Properties

Label 1875.2.a.l.1.6
Level $1875$
Weight $2$
Character 1875.1
Self dual yes
Analytic conductor $14.972$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1875,2,Mod(1,1875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1875, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1875.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1875 = 3 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1875.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.9719503790\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.46840000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 11x^{4} + 8x^{3} + 31x^{2} - 15x - 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.78712\) of defining polynomial
Character \(\chi\) \(=\) 1875.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.78712 q^{2} -1.00000 q^{3} +5.76803 q^{4} -2.78712 q^{6} -3.15000 q^{7} +10.5020 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+2.78712 q^{2} -1.00000 q^{3} +5.76803 q^{4} -2.78712 q^{6} -3.15000 q^{7} +10.5020 q^{8} +1.00000 q^{9} +2.94681 q^{11} -5.76803 q^{12} +0.188171 q^{13} -8.77943 q^{14} +17.7341 q^{16} +2.62743 q^{17} +2.78712 q^{18} +1.94100 q^{19} +3.15000 q^{21} +8.21310 q^{22} -1.30447 q^{23} -10.5020 q^{24} +0.524454 q^{26} -1.00000 q^{27} -18.1693 q^{28} +1.23197 q^{29} +2.65174 q^{31} +28.4233 q^{32} -2.94681 q^{33} +7.32297 q^{34} +5.76803 q^{36} +10.1161 q^{37} +5.40980 q^{38} -0.188171 q^{39} +3.85940 q^{41} +8.77943 q^{42} -9.63734 q^{43} +16.9973 q^{44} -3.63570 q^{46} -11.9846 q^{47} -17.7341 q^{48} +2.92250 q^{49} -2.62743 q^{51} +1.08537 q^{52} +0.369521 q^{53} -2.78712 q^{54} -33.0812 q^{56} -1.94100 q^{57} +3.43364 q^{58} -6.90864 q^{59} +5.68643 q^{61} +7.39071 q^{62} -3.15000 q^{63} +43.7507 q^{64} -8.21310 q^{66} +3.24188 q^{67} +15.1551 q^{68} +1.30447 q^{69} +6.69982 q^{71} +10.5020 q^{72} -9.46938 q^{73} +28.1948 q^{74} +11.1957 q^{76} -9.28244 q^{77} -0.524454 q^{78} +0.420137 q^{79} +1.00000 q^{81} +10.7566 q^{82} -12.1635 q^{83} +18.1693 q^{84} -26.8604 q^{86} -1.23197 q^{87} +30.9473 q^{88} -15.1828 q^{89} -0.592737 q^{91} -7.52421 q^{92} -2.65174 q^{93} -33.4025 q^{94} -28.4233 q^{96} +13.9035 q^{97} +8.14536 q^{98} +2.94681 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} - 6 q^{3} + 11 q^{4} - q^{6} - 2 q^{7} + 6 q^{8} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + q^{2} - 6 q^{3} + 11 q^{4} - q^{6} - 2 q^{7} + 6 q^{8} + 6 q^{9} - 11 q^{12} - 4 q^{14} + 17 q^{16} + 2 q^{17} + q^{18} - 2 q^{19} + 2 q^{21} + 9 q^{22} - q^{23} - 6 q^{24} + 37 q^{26} - 6 