Properties

Label 1875.2.a.m.1.3
Level $1875$
Weight $2$
Character 1875.1
Self dual yes
Analytic conductor $14.972$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1875,2,Mod(1,1875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1875, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1875.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1875 = 3 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1875.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.9719503790\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.5444000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 2x^{6} + 20x^{5} - 4x^{4} - 30x^{3} + 7x^{2} + 12x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 75)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.536547\) of defining polynomial
Character \(\chi\) \(=\) 1875.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.53655 q^{2} +1.00000 q^{3} +0.360976 q^{4} -1.53655 q^{6} -1.49550 q^{7} +2.51844 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.53655 q^{2} +1.00000 q^{3} +0.360976 q^{4} -1.53655 q^{6} -1.49550 q^{7} +2.51844 q^{8} +1.00000 q^{9} -2.35626 q^{11} +0.360976 q^{12} -1.34951 q^{13} +2.29790 q^{14} -4.59165 q^{16} +2.19405 q^{17} -1.53655 q^{18} +5.71069 q^{19} -1.49550 q^{21} +3.62050 q^{22} -8.79501 q^{23} +2.51844 q^{24} +2.07358 q^{26} +1.00000 q^{27} -0.539839 q^{28} +7.90017 q^{29} -3.69717 q^{31} +2.01841 q^{32} -2.35626 q^{33} -3.37126 q^{34} +0.360976 q^{36} -9.75097 q^{37} -8.77474 q^{38} -1.34951 q^{39} +1.85550 q^{41} +2.29790 q^{42} +8.01874 q^{43} -0.850553 q^{44} +13.5139 q^{46} -6.66298 q^{47} -4.59165 q^{48} -4.76349 q^{49} +2.19405 q^{51} -0.487140 q^{52} -4.17153 q^{53} -1.53655 q^{54} -3.76631 q^{56} +5.71069 q^{57} -12.1390 q^{58} +11.0647 q^{59} -12.2372 q^{61} +5.68088 q^{62} -1.49550 q^{63} +6.08192 q^{64} +3.62050 q^{66} -4.31358 q^{67} +0.792000 q^{68} -8.79501 q^{69} +5.77750 q^{71} +2.51844 q^{72} -6.92684 q^{73} +14.9828 q^{74} +2.06142 q^{76} +3.52377 q^{77} +2.07358 q^{78} -10.6687 q^{79} +1.00000 q^{81} -2.85106 q^{82} -0.224003 q^{83} -0.539839 q^{84} -12.3212 q^{86} +7.90017 q^{87} -5.93408 q^{88} +0.429167 q^{89} +2.01818 q^{91} -3.17479 q^{92} -3.69717 q^{93} +10.2380 q^{94} +2.01841 q^{96} -12.4945 q^{97} +7.31933 q^{98} -2.35626 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} + 8 q^{3} + 4 q^{4} - 4 q^{6} - 8 q^{7} - 12 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 4 q^{2} + 8 q^{3} + 4 q^{4} - 4 q^{6} - 8 q^{7} - 12 q^{8} + 8 q^{9} + 2 q^{11} + 4 q^{12} - 16 q^{13} + 6 q^{14} - 16 q^{17} - 4 q^{18} - 14 q^{19} - 8 q^{21} - 12 q^{22} - 14 q^{23} - 12 q^{24} + 6 q^{26} + 8 q^{27} - 16 q^{28} + 2 q^{29} - 22 q^{31} + 2 q^{32} + 2 q^{33} - 12 q^{34} + 4 q^{36} - 28 q^{37} + 16 q^{38} - 16 q^{39} + 8 q^{41} + 6 q^{42} - 20 q^{43} + 22 q^{44} - 2 q^{46} - 10 q^{47} - 16 q^{51} - 16 q^{52} - 44 q^{53} - 4 q^{54} + 30 q^{56} - 14 q^{57} - 8 q^{58} + 14 q^{59} - 20 q^{61} - 16 q^{62} - 8 q^{63} + 6 q^{64} - 12 q^{66} - 16 q^{67} + 2 q^{68} - 14 q^{69} + 16 q^{71} - 12 q^{72} - 24 q^{73} + 26 q^{74} - 16 q^{76} - 46 q^{77} + 6 q^{78} - 30 q^{79} + 8 q^{81} - 16 q^{82} - 12 q^{83} - 16 q^{84} + 32 q^{86} + 2 q^{87} - 32 q^{88} + 16 q^{89} - 12 q^{91} + 2 q^{92} - 22 q^{93} + 14 q^{94} + 2 q^{96} - 16 q^{97} - 4 q^{98} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.53655 −1.08650 −0.543251 0.839570i \(-0.682807\pi\)
−0.543251 + 0.839570i \(0.682807\pi\)
\(3\) 1.00000 0.577350
\(4\) 0.360976 0.180488
\(5\) 0 0
\(6\) −1.53655 −0.627293
\(7\) −1.49550 −0.565244 −0.282622 0.959231i \(-0.591204\pi\)
−0.282622 + 0.959231i \(0.591204\pi\)
\(8\) 2.51844 0.890402
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −2.35626 −0.710438 −0.355219 0.934783i \(-0.615594\pi\)
−0.355219 + 0.934783i \(0.615594\pi\)
\(12\) 0.360976 0.104205
\(13\) −1.34951 −0.374286 −0.187143 0.982333i \(-0.559923\pi\)
−0.187143 + 0.982333i \(0.559923\pi\)
\(14\) 2.29790 0.614140
\(15\) 0 0
\(16\) −4.59165 −1.14791
\(17\) 2.19405 0.532135 0.266068 0.963954i \(-0.414276\pi\)
0.266068 + 0.963954i \(0.414276\pi\)
\(18\) −1.53655 −0.362168
\(19\) 5.71069 1.31012 0.655061 0.755576i \(-0.272643\pi\)
0.655061 + 0.755576i \(0.272643\pi\)
\(20\) 0 0
\(21\) −1.49550 −0.326344
\(22\) 3.62050 0.771892
\(23\) −8.79501 −1.83389 −0.916943 0.399018i \(-0.869351\pi\)
−0.916943 + 0.399018i \(0.869351\pi\)
\(24\) 2.51844 0.514074
\(25\) 0 0
\(26\) 2.07358 0.406662
\(27\) 1.00000 0.192450
\(28\) −0.539839 −0.102020
\(29\) 7.90017 1.46702 0.733512 0.679676i \(-0.237880\pi\)
0.733512 + 0.679676i \(0.237880\pi\)
\(30\) 0 0
\(31\) −3.69717 −0.664031 −0.332016 0.943274i \(-0.607729\pi\)
−0.332016 + 0.943274i \(0.607729\pi\)
\(32\) 2.01841 0.356808
\(33\) −2.35626 −0.410171
\(34\) −3.37126 −0.578167
\(35\) 0 0
\(36\) 0.360976 0.0601627
\(37\) −9.75097 −1.60305 −0.801525 0.597962i \(-0.795977\pi\)
−0.801525 + 0.597962i \(0.795977\pi\)
\(38\) −8.77474 −1.42345
\(39\) −1.34951 −0.216094
\(40\) 0 0
\(41\) 1.85550 0.289780 0.144890 0.989448i \(-0.453717\pi\)
