11.3301 0.372330
\(927\) 11.5680 0.379942
\(928\) 23.0587 0.756940
\(929\) 16.1832 0.530955 0.265477 0.964117i \(-0.414470\pi\)
0.265477 + 0.964117i \(0.414470\pi\)
\(930\) 0 0
\(931\) 58.3575 1.91259
\(932\) 12.2224 0.400356
\(933\) 13.6460 0.446751
\(934\) −10.0186 −0.327820
\(935\) 0 0
\(936\) 6.10816 0.199651
\(937\) 34.9825 1.14283 0.571413 0.820662i \(-0.306395\pi\)
0.571413 + 0.820662i \(0.306395\pi\)
\(938\) 25.2555 0.824620
\(939\) 3.18194 0.103839
\(940\) 0 0
\(941\) 51.6450 1.68358 0.841790 0.539805i \(-0.181502\pi\)
0.841790 + 0.539805i \(0.181502\pi\)
\(942\) −14.8198 −0.482856
\(943\) −22.8957 −0.745587
\(944\) 1.85530 0.0603849
\(945\) 0 0
\(946\) 9.02787 0.293521
\(947\) −1.85002 −0.0601176 −0.0300588 0.999548i \(-0.509569\pi\)
−0.0300588 + 0.999548i \(0.509569\pi\)
\(948\) −6.35142 −0.206285
\(949\) −21.1594 −0.686863
\(950\) 0 0
\(951\) 3.70586 0.120171
\(952\) 112.964 3.66120
\(953\) −2.18860 −0.0708956 −0.0354478 0.999372i \(-0.511286\pi\)
−0.0354478 + 0.999372i \(0.511286\pi\)
\(954\) 8.29783 0.268652
\(955\) 0 0
\(956\) 3.81833 0.123494
\(957\) −10.9275 −0.353236
\(958\) −11.2455 −0.363326
\(959\) −85.4534 −2.75944
\(960\) 0 0
\(961\) −23.4772 −0.757330
\(962\) 0.0301192 0.000971082 0
\(963\) 1.10562 0.0356280
\(964\) −14.9340 −0.480992
\(965\) 0 0
\(966\) 27.9878 0.900493
\(967\) −13.2573 −0.426326 −0.213163 0.977017i \(-0.568377\pi\)
−0.213163 + 0.977017i \(0.568377\pi\)
\(968\) −11.4950 −0.369463
\(969\) 23.9205 0.768439
\(970\) 0 0
\(971\) −35.2892 −1.13248 −0.566242 0.824239i \(-0.691603\pi\)
−0.566242 + 0.824239i \(0.691603\pi\)
\(972\) −1.19827 −0.0384345
\(973\) −27.9102 −0.894759
\(974\) 22.7127 0.727763
\(975\) 0 0
\(976\) −1.07050 −0.0342659
\(977\) 12.6542 0.404844 0.202422 0.979298i \(-0.435119\pi\)
0.202422 + 0.979298i \(0.435119\pi\)
\(978\) −20.5866 −0.658287
\(979\) −35.0336 −1.11968
\(980\) 0 0
\(981\) 10.2626 0.327659
\(982\) −18.5281 −0.591255
\(983\) 22.3964 0.714335 0.357167 0.934040i \(-0.383743\pi\)
0.357167 + 0.934040i \(0.383743\pi\)
\(984\) 10.6768 0.340363
\(985\) 0 0
\(986\) 28.6895 0.913661
\(987\) −4.56762 −0.145389
\(988\) −7.88869 −0.250973
\(989\) 23.4262 0.744910
\(990\) 0 0
\(991\) −60.7912 −1.93110 −0.965548 0.260224i \(-0.916204\pi\)
−0.965548 + 0.260224i \(0.916204\pi\)
\(992\) 15.2974 0.485691
\(993\) −32.3878 −1.02780
\(994\) 0.377804 0.0119832
\(995\) 0 0
\(996\) −0.867017 −0.0274725
\(997\) −42.5995 −1.34914 −0.674570 0.738211i \(-0.735671\pi\)
−0.674570 + 0.738211i \(0.735671\pi\)
\(998\) −36.1425 −1.14407
\(999\) −0.0157706 −0.000498960 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1875.2.a.o.1.3 yes 8
3.2 odd 2 5625.2.a.u.1.6 8
5.2 odd 4 1875.2.b.g.1249.6 16
5.3 odd 4 1875.2.b.g.1249.11 16
5.4 even 2 1875.2.a.n.1.6 8
15.14 odd 2 5625.2.a.bc.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1875.2.a.n.1.6 8 5.4 even 2
1875.2.a.o.1.3 yes 8 1.1 even 1 trivial
1875.2.b.g.1249.6 16 5.2 odd 4
1875.2.b.g.1249.11 16 5.3 odd 4
5625.2.a.u.1.6 8 3.2 odd 2
5625.2.a.bc.1.3 8 15.14 odd 2