q^{27} - 44 q^{28} + 31 q^{29} - 2 q^{31} + 33 q^{32} + 37 q^{34} + 11 q^{36} - 22 q^{37} + 27 q^{38} + 33 q^{41} + 4 q^{42} - 3 q^{43} - 11 q^{44} - 12 q^{46} - 6 q^{47} - 17 q^{48} + 4 q^{49} - 2 q^{51} - 33 q^{52} + 14 q^{53} - q^{54} - 30 q^{56} + 2 q^{57} - q^{58} - 8 q^{59} + 34 q^{61} + 31 q^{62} - 2 q^{63} + 12 q^{64} - 9 q^{66} + 2 q^{67} + 27 q^{68} + q^{69} - 3 q^{71} + 6 q^{72} - 36 q^{73} + 36 q^{74} + 27 q^{76} + 16 q^{77} - 37 q^{78} + 25 q^{79} + 6 q^{81} + 36 q^{82} - 12 q^{83} + 44 q^{84} - 30 q^{86} - 31 q^{87} + 56 q^{88} + 18 q^{89} + 28 q^{91} + 3 q^{92} + 2 q^{93} - 50 q^{94} - 33 q^{96} + 7 q^{97} + 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.78712 1.97079 0.985395 0.170281i \(-0.0544677\pi\)
0.985395 + 0.170281i \(0.0544677\pi\)
\(3\) −1.00000 −0.577350
\(4\) 5.76803 2.88402
\(5\) 0 0
\(6\) −2.78712 −1.13784
\(7\) −3.15000 −1.19059 −0.595294 0.803508i \(-0.702964\pi\)
−0.595294 + 0.803508i \(0.702964\pi\)
\(8\) 10.5020 3.71300
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.94681 0.888496 0.444248 0.895904i \(-0.353471\pi\)
0.444248 + 0.895904i \(0.353471\pi\)
\(12\) −5.76803 −1.66509
\(13\) 0.188171 0.0521891 0.0260946 0.999659i \(-0.491693\pi\)
0.0260946 + 0.999659i \(0.491693\pi\)
\(14\) −8.77943 −2.34640
\(15\) 0 0
\(16\) 17.7341 4.43354
\(17\) 2.62743 0.637246 0.318623 0.947882i \(-0.396780\pi\)
0.318623 + 0.947882i \(0.396780\pi\)
\(18\) 2.78712 0.656930
\(19\) 1.94100 0.445296 0.222648 0.974899i \(-0.428530\pi\)
0.222648 + 0.974899i \(0.428530\pi\)
\(20\) 0 0
\(21\) 3.15000 0.687386
\(22\) 8.21310 1.75104
\(23\) −1.30447 −0.272000 −0.136000 0.990709i \(-0.543425\pi\)
−0.136000 + 0.990709i \(0.543425\pi\)
\(24\) −10.5020 −2.14370
\(25\) 0 0
\(26\) 0.524454 0.102854
\(27\) −1.00000 −0.192450
\(28\) −18.1693 −3.43368
\(29\) 1.23197 0.228770 0.114385 0.993436i \(-0.463510\pi\)
0.114385 + 0.993436i \(0.463510\pi\)
\(30\) 0 0
\(31\) 2.65174 0.476266 0.238133 0.971233i \(-0.423465\pi\)
0.238133 + 0.971233i \(0.423465\pi\)
\(32\) 28.4233 5.02457
\(33\) −2.94681 −0.512973
\(34\) 7.32297 1.25588
\(35\) 0 0
\(36\) 5.76803 0.961339
\(37\) 10.1161 1.66308 0.831540 0.555466i \(-0.187460\pi\)
0.831540 + 0.555466i \(0.187460\pi\)
\(38\) 5.40980 0.877585
\(39\) −0.188171 −0.0301314
\(40\) 0 0
\(41\) 3.85940 0.602737 0.301368 0.953508i \(-0.402557\pi\)
0.301368 + 0.953508i \(0.402557\pi\)
\(42\) 8.77943 1.35469
\(43\) −9.63734 −1.46968 −0.734840 0.678240i \(-0.762743\pi\)
−0.734840 + 0.678240i \(0.762743\pi\)
\(44\) 16.9973 2.56244
\(45\) 0 0
\(46\) −3.63570 −0.536055