0.144890 + 0.989448i \(0.453717\pi\)
\(42\) 2.29790 0.354574
\(43\) 8.01874 1.22285 0.611423 0.791304i \(-0.290597\pi\)
0.611423 + 0.791304i \(0.290597\pi\)
\(44\) −0.850553 −0.128226
\(45\) 0 0
\(46\) 13.5139 1.99252
\(47\) −6.66298 −0.971895 −0.485948 0.873988i \(-0.661525\pi\)
−0.485948 + 0.873988i \(0.661525\pi\)
\(48\) −4.59165 −0.662747
\(49\) −4.76349 −0.680499
\(50\) 0 0
\(51\) 2.19405 0.307228
\(52\) −0.487140 −0.0675542
\(53\) −4.17153 −0.573003 −0.286502 0.958080i \(-0.592492\pi\)
−0.286502 + 0.958080i \(0.592492\pi\)
\(54\) −1.53655 −0.209098
\(55\) 0 0
\(56\) −3.76631 −0.503295
\(57\) 5.71069 0.756399
\(58\) −12.1390 −1.59393
\(59\) 11.0647 1.44050 0.720248 0.693716i \(-0.244028\pi\)
0.720248 + 0.693716i \(0.244028\pi\)
\(60\) 0 0
\(61\) −12.2372 −1.56682 −0.783408 0.621508i \(-0.786520\pi\)
−0.783408 + 0.621508i \(0.786520\pi\)
\(62\) 5.68088 0.721472
\(63\) −1.49550 −0.188415
\(64\) 6.08192 0.760239
\(65\) 0 0
\(66\) 3.62050 0.445652
\(67\) −4.31358 −0.526988 −0.263494 0.964661i \(-0.584875\pi\)
−0.263494 + 0.964661i \(0.584875\pi\)
\(68\) 0.792000 0.0960442
\(69\) −8.79501 −1.05879
\(70\) 0 0
\(71\) 5.77750 0.685663 0.342832 0.939397i \(-0.388614\pi\)
0.342832 + 0.939397i \(0.388614\pi\)
\(72\) 2.51844 0.296801
\(73\) −6.92684 −0.810725 −0.405362 0.914156i \(-0.632855\pi\)
−0.405362 + 0.914156i \(0.632855\pi\)
\(74\) 14.9828 1.74172
\(75\) 0 0
\(76\) 2.06142 0.236461
\(77\) 3.52377 0.401571
\(78\) 2.07358 0.234787
\(79\) −10.6687 −1.20033 −0.600163 0.799878i \(-0.704898\pi\)
−0.600163 + 0.799878i \(0.704898\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −2.85106 −0.314846
\(83\) −0.224003 −0.0245875 −0.0122938 0.999924i \(-0.503913\pi\)
−0.0122938 + 0.999924i \(0.503913\pi\)
\(84\) −0.539839 −0.0589012
\(85\) 0 0
\(86\) −12.3212 −1.32863
\(87\) 7.90017 0.846987
\(88\) −5.93408 −0.632575
\(89\) 0.429167 0.0454916 0.0227458 0.999741i \(-0.492759\pi\)
0.0227458 + 0.999741i \(0.492759\pi\)
\(90\) 0 0
\(91\) 2.01818 0.211563
\(92\) −3.17479 −0.330995
\(93\) −3.69717 −0.383379
\(94\) 10.2380 1.05597
\(95\) 0 0
\(96\) 2.01841 0.206003
\(97\) −12.4945 −1.26863 −0.634315 0.773075i \(-0.718718\pi\)
−0.634315 + 0.773075i \(0.718718\pi\)
\(98\) 7.31933 0.739364
\(99\) −2.35626 −0.236813
\(100\) 0 0
\(101\) 8.19767 0.815698 0.407849 0.913049i \(-0.366279\pi\)
0.407849 + 0.913049i \(0.366279\pi\)
\(102\) −3.37126 −0.333805
\(103\) −2.50005 −0.246337 −0.123169 0.992386i \(-0.539306\pi\)
−0.123169 + 0.992386i \(0.539306\pi\)
\(104\) −3.39865 −0.333265
\(105\) 0 0
\(106\) 6.40975 0.622570
\(107\) 1.81004 0.174983 0.0874914 0.996165i \(-0.472115\pi\)
0.0874914 + 0.996165i \(0.472115\pi\)
\(108\) 0.360976 0.0347350
\(109\) −2.94778 −0.282346 −0.141173 0.989985i \(-0.545087\pi\)
−0.141173 + 0.989985i \(0.545087\pi\)
\(110\) 0 0
\(111\) −9.75097 −0.925521
\(112\) 6.86679 0.648851
\(113\) −13.8365 −1.30163 −0.650813 0.759238i \(-0.725572\pi\)
−0.650813 + 0.759238i \(0.725572\pi\)
\(114\) −8.77474 −0.821829
\(115\) 0 0
\(116\) 2.85178 0.264781
\(117\) −1.34951 −0.124762
\(118\) −17.0014 −1.56510
\(119\) −3.28119 −0.300787
\(120\) 0 0
\(121\) −5.44806 −0.495278
\(122\) 18.8031 1.70235
\(123\) 1.85550 0.167304
\(124\) −1.33459 −0.119850
\(125\) 0 0
\(126\) 2.29790 0.204713
\(127\) −5.73995 −0.509338 −0.254669 0.967028i \(-0.581967\pi\)
−0.254669 + 0.967028i \(0.581967\pi\)
\(128\) −13.3820 −1.18281
\(129\) 8.01874 0.706011
\(130\) 0 0
\(131\) −4.35756 −0.380722 −0.190361 0.981714i \(-0.560966\pi\)
−0.190361 + 0.981714i \(0.560966\pi\)
\(132\) −0.850553 −0.0740311
\(133\) −8.54031 −0.740539
\(134\) 6.62802 0.572574
\(135\) 0 0
\(136\) 5.52558 0.473814
\(137\) −1.97461 −0.168702 −0.0843510 0.996436i \(-0.526882\pi\)
−0.0843510 + 0.996436i \(0.526882\pi\)
\(138\) 13.5139 1.15038
\(139\) 1.67910 0.142419 0.0712095 0.997461i \(-0.477314\pi\)
0.0712095 + 0.997461i \(0.477314\pi\)
\(140\) 0 0
\(141\) −6.66298 −0.561124
\(142\) −8.87740 −0.744975
\(143\) 3.17978 0.265907
\(144\) −4.59165 −0.382637
\(145\) 0 0
\(146\) 10.6434 0.880855
\(147\) −4.76349 −0.392886
\(148\) −3.51987 −0.289331
\(149\) −7.38524 −0.605023 −0.302511 0.953146i \(-0.597825\pi\)
−0.302511 + 0.953146i \(0.597825\pi\)
\(150\) 0 0
\(151\) −4.26137 −0.346785 −0.173393 0.984853i \(-0.555473\pi\)
−0.173393 + 0.984853i \(0.555473\pi\)
\(152\) 14.3820 1.16653
\(153\) 2.19405 0.177378
\(154\) −5.41444 −0.436308
\(155\) 0 0
\(156\) −0.487140 −0.0390024
\(157\) −16.0573 −1.28152 −0.640758 0.767743i \(-0.721380\pi\)
−0.640758 + 0.767743i \(0.721380\pi\)
\(158\) 16.3930 1.30416
\(159\) −4.17153 −0.330824
\(160\) 0 0
\(161\) 13.1529 1.03659
\(162\) −1.53655 −0.120723
\(163\) 22.2938 1.74618 0.873092 0.487556i \(-0.162111\pi\)
0.873092 + 0.487556i \(0.162111\pi\)
\(164\) 0.669790 0.0523018
\(165\) 0 0
\(166\) 0.344191 0.0267144
\(167\) 6.46601 0.500355 0.250177 0.968200i \(-0.419511\pi\)
0.250177 + 0.968200i \(0.419511\pi\)
\(168\) −3.76631 −0.290577
\(169\) −11.1788 −0.859910
\(170\) 0 0
\(171\) 5.71069 0.436707
\(172\) 2.89458 0.220709
