# Properties

 Label 1875.2.a.n Level $1875$ Weight $2$ Character orbit 1875.a Self dual yes Analytic conductor $14.972$ Analytic rank $0$ Dimension $8$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1875,2,Mod(1,1875)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1875, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1875.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1875 = 3 \cdot 5^{4}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1875.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$14.9719503790$$ Analytic rank: $$0$$ Dimension: $$8$$ Coefficient field: 8.8.13366265625.1 comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{8} - x^{7} - 12x^{6} + 10x^{5} + 41x^{4} - 20x^{3} - 48x^{2} + 8x + 16$$ x^8 - x^7 - 12*x^6 + 10*x^5 + 41*x^4 - 20*x^3 - 48*x^2 + 8*x + 16 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{7}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - \beta_1 q^{2} - q^{3} + (\beta_{5} + \beta_{4} + 1) q^{4} + \beta_1 q^{6} + (\beta_{4} - \beta_{2} - 1) q^{7} + ( - \beta_{6} - 3 \beta_{2}) q^{8} + q^{9}+O(q^{10})$$ q - b1 * q^2 - q^3 + (b5 + b4 + 1) * q^4 + b1 * q^6 + (b4 - b2 - 1) * q^7 + (-b6 - 3*b2) * q^8 + q^9 $$q - \beta_1 q^{2} - q^{3} + (\beta_{5} + \beta_{4} + 1) q^{4} + \beta_1 q^{6} + (\beta_{4} - \beta_{2} - 1) q^{7} + ( - \beta_{6} - 3 \beta_{2}) q^{8} + q^{9} + (2 \beta_{7} + \beta_{6} + \beta_{5} + \cdots + 3) q^{11}+ \cdots + (2 \beta_{7} + \beta_{6} + \beta_{5} + \cdots + 3) q^{99}+O(q^{100})$$ q - b1 * q^2 - q^3 + (b5 + b4 + 1) * q^4 + b1 * q^6 + (b4 - b2 - 1) * q^7 + (-b6 - 3*b2) * q^8 + q^9 + (2*b7 + b6 + b5 + b4 + 2*b3 + b2 + 3) * q^11 + (-b5 - b4 - 1) * q^12 + (b5 + b3 + b1 - 2) * q^13 + (-2*b7 + 2*b5 + b4 - 2*b2 + 1) * q^14 + (2*b5 + b4 - 2*b3 - b1 + 1) * q^16 + (-2*b7 - b5 + b4 - 2*b3 + 2*b1 - 1) * q^17 - b1 * q^18 + (b7 - b6 - b5 + b3 - b2 + 3) * q^19 + (-b4 + b2 + 1) * q^21 + (b6 - b4 + 2*b3 - b2 - 3*b1 - 1) * q^22 + (2*b7 + b6 + 2*b5 + b4 + 3*b2 - 3*b1 + 1) * q^23 + (b6 + 3*b2) * q^24 + (2*b7 - 2*b5 - b4 + 2*b1 - 3) * q^26 - q^27 + (2*b7 - 2*b6 - b5 - 2*b2 - 2*b1 + 4) * q^28 + (-2*b7 - 2*b6 - b5 + b4 + b1 - 1) * q^29 + (-b7 + b6 - 3*b5 - 2*b3 + b1 + 2) * q^31 + (2*b7 - 2*b6 + b4 - 2*b1 + 