\(47\) −11.9846 −1.74814 −0.874068 0.485804i \(-0.838527\pi\)
−0.874068 + 0.485804i \(0.838527\pi\)
\(48\) −17.7341 −2.55970
\(49\) 2.92250 0.417500
\(50\) 0 0
\(51\) −2.62743 −0.367914
\(52\) 1.08537 0.150514
\(53\) 0.369521 0.0507576 0.0253788 0.999678i \(-0.491921\pi\)
0.0253788 + 0.999678i \(0.491921\pi\)
\(54\) −2.78712 −0.379279
\(55\) 0 0
\(56\) −33.0812 −4.42066
\(57\) −1.94100 −0.257092
\(58\) 3.43364 0.450859
\(59\) −6.90864 −0.899428 −0.449714 0.893173i \(-0.648474\pi\)
−0.449714 + 0.893173i \(0.648474\pi\)
\(60\) 0 0
\(61\) 5.68643 0.728073 0.364037 0.931385i \(-0.381398\pi\)
0.364037 + 0.931385i \(0.381398\pi\)
\(62\) 7.39071 0.938621
\(63\) −3.15000 −0.396863
\(64\) 43.7507 5.46884
\(65\) 0 0
\(66\) −8.21310 −1.01096
\(67\) 3.24188 0.396058 0.198029 0.980196i \(-0.436546\pi\)
0.198029 + 0.980196i \(0.436546\pi\)
\(68\) 15.1551 1.83783
\(69\) 1.30447 0.157039
\(70\) 0 0
\(71\) 6.69982 0.795122 0.397561 0.917576i \(-0.369857\pi\)
0.397561 + 0.917576i \(0.369857\pi\)
\(72\) 10.5020 1.23767
\(73\) −9.46938 −1.10831 −0.554153 0.832415i \(-0.686958\pi\)
−0.554153 + 0.832415i \(0.686958\pi\)
\(74\) 28.1948 3.27758
\(75\) 0 0
\(76\) 11.1957 1.28424
\(77\) −9.28244 −1.05783
\(78\) −0.524454 −0.0593827
\(79\) 0.420137 0.0472691 0.0236345 0.999721i \(-0.492476\pi\)
0.0236345 + 0.999721i \(0.492476\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 10.7566 1.18787
\(83\) −12.1635 −1.33512 −0.667559 0.744557i \(-0.732661\pi\)
−0.667559 + 0.744557i \(0.732661\pi\)
\(84\) 18.1693 1.98243
\(85\) 0 0
\(86\) −26.8604 −2.89643
\(87\) −1.23197 −0.132081
\(88\) 30.9473 3.29899
\(89\) −15.1828 −1.60937 −0.804687 0.593699i \(-0.797667\pi\)
−0.804687 + 0.593699i \(0.797667\pi\)
\(90\) 0 0
\(91\) −0.592737 −0.0621358
\(92\) −7.52421 −0.784453
\(93\) −2.65174 −0.274972
\(94\) −33.4025 −3.44521
\(95\) 0 0
\(96\) −28.4233 −2.90094
\(97\) 13.9035 1.41169 0.705845 0.708367i \(-0.250568\pi\)
0.705845 + 0.708367i \(0.250568\pi\)
\(98\) 8.14536 0.822805
\(99\) 2.94681 0.296165
\(100\) 0 0
\(101\) −9.67188 −0.962388 −0.481194 0.876614i \(-0.659797\pi\)
−0.481194 + 0.876614i \(0.659797\pi\)
\(102\) −7.32297 −0.725082
\(103\) 8.69434 0.856679 0.428339 0.903618i \(-0.359099\pi\)
0.428339 + 0.903618i \(0.359099\pi\)
\(104\) 1.97616 0.193778
\(105\) 0 0
\(106\) 1.02990 0.100033
\(107\) −2.56585 −0.248050 −0.124025 0.992279i \(-0.539580\pi\)
−0.124025 + 0.992279i \(0.539580\pi\)
\(108\) −5.76803 −0.555029
\(109\) −15.2352 −1.45926 −0.729632 0.683840i \(-0.760309\pi\)
−0.729632 + 0.683840i \(0.760309\pi\)
\(110\) 0 0