\(173\) 11.8180 0.898509 0.449255 0.893404i \(-0.351690\pi\)
0.449255 + 0.893404i \(0.351690\pi\)
\(174\) −12.1390 −0.920254
\(175\) 0 0
\(176\) 10.8191 0.815520
\(177\) 11.0647 0.831671
\(178\) −0.659435 −0.0494268
\(179\) 15.5746 1.16410 0.582049 0.813154i \(-0.302251\pi\)
0.582049 + 0.813154i \(0.302251\pi\)
\(180\) 0 0
\(181\) −14.5797 −1.08370 −0.541851 0.840475i \(-0.682276\pi\)
−0.541851 + 0.840475i \(0.682276\pi\)
\(182\) −3.10103 −0.229864
\(183\) −12.2372 −0.904602
\(184\) −22.1497 −1.63290
\(185\) 0 0
\(186\) 5.68088 0.416542
\(187\) −5.16974 −0.378049
\(188\) −2.40518 −0.175416
\(189\) −1.49550 −0.108781
\(190\) 0 0
\(191\) −20.9884 −1.51867 −0.759333 0.650702i \(-0.774475\pi\)
−0.759333 + 0.650702i \(0.774475\pi\)
\(192\) 6.08192 0.438924
\(193\) −22.7094 −1.63466 −0.817328 0.576173i \(-0.804546\pi\)
−0.817328 + 0.576173i \(0.804546\pi\)
\(194\) 19.1985 1.37837
\(195\) 0 0
\(196\) −1.71951 −0.122822
\(197\) −1.35341 −0.0964268 −0.0482134 0.998837i \(-0.515353\pi\)
−0.0482134 + 0.998837i \(0.515353\pi\)
\(198\) 3.62050 0.257297
\(199\) −8.96061 −0.635201 −0.317600 0.948225i \(-0.602877\pi\)
−0.317600 + 0.948225i \(0.602877\pi\)
\(200\) 0 0
\(201\) −4.31358 −0.304257
\(202\) −12.5961 −0.886259
\(203\) −11.8147 −0.829228
\(204\) 0.792000 0.0554511
\(205\) 0 0
\(206\) 3.84145 0.267646
\(207\) −8.79501 −0.611295
\(208\) 6.19646 0.429647
\(209\) −13.4558 −0.930760
\(210\) 0 0
\(211\) 5.83983 0.402031 0.201015 0.979588i \(-0.435576\pi\)
0.201015 + 0.979588i \(0.435576\pi\)
\(212\) −1.50582 −0.103420
\(213\) 5.77750 0.395868
\(214\) −2.78121 −0.190119
\(215\) 0 0
\(216\) 2.51844 0.171358
\(217\) 5.52910 0.375340
\(218\) 4.52939 0.306769
\(219\) −6.92684 −0.468072
\(220\) 0 0
\(221\) −2.96088 −0.199171
\(222\) 14.9828 1.00558
\(223\) 7.82097 0.523731 0.261865 0.965104i \(-0.415662\pi\)
0.261865 + 0.965104i \(0.415662\pi\)
\(224\) −3.01853 −0.201684
\(225\) 0 0
\(226\) 21.2604 1.41422
\(227\) −16.3090 −1.08246 −0.541232 0.840873i \(-0.682042\pi\)
−0.541232 + 0.840873i \(0.682042\pi\)
\(228\) 2.06142 0.136521
\(229\) −21.7088 −1.43456 −0.717278 0.696787i \(-0.754612\pi\)
−0.717278 + 0.696787i \(0.754612\pi\)
\(230\) 0 0
\(231\) 3.52377 0.231847
\(232\) 19.8961 1.30624
\(233\) 13.5341 0.886646 0.443323 0.896362i \(-0.353799\pi\)
0.443323 + 0.896362i \(0.353799\pi\)
\(234\) 2.07358 0.135554
\(235\) 0 0
\(236\) 3.99408 0.259993
\(237\) −10.6687 −0.693009
\(238\) 5.04171 0.326805
\(239\) −10.5338 −0.681377 −0.340689 0.940176i \(-0.610660\pi\)
−0.340689 + 0.940176i \(0.610660\pi\)
\(240\) 0 0
\(241\) 19.4838 1.25506 0.627530 0.778592i \(-0.284066\pi\)
0.627530 + 0.778592i \(0.284066\pi\)
\(242\) 8.37120 0.538121
\(243\) 1.00000 0.0641500
\(244\) −4.41735 −0.282792
\(245\) 0 0
\(246\) −2.85106 −0.181777
\(247\) −7.70661 −0.490360
\(248\) −9.31109 −0.591255
\(249\) −0.224003 −0.0141956
\(250\) 0 0
\(251\) −20.9446 −1.32201 −0.661007 0.750380i \(-0.729871\pi\)
−0.661007 + 0.750380i \(0.729871\pi\)
\(252\) −0.539839 −0.0340066
\(253\) 20.7233 1.30286
\(254\) 8.81971 0.553398
\(255\) 0 0
\(256\) 8.39819 0.524887
\(257\) 1.67121 0.104247 0.0521237 0.998641i \(-0.483401\pi\)
0.0521237 + 0.998641i \(0.483401\pi\)
\(258\) −12.3212 −0.767083
\(259\) 14.5825 0.906115
\(260\) 0 0
\(261\) 7.90017 0.489008
\(262\) 6.69559 0.413655
\(263\) −7.55667 −0.465964 −0.232982 0.972481i \(-0.574848\pi\)
−0.232982 + 0.972481i \(0.574848\pi\)
\(264\) −5.93408 −0.365217
\(265\) 0 0
\(266\) 13.1226 0.804597
\(267\) 0.429167 0.0262646
\(268\) −1.55710 −0.0951151
\(269\) −11.2841 −0.688005 −0.344002 0.938969i \(-0.611783\pi\)
−0.344002 + 0.938969i \(0.611783\pi\)
\(270\) 0 0
\(271\) −10.9752 −0.666696 −0.333348 0.942804i \(-0.608178\pi\)
−0.333348 + 0.942804i \(0.608178\pi\)
\(272\) −10.0743 −0.610845
\(273\) 2.01818 0.122146
\(274\) 3.03407 0.183295
\(275\) 0 0
\(276\) −3.17479 −0.191100
\(277\) 5.75112 0.345551 0.172776 0.984961i \(-0.444726\pi\)
0.172776 + 0.984961i \(0.444726\pi\)
\(278\) −2.58001 −0.154739
\(279\) −3.69717 −0.221344
\(280\) 0 0
\(281\) 8.49962 0.507045 0.253522 0.967330i \(-0.418411\pi\)
0.253522 + 0.967330i \(0.418411\pi\)
\(282\) 10.2380 0.609663
\(283\) 17.2248 1.02391 0.511955 0.859013i \(-0.328922\pi\)
0.511955 + 0.859013i \(0.328922\pi\)
\(284\) 2.08554 0.123754
\(285\) 0 0
\(286\) −4.88588 −0.288908
\(287\) −2.77489 −0.163796
\(288\) 2.01841 0.118936
\(289\) −12.1861 −0.716832
\(290\) 0 0
\(291\) −12.4945 −0.732443
\(292\) −2.50042 −0.146326
\(293\) −9.38764 −0.548432 −0.274216 0.961668i \(-0.588418\pi\)
−0.274216 + 0.961668i \(0.588418\pi\)
\(294\) 7.31933 0.426872
\(295\) 0 0
\(296\) −24.5572 −1.42736
\(297\) −2.35626 −0.136724
\(298\) 11.3478 0.657359
\(299\) 11.8689 0.686397
\(300\) 0 0
\(301\) −11.9920 −0.691207
\(302\) 6.54779 0.376783
\(303\) 8.19767 0.470944
\(304\) −26.2215 −1.50390
\(305\) 0 0
\(306\) −3.37126 −0.192722
\(307\) −10.6465 −0.607627 −0.303814 0.952731i \(-0.598260\pi\)
−0.303814 + 0.952731i \(0.598260\pi\)
\(308\) 1.27200 0.0724788
\(309\) −2.50005 −0.142223
\(310\) 0 0