3) * q^32 + (-2*b7 - b6 - b5 - b4 - 2*b3 - b2 - 3) * q^33 + (-4*b7 - b6 - 2*b5 - 2*b4 - 3*b2 - 6) * q^34 + (b5 + b4 + 1) * q^36 + (-b7 + b6 - b5 + b2 + 1) * q^37 + (-2*b7 + 2*b6 + 4*b5 + b4 - 2*b3 + 2*b2 - 4*b1 + 1) * q^38 + (-b5 - b3 - b1 + 2) * q^39 + (2*b7 + b6 + b5 - b4 + b2 - 1) * q^41 + (2*b7 - 2*b5 - b4 + 2*b2 - 1) * q^42 + (b7 + 2*b6 + 2*b5 + b4 + b3 + 4*b2 - 4*b1 - 2) * q^43 + (-2*b7 + 2*b4 - 2*b3 + 2*b2 + 3*b1 + 4) * q^44 + (2*b7 - 2*b6 + 2*b3 - 4*b2 - b1 + 6) * q^46 + (-b6 + b4 + 4*b3 - b2 + 3) * q^47 + (-2*b5 - b4 + 2*b3 + b1 - 1) * q^48 + (2*b7 - b6 + 2*b5 - 2*b4 + b3 + 3*b2 - 3*b1 + 3) * q^49 + (2*b7 + b5 - b4 + 2*b3 - 2*b1 + 1) * q^51 + (-2*b7 + 2*b6 - b5 - 2*b4 - 2*b3 + 4*b2 + 2*b1 - 2) * q^52 + (4*b7 + b6 - 2*b4 + b2 + b1 + 2) * q^53 + b1 * q^54 + (2*b7 + b6 + 5*b5 + 2*b4 - 4*b3 + 5*b2 - 6*b1 + 6) * q^56 + (-b7 + b6 + b5 - b3 + b2 - 3) * q^57 + (-4*b7 + b6 + b5 - b4 - 4*b3 - b2 - 2*b1 - 3) * q^58 + (-4*b7 + 2*b6 - b5 + b4 - 2*b3 - 2*b2 + b1 + 1) * q^59 + (b7 + 2*b6 + b5 - b4 + 2*b3 - b2 - 3*b1 + 3) * q^61 + (-6*b7 + b6 - b4 + 2*b3 + b2 - b1 - 3) * q^62 + (b4 - b2 - 1) * q^63 + (-2*b7 + 3*b5 - 2*b2 - 4*b1 + 4) * q^64 + (-b6 + b4 - 2*b3 + b2 + 3*b1 + 1) * q^66 + (3*b7 - 2*b6 - 2*b5 - 2*b3 + 3*b2 - b1 - 2) * q^67 + (4*b7 + 2*b6 + 2*b5 + b4 + 2*b3 + 6*b2 + 3*b1 + 5) * q^68 + (-2*b7 - b6 - 2*b5 - b4 - 3*b2 + 3*b1 - 1) * q^69 + (2*b7 - 2*b6 + 2*b3 - 4*b2 + 3*b1 + 4) * q^71 + (-b6 - 3*b2) * q^72 + (3*b7 + b5 + 4*b3 + 2*b2 + 4) * q^73 + (-2*b7 + b6 - 2*b5 - b4 + 2*b3 + b2 - 1) * q^74 + (4*b7 - 4*b6 - 3*b5 + 2*b4 + 2*b3 - 6*b2 + 4) * q^76 + (-8*b7 - 3*b6 - 6*b5 - 4*b3 - 3*b2 + 2*b1 - 2) * q^77 + (-2*b7 + 2*b5 + b4 - 2*b1 + 3) * q^78 + (-b7 + 3*b6 + 4*b5 + b4 + 2*b3 + 3*b2 - 5*b1 + 1) * q^79 + q^81 + (4*b7 - b6 - 2*b5 - b4 + 2*b3 + b2 + 3*b1 - 1) * q^82 + (2*b5 + 2*b3 - 4*b2 + b1 + 4) * q^83 + (-2*b7 + 2*b6 + b5 + 2*b2 + 2*b1 - 4) * q^84 + (2*b7 - b6 - 2*b5 + 4*b3 - 3*b2 + 3*b1 + 8) * q^86 + (2*b7 + 2*b6 + b5 - b4 - b1 + 1) * q^87 + (-4*b7 - 4*b6 - 5*b5 - 3*b4 - 4*b3 - 4*b2 - 9) * q^88 + (-6*b7 - 4*b5 - b4 - 4*b3 - 4*b2 + b1 - 3) * q^89 + (b7 - 5*b5 - 3*b4 - 4*b3 + 5*b2 - b1 - 2) * q^91 + (-4*b7 + 5*b5 + 3*b4 - 4*b3 - 4*b2 - 2*b1 + 5) * q^92 + (b7 - b6 + 3*b5 + 2*b3 - b1 - 2) * q^93 + (-2*b7 + 4*b6 + 3*b5 + b4 - 2*b3 + 2*b2 - 5*b1 + 1) * q^94 + (-2*b7 + 2*b6 - b4 + 2*b1 - 3) * q^96 + (3*b7 - 2*b4 - b2 + 2*b1 - 2) * q^97 + (8*b7 - b6 - b5 - 2*b3 + 3*b2 - 2*b1 + 6) * q^98 + (2*b7 + b6 + b5 + b4 + 2*b3 + b2 + 3) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8 q - q^{2} - 8 q^{3} + 9 q^{4} + q^{6} - 12 q^{7} - 3 q^{8} + 8 q^{9}+O(q^{10})$$ 8 * q - q^2 - 8 * q^3 + 9 * q^4 + q^6 - 12 * q^7 - 3 * q^8 + 8 * q^9 $$8 q - q^{2} - 8 q^{3} + 9 q^{4} + q^{6} - 12 q^{7} - 3 q^{8} + 8 q^{9} + 12 q^{11} - 9 q^{12} - 14 q^{13} + 16 q^{14} + 15 q^{16} + q^{17} - q^{18} + 16 q^{19} + 12 q^{21} - 18 q^{22} + 4 q^{23} + 3 q^{24} - 34 q^{26} - 8 q^{27} + 21 q^{28} + 2 q^{29} + 13 q^{31} + 18 q^{32} - 12 q^{33} - 37 q^{34} + 9 q^{36} + 8 q^{37} + 24 q^{38} + 14 q^{39} - 12 q^{41} - 16 q^{42} - 20 q^{43} + 47 q^{44} + 33 q^{46} + 15 q^{47} - 15 q^{48} + 30 q^{49} - q^{51} + q^{52} + 4 q^{53} + q^{54} + 60 q^{56} - 16 q^{57} - 2 q^{58} + 14 q^{59} + 10 q^{61} - 4 q^{62} - 12 q^{63} + 41 q^{64} + 18 q^{66} - 19 q^{67} + 33 q^{68} - 4 q^{69} + 21 q^{71} - 3 q^{72} + 19 q^{73} - 9 q^{74} - q^{76} + 11 q^{77} + 34 q^{78} + 10 q^{79} + 8 q^{81} - 24 q^{82} + 27 q^{83} - 21 q^{84} + 42 q^{86} - 2 q^{87} - 53 q^{88} - 9 q^{89} - 12 q^{91} + 63 q^{92} - 13 q^{93} + 14 q^{94} - 18 q^{96} - 24 q^{97} + 24 q^{98} + 12 q^{99}+O(q^{100})$$ 8 * q - q^2 - 8 * q^3 + 9 * q^4 + q^6 - 12 * q^7 - 3 * q^8 + 8 * q^9 + 12 * q^11 - 9 * q^12 - 14 * q^13 + 16 * q^14 + 15 * q^16 + q^17 - q^18 + 16 * q^19 + 12 * q^21 - 18 * q^22 + 4 * q^23 + 3 * q^24 - 34 * q^26 - 8 * q^27 + 21 * q^28 + 2 * q^29 + 13 * q^31 + 18 * q^32 - 12 * q^33 - 37 * q^34 + 9 * q^36 + 8 * q^37 + 24 * q^38 + 14 * q^39 - 12 * q^41 - 16 * q^42 - 20 * q^43 + 47 * q^44 + 33 * q^46 + 15 * q^47 - 15 * q^48 + 30 * q^49 - q^51 + q^52 + 4 * q^53 + q^54 + 60 * q^56 - 16 * q^57 - 2 * q^58 + 14 * q^59 + 10 * q^61 - 4 * q^62 - 12 * q^63 + 41 * q^64 + 18 * q^66 - 19 * q^67 + 33 * q^68 - 4 * q^69 + 21 * q^71 - 3 * q^72 + 19 * q^73 - 9 * q^74 - q^76 + 11 * q^77 + 34 * q^78 + 10 * q^79 + 8 * q^81 - 24 * q^82 + 27 * q^83 - 21 * q^84 + 42 * q^86 - 2 * q^87 - 53 * q^88 - 9 * q^89 - 12 * q^91 + 63 * q^92 - 13 * q^93 + 14 * q^94 - 18 * q^96 - 24 * q^97 + 24 * q^98 + 12 * q^99