\(111\) −10.1161 −0.960179
\(112\) −55.8626 −5.27852
\(113\) 2.20391 0.207326 0.103663 0.994612i \(-0.466944\pi\)
0.103663 + 0.994612i \(0.466944\pi\)
\(114\) −5.40980 −0.506674
\(115\) 0 0
\(116\) 7.10602 0.659778
\(117\) 0.188171 0.0173964
\(118\) −19.2552 −1.77258
\(119\) −8.27641 −0.758697
\(120\) 0 0
\(121\) −2.31633 −0.210575
\(122\) 15.8488 1.43488
\(123\) −3.85940 −0.347990
\(124\) 15.2953 1.37356
\(125\) 0 0
\(126\) −8.77943 −0.782133
\(127\) −14.9689 −1.32827 −0.664136 0.747611i \(-0.731201\pi\)
−0.664136 + 0.747611i \(0.731201\pi\)
\(128\) 65.0920 5.75337
\(129\) 9.63734 0.848521
\(130\) 0 0
\(131\) 11.2957 0.986911 0.493456 0.869771i \(-0.335734\pi\)
0.493456 + 0.869771i \(0.335734\pi\)
\(132\) −16.9973 −1.47942
\(133\) −6.11415 −0.530164
\(134\) 9.03550 0.780548
\(135\) 0 0
\(136\) 27.5932 2.36610
\(137\) 4.17877 0.357017 0.178508 0.983938i \(-0.442873\pi\)
0.178508 + 0.983938i \(0.442873\pi\)
\(138\) 3.63570 0.309492
\(139\) −15.3552 −1.30241 −0.651207 0.758900i \(-0.725737\pi\)
−0.651207 + 0.758900i \(0.725737\pi\)
\(140\) 0 0
\(141\) 11.9846 1.00929
\(142\) 18.6732 1.56702
\(143\) 0.554502 0.0463698
\(144\) 17.7341 1.47785
\(145\) 0 0
\(146\) −26.3923 −2.18424
\(147\) −2.92250 −0.241044
\(148\) 58.3501 4.79635
\(149\) 3.43364 0.281294 0.140647 0.990060i \(-0.455082\pi\)
0.140647 + 0.990060i \(0.455082\pi\)
\(150\) 0 0
\(151\) 10.7716 0.876581 0.438290 0.898833i \(-0.355584\pi\)
0.438290 + 0.898833i \(0.355584\pi\)
\(152\) 20.3843 1.65338
\(153\) 2.62743 0.212415
\(154\) −25.8713 −2.08477
\(155\) 0 0
\(156\) −1.08537 −0.0868995
\(157\) −13.4045 −1.06980 −0.534900 0.844916i \(-0.679651\pi\)
−0.534900 + 0.844916i \(0.679651\pi\)
\(158\) 1.17097 0.0931574
\(159\) −0.369521 −0.0293049
\(160\) 0 0
\(161\) 4.10907 0.323840
\(162\) 2.78712 0.218977
\(163\) −15.4178 −1.20762 −0.603808 0.797129i \(-0.706351\pi\)
−0.603808 + 0.797129i \(0.706351\pi\)
\(164\) 22.2611 1.73830
\(165\) 0 0
\(166\) −33.9011 −2.63124
\(167\) 17.4045 1.34680 0.673402 0.739276i \(-0.264832\pi\)
0.673402 + 0.739276i \(0.264832\pi\)
\(168\) 33.0812 2.55227
\(169\) −12.9646 −0.997276
\(170\) 0 0
\(171\) 1.94100 0.148432
\(172\) −55.5885 −4.23858
\(173\) −19.2737 −1.46535 −0.732676 0.680578i \(-0.761729\pi\)
−0.732676 + 0.680578i \(0.761729\pi\)
\(174\) −3.43364 −0.260303
\(175\) 0 0
\(176\) 52.2591 3.93918
\(177\) 6.90864 0.519285
\(178\) −42.3163 −3.17174
\(179\) 23.7940 1.77845 0.889223 0.457475i \(-0.151246\pi\)
0.889223 + 0.457475i \(0.151246\pi\)
\(180\) 0 0
\(181\) −10.6891 −0.794516 −0.397258 0.917707i \(-0.630038\pi\)