\(311\) −27.3572 −1.55128 −0.775641 0.631174i \(-0.782573\pi\)
−0.775641 + 0.631174i \(0.782573\pi\)
\(312\) −3.39865 −0.192410
\(313\) 1.99509 0.112769 0.0563846 0.998409i \(-0.482043\pi\)
0.0563846 + 0.998409i \(0.482043\pi\)
\(314\) 24.6729 1.39237
\(315\) 0 0
\(316\) −3.85116 −0.216645
\(317\) −8.64876 −0.485763 −0.242881 0.970056i \(-0.578093\pi\)
−0.242881 + 0.970056i \(0.578093\pi\)
\(318\) 6.40975 0.359441
\(319\) −18.6148 −1.04223
\(320\) 0 0
\(321\) 1.81004 0.101026
\(322\) −20.2101 −1.12626
\(323\) 12.5295 0.697162
\(324\) 0.360976 0.0200542
\(325\) 0 0
\(326\) −34.2554 −1.89723
\(327\) −2.94778 −0.163012
\(328\) 4.67295 0.258020
\(329\) 9.96446 0.549358
\(330\) 0 0
\(331\) −3.94331 −0.216744 −0.108372 0.994110i \(-0.534564\pi\)
−0.108372 + 0.994110i \(0.534564\pi\)
\(332\) −0.0808598 −0.00443776
\(333\) −9.75097 −0.534350
\(334\) −9.93532 −0.543637
\(335\) 0 0
\(336\) 6.86679 0.374614
\(337\) −3.95471 −0.215427 −0.107713 0.994182i \(-0.534353\pi\)
−0.107713 + 0.994182i \(0.534353\pi\)
\(338\) 17.1768 0.934295
\(339\) −13.8365 −0.751494
\(340\) 0 0
\(341\) 8.71148 0.471753
\(342\) −8.77474 −0.474483
\(343\) 17.5923 0.949893
\(344\) 20.1947 1.08882
\(345\) 0 0
\(346\) −18.1590 −0.976233
\(347\) 9.99596 0.536611 0.268306 0.963334i \(-0.413536\pi\)
0.268306 + 0.963334i \(0.413536\pi\)
\(348\) 2.85178 0.152871
\(349\) 18.4534 0.987789 0.493895 0.869522i \(-0.335573\pi\)
0.493895 + 0.869522i \(0.335573\pi\)
\(350\) 0 0
\(351\) −1.34951 −0.0720313
\(352\) −4.75589 −0.253490
\(353\) −9.32398 −0.496265 −0.248133 0.968726i \(-0.579817\pi\)
−0.248133 + 0.968726i \(0.579817\pi\)
\(354\) −17.0014 −0.903613
\(355\) 0 0
\(356\) 0.154919 0.00821070
\(357\) −3.28119 −0.173659
\(358\) −23.9311 −1.26480
\(359\) 28.9438 1.52759 0.763797 0.645457i \(-0.223333\pi\)
0.763797 + 0.645457i \(0.223333\pi\)
\(360\) 0 0
\(361\) 13.6119 0.716418
\(362\) 22.4024 1.17744
\(363\) −5.44806 −0.285949
\(364\) 0.728516 0.0381846
\(365\) 0 0
\(366\) 18.8031 0.982852
\(367\) 3.99869 0.208730 0.104365 0.994539i \(-0.466719\pi\)
0.104365 + 0.994539i \(0.466719\pi\)
\(368\) 40.3836 2.10514
\(369\) 1.85550 0.0965932
\(370\) 0 0
\(371\) 6.23850 0.323887
\(372\) −1.33459 −0.0691953
\(373\) 3.17260 0.164271 0.0821354 0.996621i \(-0.473826\pi\)
0.0821354 + 0.996621i \(0.473826\pi\)
\(374\) 7.94355 0.410751
\(375\) 0 0
\(376\) −16.7803 −0.865377
\(377\) −10.6613 −0.549086
\(378\) 2.29790 0.118191
\(379\) 28.5206 1.46500 0.732501 0.680766i \(-0.238353\pi\)
0.732501 + 0.680766i \(0.238353\pi\)
\(380\) 0 0
\(381\) −5.73995 −0.294067
\(382\) 32.2497 1.65004
\(383\) 11.4611 0.585636 0.292818 0.956168i \(-0.405407\pi\)
0.292818 + 0.956168i \(0.405407\pi\)
\(384\) −13.3820 −0.682896
\(385\) 0 0
\(386\) 34.8940 1.77606
\(387\) 8.01874 0.407616
\(388\) −4.51024 −0.228973
\(389\) 34.2463 1.73636 0.868179 0.496252i \(-0.165291\pi\)
0.868179 + 0.496252i \(0.165291\pi\)
\(390\) 0 0
\(391\) −19.2967 −0.975876
\(392\) −11.9966 −0.605917
\(393\) −4.35756 −0.219810
\(394\) 2.07958 0.104768
\(395\) 0 0
\(396\) −0.850553 −0.0427419
\(397\) 20.0333 1.00545 0.502723 0.864448i \(-0.332332\pi\)
0.502723 + 0.864448i \(0.332332\pi\)
\(398\) 13.7684 0.690148
\(399\) −8.54031 −0.427550
\(400\) 0 0
\(401\) 4.98200 0.248789 0.124395 0.992233i \(-0.460301\pi\)
0.124395 + 0.992233i \(0.460301\pi\)
\(402\) 6.62802 0.330576
\(403\) 4.98935 0.248537
\(404\) 2.95916 0.147224
\(405\) 0 0
\(406\) 18.1538 0.900958
\(407\) 22.9758 1.13887
\(408\) 5.52558 0.273557
\(409\) 23.8591 1.17976 0.589878 0.807493i \(-0.299176\pi\)
0.589878 + 0.807493i \(0.299176\pi\)
\(410\) 0 0
\(411\) −1.97461 −0.0974001
\(412\) −0.902460 −0.0444610
\(413\) −16.5472 −0.814233
\(414\) 13.5139 0.664174
\(415\) 0 0
\(416\) −2.72386 −0.133548
\(417\) 1.67910 0.0822257
\(418\) 20.6755 1.01127
\(419\) 0.482550 0.0235741 0.0117871 0.999931i \(-0.496248\pi\)
0.0117871 + 0.999931i \(0.496248\pi\)
\(420\) 0 0
\(421\) −17.7183 −0.863537 −0.431769 0.901984i \(-0.642110\pi\)
−0.431769 + 0.901984i \(0.642110\pi\)
\(422\) −8.97317 −0.436807
\(423\) −6.66298 −0.323965
\(424\) −10.5057 −0.510203
\(425\) 0 0
\(426\) −8.87740 −0.430112
\(427\) 18.3007 0.885634
\(428\) 0.653380 0.0315823
\(429\) 3.17978 0.153521
\(430\) 0 0
\(431\) 26.8061 1.29121 0.645603 0.763673i \(-0.276606\pi\)
0.645603 + 0.763673i \(0.276606\pi\)
\(432\) −4.59165 −0.220916
\(433\) 9.23115 0.443621 0.221810 0.975090i \(-0.428803\pi\)
0.221810 + 0.975090i \(0.428803\pi\)
\(434\) −8.49573 −0.407808
\(435\) 0 0
\(436\) −1.06408 −0.0509601
\(437\) −50.2255 −2.40261
\(438\) 10.6434 0.508562
\(439\) 1.00240 0.0478421 0.0239211 0.999714i \(-0.492385\pi\)
0.0239211 + 0.999714i \(0.492385\pi\)
\(440\) 0 0
\(441\) −4.76349 −0.226833
\(442\) 4.54954 0.216399
\(443\) 26.2872 1.24894 0.624471 0.781048i \(-0.285315\pi\)
0.624471 + 0.781048i \(0.285315\pi\)
\(444\) −3.51987 −0.167046
\(445\) 0 0
\(446\) −12.0173 −0.569035
\(447\) −7.38524 −0.349310
\(448\) −9.09548 −0.429721
\(449\) 4.75449 0.224378 0.112189 0.993687i \(-0.464214\pi\)