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{8} - x^{7} - 12x^{6} + 10x^{5} + 41x^{4} - 20x^{3} - 48x^{2} + 8x + 16$$ :

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$( \nu^{7} - \nu^{6} - 12\nu^{5} + 10\nu^{4} + 41\nu^{3} - 20\nu^{2} - 40\nu + 8 ) / 8$$ (v^7 - v^6 - 12*v^5 + 10*v^4 + 41*v^3 - 20*v^2 - 40*v + 8) / 8 $$\beta_{3}$$ $$=$$ $$( -\nu^{7} + 3\nu^{6} + 10\nu^{5} - 34\nu^{4} - 21\nu^{3} + 94\nu^{2} + 8\nu - 56 ) / 8$$ (-v^7 + 3*v^6 + 10*v^5 - 34*v^4 - 21*v^3 + 94*v^2 + 8*v - 56) / 8 $$\beta_{4}$$ $$=$$ $$( \nu^{7} - 3\nu^{6} - 10\nu^{5} + 30\nu^{4} + 21\nu^{3} - 62\nu^{2} - 12\nu + 20 ) / 4$$ (v^7 - 3*v^6 - 10*v^5 + 30*v^4 + 21*v^3 - 62*v^2 - 12*v + 20) / 4 $$\beta_{5}$$ $$=$$ $$( -\nu^{7} + 3\nu^{6} + 10\nu^{5} - 30\nu^{4} - 21\nu^{3} + 66\nu^{2} + 12\nu - 32 ) / 4$$ (-v^7 + 3*v^6 + 10*v^5 - 30*v^4 - 21*v^3 + 66*v^2 + 12*v - 32) / 4 $$\beta_{6}$$ $$=$$ $$( -3\nu^{7} + 3\nu^{6} + 36\nu^{5} - 30\nu^{4} - 115\nu^{3} + 60\nu^{2} + 88\nu - 24 ) / 8$$ (-3*v^7 + 3*v^6 + 36*v^5 - 30*v^4 - 115*v^3 + 60*v^2 + 88*v - 24) / 8 $$\beta_{7}$$ $$=$$ $$( -2\nu^{7} + 3\nu^{6} + 21\nu^{5} - 30\nu^{4} - 52\nu^{3} + 61\nu^{2} + 30\nu - 28 ) / 4$$ (-2*v^7 + 3*v^6 + 21*v^5 - 30*v^4 - 52*v^3 + 61*v^2 + 30*v - 28) / 4
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$\beta_{5} + \beta_{4} + 3$$ b5 + b4 + 3 $$\nu^{3}$$ $$=$$ $$\beta_{6} + 3\beta_{2} + 4\beta_1$$ b6 + 3*b2 + 4*b1 $$\nu^{4}$$ $$=$$ $$8\beta_{5} + 7\beta_{4} - 2\beta_{3} - \beta _1 + 15$$ 8*b5 + 7*b4 - 2*b3 - b1 + 15 $$\nu^{5}$$ $$=$$ $$-2\beta_{7} + 10\beta_{6} - \beta_{4} + 24\beta_{2} + 22\beta _1 - 3$$ -2*b7 + 10*b6 - b4 + 24*b2 + 22*b1 - 3 $$\nu^{6}$$ $$=$$ $$-2\beta_{7} + 59\beta_{5} + 46\beta_{4} - 20\beta_{3} - 2\beta_{2} - 14\beta _1 + 90$$ -2*b7 + 59*b5 + 46*b4 - 20*b3 - 2*b2 - 14*b1 + 90 $$\nu^{7}$$ $$=$$ $$-26\beta_{7} + 79\beta_{6} - \beta_{5} - 16\beta_{4} + 171\beta_{2} + 136\beta _1 - 44$$ -26*b7 + 79*b6 - b5 - 16*b4 + 171*b2 + 136*b1 - 44

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 2.59716 2.23365 1.31354 0.741379 −0.770071 −0.895394 −1.52260 −2.69767
−2.59716 −1.00000 4.74525 0 2.59716 −3.28414 −7.12986 1.00000 0