−0.397258 + 0.917707i \(0.630038\pi\)
\(182\) −1.65203 −0.122457
\(183\) −5.68643 −0.420353
\(184\) −13.6995 −1.00994
\(185\) 0 0
\(186\) −7.39071 −0.541913
\(187\) 7.74253 0.566190
\(188\) −69.1277 −5.04165
\(189\) 3.15000 0.229129
\(190\) 0 0
\(191\) −14.3581 −1.03892 −0.519458 0.854496i \(-0.673866\pi\)
−0.519458 + 0.854496i \(0.673866\pi\)
\(192\) −43.7507 −3.15744
\(193\) 1.95508 0.140730 0.0703648 0.997521i \(-0.477584\pi\)
0.0703648 + 0.997521i \(0.477584\pi\)
\(194\) 38.7508 2.78214
\(195\) 0 0
\(196\) 16.8571 1.20408
\(197\) −1.17958 −0.0840417 −0.0420209 0.999117i \(-0.513380\pi\)
−0.0420209 + 0.999117i \(0.513380\pi\)
\(198\) 8.21310 0.583680
\(199\) −6.55820 −0.464899 −0.232449 0.972608i \(-0.574674\pi\)
−0.232449 + 0.972608i \(0.574674\pi\)
\(200\) 0 0
\(201\) −3.24188 −0.228664
\(202\) −26.9567 −1.89666
\(203\) −3.88069 −0.272371
\(204\) −15.1551 −1.06107
\(205\) 0 0
\(206\) 24.2322 1.68833
\(207\) −1.30447 −0.0906667
\(208\) 3.33705 0.231382
\(209\) 5.71975 0.395643
\(210\) 0 0
\(211\) 12.3573 0.850715 0.425357 0.905026i \(-0.360148\pi\)
0.425357 + 0.905026i \(0.360148\pi\)
\(212\) 2.13141 0.146386
\(213\) −6.69982 −0.459064
\(214\) −7.15134 −0.488856
\(215\) 0 0
\(216\) −10.5020 −0.714568
\(217\) −8.35298 −0.567037
\(218\) −42.4622 −2.87591
\(219\) 9.46938 0.639881
\(220\) 0 0
\(221\) 0.494405 0.0332573
\(222\) −28.1948 −1.89231
\(223\) −7.30693 −0.489308 −0.244654 0.969610i \(-0.578674\pi\)
−0.244654 + 0.969610i \(0.578674\pi\)
\(224\) −89.5333 −5.98219
\(225\) 0 0
\(226\) 6.14256 0.408597
\(227\) −21.0202 −1.39516 −0.697579 0.716508i \(-0.745739\pi\)
−0.697579 + 0.716508i \(0.745739\pi\)
\(228\) −11.1957 −0.741457
\(229\) 19.5544 1.29219 0.646094 0.763258i \(-0.276401\pi\)
0.646094 + 0.763258i \(0.276401\pi\)
\(230\) 0 0
\(231\) 9.28244 0.610740
\(232\) 12.9381 0.849425
\(233\) 12.1472 0.795792 0.397896 0.917430i \(-0.369740\pi\)
0.397896 + 0.917430i \(0.369740\pi\)
\(234\) 0.524454 0.0342846
\(235\) 0 0
\(236\) −39.8493 −2.59397
\(237\) −0.420137 −0.0272908
\(238\) −23.0673 −1.49523
\(239\) 13.4517 0.870119 0.435059 0.900402i \(-0.356727\pi\)
0.435059 + 0.900402i \(0.356727\pi\)
\(240\) 0 0
\(241\) 19.9370 1.28426 0.642129 0.766597i \(-0.278051\pi\)
0.642129 + 0.766597i \(0.278051\pi\)
\(242\) −6.45588 −0.415000
\(243\) −1.00000 −0.0641500
\(244\) 32.7995 2.09978
\(245\) 0 0
\(246\) −10.7566 −0.685816
\(247\) 0.365239 0.0232396
\(248\) 27.8485 1.76838
\(249\) 12.1635 0.770830
\(250\) 0 0
\(251\) −2.76013 −0.174218 −0.0871088 0.996199i \(-0.527763\pi\)
−0.0871088 + 0.996199i \(0.527763\pi\)