0.112189 + 0.993687i \(0.464214\pi\)
\(450\) 0 0
\(451\) −4.37202 −0.205870
\(452\) −4.99464 −0.234928
\(453\) −4.26137 −0.200216
\(454\) 25.0595 1.17610
\(455\) 0 0
\(456\) 14.3820 0.673499
\(457\) −15.9703 −0.747059 −0.373529 0.927618i \(-0.621852\pi\)
−0.373529 + 0.927618i \(0.621852\pi\)
\(458\) 33.3566 1.55865
\(459\) 2.19405 0.102409
\(460\) 0 0
\(461\) 39.7558 1.85161 0.925806 0.377998i \(-0.123387\pi\)
0.925806 + 0.377998i \(0.123387\pi\)
\(462\) −5.41444 −0.251902
\(463\) 26.1209 1.21394 0.606971 0.794724i \(-0.292384\pi\)
0.606971 + 0.794724i \(0.292384\pi\)
\(464\) −36.2748 −1.68402
\(465\) 0 0
\(466\) −20.7957 −0.963343
\(467\) −3.85204 −0.178251 −0.0891256 0.996020i \(-0.528407\pi\)
−0.0891256 + 0.996020i \(0.528407\pi\)
\(468\) −0.487140 −0.0225181
\(469\) 6.45095 0.297877
\(470\) 0 0
\(471\) −16.0573 −0.739883
\(472\) 27.8657 1.28262
\(473\) −18.8942 −0.868756
\(474\) 16.3930 0.752956
\(475\) 0 0
\(476\) −1.18443 −0.0542884
\(477\) −4.17153 −0.191001
\(478\) 16.1857 0.740318
\(479\) −14.2698 −0.652004 −0.326002 0.945369i \(-0.605702\pi\)
−0.326002 + 0.945369i \(0.605702\pi\)
\(480\) 0 0
\(481\) 13.1590 0.599998
\(482\) −29.9377 −1.36363
\(483\) 13.1529 0.598478
\(484\) −1.96662 −0.0893919
\(485\) 0 0
\(486\) −1.53655 −0.0696992
\(487\) 24.8222 1.12480 0.562401 0.826865i \(-0.309878\pi\)
0.562401 + 0.826865i \(0.309878\pi\)
\(488\) −30.8187 −1.39510
\(489\) 22.2938 1.00816
\(490\) 0 0
\(491\) 11.4893 0.518507 0.259253 0.965809i \(-0.416524\pi\)
0.259253 + 0.965809i \(0.416524\pi\)
\(492\) 0.669790 0.0301965
\(493\) 17.3334 0.780656
\(494\) 11.8416 0.532777
\(495\) 0 0
\(496\) 16.9761 0.762250
\(497\) −8.64023 −0.387567
\(498\) 0.344191 0.0154236
\(499\) −4.17487 −0.186893 −0.0934465 0.995624i \(-0.529788\pi\)
−0.0934465 + 0.995624i \(0.529788\pi\)
\(500\) 0 0
\(501\) 6.46601 0.288880
\(502\) 32.1824 1.43637
\(503\) 38.7163 1.72627 0.863137 0.504970i \(-0.168497\pi\)
0.863137 + 0.504970i \(0.168497\pi\)
\(504\) −3.76631 −0.167765
\(505\) 0 0
\(506\) −31.8423 −1.41556
\(507\) −11.1788 −0.496469
\(508\) −2.07199 −0.0919296
\(509\) 30.1797 1.33769 0.668845 0.743402i \(-0.266789\pi\)
0.668845 + 0.743402i \(0.266789\pi\)
\(510\) 0 0
\(511\) 10.3591 0.458258
\(512\) 13.8597 0.612519
\(513\) 5.71069 0.252133
\(514\) −2.56790 −0.113265
\(515\) 0 0
\(516\) 2.89458 0.127427
\(517\) 15.6997 0.690471
\(518\) −22.4067 −0.984496
\(519\) 11.8180 0.518755
\(520\) 0 0
\(521\) −25.4856 −1.11654 −0.558272 0.829658i \(-0.688536\pi\)
−0.558272 + 0.829658i \(0.688536\pi\)
\(522\) −12.1390 −0.531309
\(523\) −3.89180 −0.170176 −0.0850882 0.996373i \(-0.527117\pi\)
−0.0850882 + 0.996373i \(0.527117\pi\)
\(524\) −1.57298 −0.0687158
\(525\) 0 0
\(526\) 11.6112 0.506271
\(527\) −8.11178 −0.353355
\(528\) 10.8191 0.470841
\(529\) 54.3522 2.36314
\(530\) 0 0
\(531\) 11.0647 0.480166
\(532\) −3.08285 −0.133659
\(533\) −2.50400 −0.108460
\(534\) −0.659435 −0.0285366
\(535\) 0 0
\(536\) −10.8635 −0.469231
\(537\) 15.5746 0.672092
\(538\) 17.3386 0.747519
\(539\) 11.2240 0.483452
\(540\) 0 0
\(541\) 40.2148 1.72897 0.864484 0.502661i \(-0.167646\pi\)
0.864484 + 0.502661i \(0.167646\pi\)
\(542\) 16.8639 0.724367
\(543\) −14.5797 −0.625675
\(544\) 4.42849 0.189870
\(545\) 0 0
\(546\) −3.10103 −0.132712
\(547\) −7.37923 −0.315513 −0.157757 0.987478i \(-0.550426\pi\)
−0.157757 + 0.987478i \(0.550426\pi\)
\(548\) −0.712786 −0.0304487
\(549\) −12.2372 −0.522272
\(550\) 0 0
\(551\) 45.1154 1.92198
\(552\) −22.1497 −0.942753
\(553\) 15.9550 0.678478
\(554\) −8.83686 −0.375442
\(555\) 0 0
\(556\) 0.606114 0.0257050
\(557\) −1.52499 −0.0646160 −0.0323080 0.999478i \(-0.510286\pi\)
−0.0323080 + 0.999478i \(0.510286\pi\)
\(558\) 5.68088 0.240491
\(559\) −10.8213 −0.457694
\(560\) 0 0
\(561\) −5.16974 −0.218267
\(562\) −13.0601 −0.550905
\(563\) −13.7955 −0.581411 −0.290706 0.956813i \(-0.593890\pi\)
−0.290706 + 0.956813i \(0.593890\pi\)
\(564\) −2.40518 −0.101276
\(565\) 0 0
\(566\) −26.4667 −1.11248
\(567\) −1.49550 −0.0628049
\(568\) 14.5503 0.610516
\(569\) −8.49904 −0.356298 −0.178149 0.984004i \(-0.557011\pi\)
−0.178149 + 0.984004i \(0.557011\pi\)
\(570\) 0 0
\(571\) 39.3230 1.64562 0.822809 0.568319i \(-0.192406\pi\)
0.822809 + 0.568319i \(0.192406\pi\)
\(572\) 1.14783 0.0479930
\(573\) −20.9884 −0.876803
\(574\) 4.26374 0.177965
\(575\) 0 0
\(576\) 6.08192 0.253413
\(577\) −24.5832 −1.02341 −0.511707 0.859160i \(-0.670987\pi\)
−0.511707 + 0.859160i \(0.670987\pi\)
\(578\) 18.7246 0.778840
\(579\) −22.7094 −0.943769
\(580\) 0 0
\(581\) 0.334995 0.0138980
\(582\) 19.1985 0.795802
\(583\) 9.82918 0.407083
\(584\) −17.4448 −0.721871
\(585\) 0 0
\(586\) 14.4245 0.595872
\(587\) 9.24270 0.381487 0.190744 0.981640i \(-0.438910\pi\)
0.190744 + 0.981640i \(0.438910\pi\)
\(588\) −1.71951 −0.0709113
\(589\) −21.1134 −0.869962
\(590\) 0 0
\(591\) −1.35341 −0.0556720
\(592\) 44.7730 1.84016
\(593\) 6.07888 0.249630 0.124815 0.992180i \(-0.460166\pi\)
0.124815 + 0.992180i \(0.460166\pi\)
\(594\) 3.62050 0.148551
\(595\) 0 0
\(596\) −2.66590 −0.109199