1.2 −2.23365 −1.00000 2.98921 0 2.23365 1.03143 −2.20956 1.00000 0
1.3 −1.31354 −1.00000 −0.274605 0 1.31354 −4.19091 2.98779 1.00000 0
1.4 −0.741379 −1.00000 −1.45036 0 0.741379 −1.03586 2.55802 1.00000 0
1.5 0.770071 −1.00000 −1.40699 0 −0.770071 −3.98808 −2.62363 1.00000 0
1.6 0.895394 −1.00000 −1.19827 0 −0.895394 −5.08992 −2.86371 1.00000 0
1.7 1.52260 −1.00000 0.318310 0 −1.52260 0.990985 −2.56054 1.00000 0
1.8 2.69767 −1.00000 5.27745 0 −2.69767 3.56649 8.84149 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 1.8 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$1$$
$$5$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1875.2.a.n 8
3.b odd 2 1 5625.2.a.bc 8
5.b even 2 1 1875.2.a.o yes 8
5.c odd 4 2 1875.2.b.g 16
15.d odd 2 1 5625.2.a.u 8

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1875.2.a.n 8 1.a even 1 1 trivial
1875.2.a.o yes 8 5.b even 2 1
1875.2.b.g 16 5.c odd 4 2
5625.2.a.u 8 15.d odd 2 1
5625.2.a.bc 8 3.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{2}^{8} + T_{2}^{7} - 12T_{2}^{6} - 10T_{2}^{5} + 41T_{2}^{4} + 20T_{2}^{3} - 48T_{2}^{2} - 8T_{2} + 16$$ acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1875))$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{8} + T^{7} + \cdots + 16$$
$3$ $$(T + 1)^{8}$$
$5$ $$T^{8}$$
$7$ $$T^{8} + 12 T^{7} + \cdots - 1055$$
$11$ $$T^{8} - 12 T^{7} + \cdots + 16$$
$13$ $$T^{8} + 14 T^{7} + \cdots + 8731$$
$17$ $$T^{8} - T^{7} + \cdots + 8656$$
$19$ $$T^{8} - 16 T^{7} + \cdots - 14975$$
$23$ $$T^{8} - 4 T^{7} + \cdots + 28720$$
$29$ $$T^{8} - 2 T^{7} + \cdots + 57520$$
$31$ $$T^{8} - 13 T^{7} + \cdots + 801025$$
$37$ $$T^{8} - 8 T^{7} + \cdots + 25$$
$41$ $$T^{8} + 12 T^{7} + \cdots - 48080$$
$43$ $$T^{8} + 20 T^{7} + \cdots - 74369$$
$47$ $$T^{8} - 15 T^{7} + \cdots - 255824$$
$53$ $$T^{8} - 4 T^{7} + \cdots + 28720$$
$59$ $$T^{8} - 14 T^{7} + \cdots + 11920$$
$61$ $$T^{8} - 10 T^{7} + \cdots - 1093919$$
$67$ $$T^{8} + 19 T^{7} + \cdots + 20204221$$
$71$ $$T^{8} - 21 T^{7} + \cdots + 67696$$
$73$ $$T^{8} - 19 T^{7} + \cdots - 379655$$
$79$ $$T^{8} - 10 T^{7} + \cdots + 6951025$$
$83$ $$T^{8} - 27 T^{7} + \cdots - 113744$$
$89$ $$T^{8} + 9 T^{7} + \cdots - 12105680$$
$97$ $$T^{8} + 24 T^{7} + \cdots - 401939$$