\(597\) −8.96061 −0.366733
\(598\) −18.2372 −0.745773
\(599\) 6.40129 0.261550 0.130775 0.991412i \(-0.458254\pi\)
0.130775 + 0.991412i \(0.458254\pi\)
\(600\) 0 0
\(601\) −38.4675 −1.56912 −0.784560 0.620052i \(-0.787111\pi\)
−0.784560 + 0.620052i \(0.787111\pi\)
\(602\) 18.4263 0.750999
\(603\) −4.31358 −0.175663
\(604\) −1.53825 −0.0625906
\(605\) 0 0
\(606\) −12.5961 −0.511682
\(607\) −5.22464 −0.212062 −0.106031 0.994363i \(-0.533814\pi\)
−0.106031 + 0.994363i \(0.533814\pi\)
\(608\) 11.5265 0.467462
\(609\) −11.8147 −0.478755
\(610\) 0 0
\(611\) 8.99173 0.363766
\(612\) 0.792000 0.0320147
\(613\) −29.8153 −1.20423 −0.602114 0.798410i \(-0.705675\pi\)
−0.602114 + 0.798410i \(0.705675\pi\)
\(614\) 16.3588 0.660189
\(615\) 0 0
\(616\) 8.87439 0.357559
\(617\) −23.3025 −0.938124 −0.469062 0.883165i \(-0.655408\pi\)
−0.469062 + 0.883165i \(0.655408\pi\)
\(618\) 3.84145 0.154526
\(619\) −0.236492 −0.00950543 −0.00475272 0.999989i \(-0.501513\pi\)
−0.00475272 + 0.999989i \(0.501513\pi\)
\(620\) 0 0
\(621\) −8.79501 −0.352932
\(622\) 42.0356 1.68547
\(623\) −0.641818 −0.0257139
\(624\) 6.19646 0.248057
\(625\) 0 0
\(626\) −3.06555 −0.122524
\(627\) −13.4558 −0.537374
\(628\) −5.79632 −0.231298
\(629\) −21.3941 −0.853039
\(630\) 0 0
\(631\) −17.8789 −0.711748 −0.355874 0.934534i \(-0.615817\pi\)
−0.355874 + 0.934534i \(0.615817\pi\)
\(632\) −26.8685 −1.06877
\(633\) 5.83983 0.232112
\(634\) 13.2892 0.527782
\(635\) 0 0
\(636\) −1.50582 −0.0597098
\(637\) 6.42836 0.254701
\(638\) 28.6025 1.13239
\(639\) 5.77750 0.228554
\(640\) 0 0
\(641\) 10.8680 0.429259 0.214630 0.976695i \(-0.431146\pi\)
0.214630 + 0.976695i \(0.431146\pi\)
\(642\) −2.78121 −0.109765
\(643\) −3.09039 −0.121873 −0.0609366 0.998142i \(-0.519409\pi\)
−0.0609366 + 0.998142i \(0.519409\pi\)
\(644\) 4.74789 0.187093
\(645\) 0 0
\(646\) −19.2522 −0.757468
\(647\) 5.53705 0.217684 0.108842 0.994059i \(-0.465286\pi\)
0.108842 + 0.994059i \(0.465286\pi\)
\(648\) 2.51844 0.0989335
\(649\) −26.0712 −1.02338
\(650\) 0 0
\(651\) 5.52910 0.216703
\(652\) 8.04753 0.315166
\(653\) −38.8754 −1.52131 −0.760657 0.649154i \(-0.775123\pi\)
−0.760657 + 0.649154i \(0.775123\pi\)
\(654\) 4.52939 0.177113
\(655\) 0 0
\(656\) −8.51978 −0.332642
\(657\) −6.92684 −0.270242
\(658\) −15.3109 −0.596879
\(659\) −20.5389 −0.800082 −0.400041 0.916497i \(-0.631004\pi\)
−0.400041 + 0.916497i \(0.631004\pi\)
\(660\) 0 0
\(661\) 38.4254 1.49457 0.747287 0.664502i \(-0.231356\pi\)
0.747287 + 0.664502i \(0.231356\pi\)
\(662\) 6.05907 0.235493
\(663\) −2.96088 −0.114991
\(664\) −0.564137 −0.0218928
\(665\) 0 0
\(666\) 14.9828 0.580572
\(667\) −69.4821 −2.69036
\(668\) 2.33408 0.0903081
\(669\) 7.82097 0.302376
\(670\) 0 0
\(671\) 28.8340 1.11313
\(672\) −3.01853 −0.116442
\(673\) 12.9819 0.500417 0.250208 0.968192i \(-0.419501\pi\)
0.250208 + 0.968192i \(0.419501\pi\)
\(674\) 6.07660 0.234062
\(675\) 0 0
\(676\) −4.03529 −0.155204
\(677\) −7.23957 −0.278239 −0.139120 0.990276i \(-0.544427\pi\)
−0.139120 + 0.990276i \(0.544427\pi\)
\(678\) 21.2604 0.816500
\(679\) 18.6855 0.717086
\(680\) 0 0
\(681\) −16.3090 −0.624961
\(682\) −13.3856 −0.512561
\(683\) −24.8800 −0.952005 −0.476003 0.879444i \(-0.657915\pi\)
−0.476003 + 0.879444i \(0.657915\pi\)
\(684\) 2.06142 0.0788205
\(685\) 0 0
\(686\) −27.0313 −1.03206
\(687\) −21.7088 −0.828241
\(688\) −36.8192 −1.40372
\(689\) 5.62950 0.214467
\(690\) 0 0
\(691\) −33.2706 −1.26567 −0.632836 0.774286i \(-0.718109\pi\)
−0.632836 + 0.774286i \(0.718109\pi\)
\(692\) 4.26604 0.162170
\(693\) 3.52377 0.133857
\(694\) −15.3593 −0.583029
\(695\) 0 0
\(696\) 19.8961 0.754159
\(697\) 4.07105 0.154202
\(698\) −28.3546 −1.07324
\(699\) 13.5341 0.511905
\(700\) 0 0
\(701\) −13.2163 −0.499173 −0.249586 0.968353i \(-0.580295\pi\)
−0.249586 + 0.968353i \(0.580295\pi\)
\(702\) 2.07358 0.0782622
\(703\) −55.6847 −2.10019
\(704\) −14.3305 −0.540103
\(705\) 0 0
\(706\) 14.3267 0.539194
\(707\) −12.2596 −0.461069
\(708\) 3.99408 0.150107
\(709\) 6.25068 0.234749 0.117375 0.993088i \(-0.462552\pi\)
0.117375 + 0.993088i \(0.462552\pi\)
\(710\) 0 0
\(711\) −10.6687 −0.400109
\(712\) 1.08083 0.0405058
\(713\) 32.5167 1.21776
\(714\) 5.04171 0.188681
\(715\) 0 0
\(716\) 5.62205 0.210106
\(717\) −10.5338 −0.393393
\(718\) −44.4735 −1.65973
\(719\) 27.5016 1.02564 0.512818 0.858497i \(-0.328602\pi\)
0.512818 + 0.858497i \(0.328602\pi\)
\(720\) 0 0
\(721\) 3.73882 0.139241
\(722\) −20.9154 −0.778390
\(723\) 19.4838 0.724610
\(724\) −5.26293 −0.195595
\(725\) 0 0
\(726\) 8.37120 0.310684
\(727\) 22.0397 0.817406 0.408703 0.912668i \(-0.365981\pi\)
0.408703 + 0.912668i \(0.365981\pi\)
\(728\) 5.08266 0.188376
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 17.5935 0.650720
\(732\) −4.41735 −0.163270
\(733\) −34.7134 −1.28217 −0.641085 0.767470i \(-0.721515\pi\)
−0.641085 + 0.767470i \(0.721515\pi\)
\(734\) −6.14417 −0.226785
\(735\) 0 0
\(736\) −17.7519 −0.654345
\(737\) 10.1639 0.374392
\(738\) −2.85106 −0.104949
\(739\) −7.58593 −0.279053 −0.139526 0.990218i \(-0.544558\pi\)
−0.139526 + 0.990218i \(0.544558\pi\)
\(740\) 0 0
\(741\) −7.70661 −0.283109
\(742\) −9.58575 −0.351904
\(743\) −27.5328 −1.01008 −0.505040 0.863096i \(-0.668522\pi\)
−0.505040 + 0.863096i \(0.668522\pi\)
\(744\) −9.31109 −0.341361
\(745\) 0 0
\(746\) −4.87484 −0.178481
\(747\) −0.224003 −0.00819584
\(748\) −1.86615 −0.0682334
\(749\) −2.70690 −0.0989081
\(750\) 0 0
\(751\) 4.24930 0.155059 0.0775296 0.996990i \(-0.475297\pi\)
0.0775296 + 0.996990i \(0.475297\pi\)
\(752\) 30.5940 1.11565
\(753\) −20.9446 −0.763265
\(754\) 16.3816 0.596584
\(755\) 0 0
\(756\) −0.539839 −0.0196337
\(757\) 45.6609 1.65957 0.829787 0.558081i \(-0.188462\pi\)
0.829787 + 0.558081i \(0.188462\pi\)
\(758\) −43.8232 −1.59173
\(759\) 20.7233 0.752208
\(760\) 0 0
\(761\) −40.1268 −1.45460 −0.727298 0.686322i \(-0.759224\pi\)
−0.727298 + 0.686322i \(0.759224\pi\)
\(762\) 8.81971 0.319504
\(763\) 4.40839 0.159594
\(764\) −7.57631 −0.274101
\(765\) 0 0
\(766\) −17.6105 −0.636295
\(767\) −14.9318 −0.539157
\(768\) 8.39819 0.303044
\(769\) −37.8350 −1.36437 −0.682183 0.731181i \(-0.738969\pi\)
−0.682183 + 0.731181i \(0.738969\pi\)
\(770\) 0 0
\(771\) 1.67121 0.0601872
\(772\) −8.19755 −0.295036
\(773\) 26.2148 0.942881 0.471441 0.881898i \(-0.343734\pi\)
0.471441 + 0.881898i \(0.343734\pi\)
\(774\) −12.3212 −0.442875
\(775\) 0 0
\(776\) −31.4667 −1.12959
\(777\) 14.5825 0.523146
\(778\) −52.6211 −1.88656
\(779\) 10.5962 0.379646
\(780\) 0 0
\(781\) −13.6133 −0.487121
\(782\) 29.6503 1.06029
\(783\) 7.90017 0.282329
\(784\) 21.8723 0.781153
\(785\) 0 0
\(786\) 6.69559 0.238824
\(787\) 2.41254 0.0859977 0.0429988 0.999075i \(-0.486309\pi\)
0.0429988 + 0.999075i \(0.486309\pi\)
\(788\) −0.488551 −0.0174039
\(789\) −7.55667 −0.269025
\(790\) 0 0
\(791\) 20.6924 0.735737
\(792\) −5.93408 −0.210858
\(793\) 16.5142 0.586437
\(794\) −30.7822 −1.09242
\(795\) 0 0
\(796\) −3.23457 −0.114646
\(797\) −8.11230 −0.287353 −0.143676 0.989625i \(-0.545892\pi\)
−0.143676 + 0.989625i \(0.545892\pi\)
\(798\) 13.1226 0.464534
\(799\) −14.6189 −0.517180
\(800\) 0 0
\(801\) 0.429167 0.0151639
\(802\) −7.65507 −0.270310
\(803\) 16.3214 0.575970
\(804\) −1.55710 −0.0549148
\(805\) 0 0
\(806\) −7.66638 −0.270037
\(807\) −11.2841 −0.397220
\(808\) 20.6453 0.726299
\(809\) −40.7091 −1.43125 −0.715627 0.698482i \(-0.753859\pi\)
−0.715627 + 0.698482i \(0.753859\pi\)
\(810\) 0 0
\(811\) −49.4990 −1.73814 −0.869072 0.494685i \(-0.835283\pi\)
−0.869072 + 0.494685i \(0.835283\pi\)
\(812\) −4.26482 −0.149666
\(813\) −10.9752 −0.384917
\(814\) −35.3033 −1.23738
\(815\) 0 0
\(816\) −10.0743 −0.352671
\(817\) 45.7925 1.60208
\(818\) −36.6606 −1.28181
\(819\) 2.01818 0.0705210
\(820\) 0 0
\(821\) 42.2114 1.47319 0.736594 0.676335i \(-0.236433\pi\)
0.736594 + 0.676335i \(0.236433\pi\)
\(822\) 3.03407 0.105825
\(823\) 49.2349 1.71622 0.858111 0.513464i \(-0.171638\pi\)
0.858111 + 0.513464i \(0.171638\pi\)
\(824\) −6.29622 −0.219339
\(825\) 0 0
\(826\) 25.4255 0.884666
\(827\) −51.0011 −1.77348 −0.886742 0.462266i \(-0.847037\pi\)
−0.886742 + 0.462266i \(0.847037\pi\)
\(828\) −3.17479 −0.110332
\(829\) −38.2342 −1.32793 −0.663964 0.747764i \(-0.731127\pi\)
−0.663964 + 0.747764i \(0.731127\pi\)
\(830\) 0 0
\(831\) 5.75112 0.199504
\(832\) −8.20758 −0.284547
\(833\) −10.4513 −0.362117
\(834\) −2.58001 −0.0893384
\(835\) 0 0
\(836\) −4.85724 −0.167991
\(837\) −3.69717 −0.127793
\(838\) −0.741461 −0.0256133
\(839\) −16.7086 −0.576845 −0.288422 0.957503i \(-0.593131\pi\)
−0.288422 + 0.957503i \(0.593131\pi\)
\(840\) 0 0
\(841\) 33.4127 1.15216
\(842\) 27.2250 0.938236
\(843\) 8.49962 0.292742
\(844\) 2.10804 0.0725618
\(845\) 0 0
\(846\) 10.2380 0.351989
\(847\) 8.14755 0.279953
\(848\) 19.1542 0.657757
\(849\) 17.2248 0.591154
\(850\) 0 0
\(851\) 85.7599 2.93981
\(852\) 2.08554 0.0714495
\(853\) 18.2644 0.625361 0.312681 0.949858i \(-0.398773\pi\)
0.312681 + 0.949858i \(0.398773\pi\)
\(854\) −28.1199 −0.962244
\(855\) 0 0
\(856\) 4.55846 0.155805
\(857\) 53.4773 1.82675 0.913375 0.407119i \(-0.133466\pi\)
0.913375 + 0.407119i \(0.133466\pi\)
\(858\) −4.88588 −0.166801
\(859\) −18.7575 −0.639998 −0.319999 0.947418i \(-0.603683\pi\)
−0.319999 + 0.947418i \(0.603683\pi\)
\(860\) 0 0
\(861\) −2.77489 −0.0945678
\(862\) −41.1889 −1.40290
\(863\) 51.2363 1.74410 0.872051 0.489414i \(-0.162789\pi\)
0.872051 + 0.489414i \(0.162789\pi\)
\(864\) 2.01841 0.0686677
\(865\) 0 0
\(866\) −14.1841 −0.481995
\(867\) −12.1861 −0.413863
\(868\) 1.99588 0.0677444
\(869\) 25.1383 0.852757
\(870\) 0 0
\(871\) 5.82121 0.197244
\(872\) −7.42378 −0.251401
\(873\) −12.4945 −0.422876
\(874\) 77.1739 2.61045
\(875\) 0 0
\(876\) −2.50042 −0.0844815
\(877\) 6.06306 0.204735 0.102368 0.994747i \(-0.467358\pi\)
0.102368 + 0.994747i \(0.467358\pi\)
\(878\) −1.54024 −0.0519806
\(879\) −9.38764 −0.316637
\(880\) 0 0
\(881\) 22.6698 0.763765 0.381883 0.924211i \(-0.375276\pi\)
0.381883 + 0.924211i \(0.375276\pi\)
\(882\) 7.31933 0.246455
\(883\) 5.53899 0.186402 0.0932009 0.995647i \(-0.470290\pi\)
0.0932009 + 0.995647i \(0.470290\pi\)
\(884\) −1.06881 −0.0359480
\(885\) 0 0
\(886\) −40.3915 −1.35698
\(887\) 10.9716 0.368390 0.184195 0.982890i \(-0.441032\pi\)
0.184195 + 0.982890i \(0.441032\pi\)
\(888\) −24.5572 −0.824086
\(889\) 8.58408 0.287901
\(890\) 0 0
\(891\) −2.35626 −0.0789375
\(892\) 2.82319 0.0945272
\(893\) −38.0502 −1.27330
\(894\) 11.3478 0.379526
\(895\) 0 0
\(896\) 20.0127 0.668577
\(897\) 11.8689 0.396292
\(898\) −7.30550 −0.243788
\(899\) −29.2083 −0.974151
\(900\) 0 0
\(901\) −9.15254 −0.304915
\(902\) 6.71781 0.223679
\(903\) −11.9920 −0.399069
\(904\) −34.8463 −1.15897
\(905\) 0 0
\(906\) 6.54779 0.217536
\(907\) 19.3907 0.643856 0.321928 0.946764i \(-0.395669\pi\)
0.321928 + 0.946764i \(0.395669\pi\)
\(908\) −5.88715 −0.195372
\(909\) 8.19767 0.271899
\(910\) 0 0
\(911\) −13.7190 −0.454530 −0.227265 0.973833i \(-0.572978\pi\)
−0.227265 + 0.973833i \(0.572978\pi\)
\(912\) −26.2215 −0.868280
\(913\) 0.527808 0.0174679
\(914\) 24.5391 0.811681
\(915\) 0 0
\(916\) −7.83636 −0.258920
\(917\) 6.51671 0.215201
\(918\) −3.37126 −0.111268
\(919\) −32.4108 −1.06913 −0.534567 0.845126i \(-0.679525\pi\)
−0.534567 + 0.845126i \(0.679525\pi\)
\(920\) 0 0
\(921\) −10.6465 −0.350814
\(922\) −61.0867 −2.01178
\(923\) −7.79678 −0.256634
\(924\) 1.27200 0.0418457
\(925\) 0 0
\(926\) −40.1360 −1.31895
\(927\) −2.50005 −0.0821125
\(928\) 15.9458 0.523446
\(929\) −4.33444 −0.142208 −0.0711042 0.997469i \(-0.522652\pi\)
−0.0711042 + 0.997469i \(0.522652\pi\)
\(930\) 0 0
\(931\) −27.2028 −0.891536
\(932\) 4.88548 0.160029
\(933\) −27.3572 −0.895633
\(934\) 5.91884 0.193670
\(935\) 0 0
\(936\) −3.39865 −0.111088
\(937\) 54.5925 1.78346 0.891730 0.452567i \(-0.149492\pi\)
0.891730 + 0.452567i \(0.149492\pi\)
\(938\) −9.91218 −0.323644
\(939\) 1.99509 0.0651073
\(940\) 0 0
\(941\) 4.23853 0.138172 0.0690861 0.997611i \(-0.477992\pi\)
0.0690861 + 0.997611i \(0.477992\pi\)
\(942\) 24.6729 0.803885
\(943\) −16.3191 −0.531423
\(944\) −50.8051 −1.65356
\(945\) 0 0
\(946\) 29.0318 0.943906
\(947\) 12.6069 0.409671 0.204835 0.978796i \(-0.434334\pi\)
0.204835 + 0.978796i \(0.434334\pi\)
\(948\) −3.85116 −0.125080
\(949\) 9.34781 0.303443
\(950\) 0 0
\(951\) −8.64876 −0.280455
\(952\) −8.26348 −0.267821
\(953\) −31.1635 −1.00948 −0.504742 0.863270i \(-0.668412\pi\)
−0.504742 + 0.863270i \(0.668412\pi\)
\(954\) 6.40975 0.207523
\(955\) 0 0
\(956\) −3.80247 −0.122981
\(957\) −18.6148 −0.601732
\(958\) 21.9262 0.708405
\(959\) 2.95301 0.0953578
\(960\) 0 0
\(961\) −17.3309 −0.559062
\(962\) −20.2194 −0.651900
\(963\) 1.81004 0.0583276
\(964\) 7.03319 0.226524
\(965\) 0 0
\(966\) −20.2101 −0.650248
\(967\) 1.55308 0.0499438 0.0249719 0.999688i \(-0.492050\pi\)
0.0249719 + 0.999688i \(0.492050\pi\)
\(968\) −13.7206 −0.440997
\(969\) 12.5295 0.402507
\(970\) 0 0
\(971\) −38.2623 −1.22790 −0.613948 0.789347i \(-0.710419\pi\)
−0.613948 + 0.789347i \(0.710419\pi\)
\(972\) 0.360976 0.0115783
\(973\) −2.51108 −0.0805016
\(974\) −38.1405 −1.22210
\(975\) 0 0
\(976\) 56.1890 1.79857
\(977\) −20.3661 −0.651570 −0.325785 0.945444i \(-0.605629\pi\)
−0.325785 + 0.945444i \(0.605629\pi\)
\(978\) −34.2554 −1.09537
\(979\) −1.01123 −0.0323190
\(980\) 0 0
\(981\) −2.94778 −0.0941152
\(982\) −17.6539 −0.563359
\(983\) −13.2557 −0.422791 −0.211395 0.977401i \(-0.567801\pi\)
−0.211395 + 0.977401i \(0.567801\pi\)
\(984\) 4.67295 0.148968
\(985\) 0 0
\(986\) −26.6335 −0.848185
\(987\) 9.96446 0.317172
\(988\) −2.78190 −0.0885041
\(989\) −70.5249 −2.24256
\(990\) 0 0
\(991\) −2.24081 −0.0711816 −0.0355908 0.999366i \(-0.511331\pi\)
−0.0355908 + 0.999366i \(0.511331\pi\)
\(992\) −7.46241 −0.236932
\(993\) −3.94331 −0.125137
\(994\) 13.2761 0.421093
\(995\) 0 0
\(996\) −0.0808598 −0.00256214
\(997\) −14.0404 −0.444663 −0.222331 0.974971i \(-0.571367\pi\)
−0.222331 + 0.974971i \(0.571367\pi\)
\(998\) 6.41489 0.203060
\(999\) −9.75097 −0.308507
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1875.2.a.m.1.3 8
3.2 odd 2 5625.2.a.bd.1.6 8
5.2 odd 4 1875.2.b.h.1249.4 16
5.3 odd 4 1875.2.b.h.1249.13 16
5.4 even 2 1875.2.a.p.1.6 8
15.14 odd 2 5625.2.a.t.1.3 8
25.2 odd 20 375.2.i.c.274.1 16
25.9 even 10 375.2.g.d.151.3 16
25.11 even 5 375.2.g.e.226.2 16
25.12 odd 20 75.2.i.a.19.4 yes 16
25.13 odd 20 375.2.i.c.349.1 16
25.14 even 10 375.2.g.d.226.3 16
25.16 even 5 375.2.g.e.151.2 16
25.23 odd 20 75.2.i.a.4.4 16
75.23 even 20 225.2.m.b.154.1 16
75.62 even 20 225.2.m.b.19.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.2.i.a.4.4 16 25.23 odd 20
75.2.i.a.19.4 yes 16 25.12 odd 20
225.2.m.b.19.1 16 75.62 even 20
225.2.m.b.154.1 16 75.23 even 20
375.2.g.d.151.3 16 25.9 even 10
375.2.g.d.226.3 16 25.14 even 10
375.2.g.e.151.2 16 25.16 even 5
375.2.g.e.226.2 16 25.11 even 5
375.2.i.c.274.1 16 25.2 odd 20
375.2.i.c.349.1 16 25.13 odd 20
1875.2.a.m.1.3 8 1.1 even 1 trivial
1875.2.a.p.1.6 8 5.4 even 2
1875.2.b.h.1249.4 16 5.2 odd 4
1875.2.b.h.1249.13 16 5.3 odd 4
5625.2.a.t.1.3 8 15.14 odd 2
5625.2.a.bd.1.6 8 3.2 odd 2