\(252\) −18.1693 −1.14456
\(253\) −3.84401 −0.241671
\(254\) −41.7200 −2.61775
\(255\) 0 0
\(256\) 93.9177 5.86986
\(257\) −17.2848 −1.07820 −0.539098 0.842243i \(-0.681235\pi\)
−0.539098 + 0.842243i \(0.681235\pi\)
\(258\) 26.8604 1.67226
\(259\) −31.8658 −1.98004
\(260\) 0 0
\(261\) 1.23197 0.0762568
\(262\) 31.4825 1.94500
\(263\) −3.96578 −0.244541 −0.122270 0.992497i \(-0.539017\pi\)
−0.122270 + 0.992497i \(0.539017\pi\)
\(264\) −30.9473 −1.90467
\(265\) 0 0
\(266\) −17.0409 −1.04484
\(267\) 15.1828 0.929173
\(268\) 18.6993 1.14224
\(269\) 1.19564 0.0728993 0.0364496 0.999335i \(-0.488395\pi\)
0.0364496 + 0.999335i \(0.488395\pi\)
\(270\) 0 0
\(271\) −2.18295 −0.132605 −0.0663023 0.997800i \(-0.521120\pi\)
−0.0663023 + 0.997800i \(0.521120\pi\)
\(272\) 46.5953 2.82525
\(273\) 0.592737 0.0358741
\(274\) 11.6467 0.703605
\(275\) 0 0
\(276\) 7.52421 0.452904
\(277\) 1.95174 0.117268 0.0586342 0.998280i \(-0.481325\pi\)
0.0586342 + 0.998280i \(0.481325\pi\)
\(278\) −42.7969 −2.56679
\(279\) 2.65174 0.158755
\(280\) 0 0
\(281\) 2.30131 0.137284 0.0686422 0.997641i \(-0.478133\pi\)
0.0686422 + 0.997641i \(0.478133\pi\)
\(282\) 33.4025 1.98909
\(283\) −10.6459 −0.632835 −0.316417 0.948620i \(-0.602480\pi\)
−0.316417 + 0.948620i \(0.602480\pi\)
\(284\) 38.6448 2.29315
\(285\) 0 0
\(286\) 1.54546 0.0913852
\(287\) −12.1571 −0.717611
\(288\) 28.4233 1.67486
\(289\) −10.0966 −0.593918
\(290\) 0 0
\(291\) −13.9035 −0.815039
\(292\) −54.6197 −3.19638
\(293\) 14.9591 0.873921 0.436960 0.899481i \(-0.356055\pi\)
0.436960 + 0.899481i \(0.356055\pi\)
\(294\) −8.14536 −0.475047
\(295\) 0 0
\(296\) 106.239 6.17502
\(297\) −2.94681 −0.170991
\(298\) 9.56995 0.554373
\(299\) −0.245462 −0.0141954
\(300\) 0 0
\(301\) 30.3576 1.74978
\(302\) 30.0217 1.72756
\(303\) 9.67188 0.555635
\(304\) 34.4220 1.97424
\(305\) 0 0
\(306\) 7.32297 0.418626
\(307\) −3.07333 −0.175404 −0.0877021 0.996147i \(-0.527952\pi\)
−0.0877021 + 0.996147i \(0.527952\pi\)
\(308\) −53.5414 −3.05081
\(309\) −8.69434 −0.494604
\(310\) 0 0
\(311\) 24.9095 1.41249 0.706244 0.707968i \(-0.250388\pi\)
0.706244 + 0.707968i \(0.250388\pi\)
\(312\) −1.97616 −0.111878
\(313\) 9.28562 0.524854 0.262427 0.964952i \(-0.415477\pi\)
0.262427 + 0.964952i \(0.415477\pi\)
\(314\) −37.3601 −2.10835
\(315\) 0 0
\(316\) 2.42336 0.136325
\(317\) 20.7685 1.16647 0.583237 0.812302i \(-0.301786\pi\)
0.583237 + 0.812302i \(0.301786\pi\)
\(318\) −1.02990 −0.0577538
\(319\) 3.63037 0.203261
\(320\) 0 0
\(321\) 2.56585 0.143212
\(322\) 11.4525 0.638221
\(323\) 5.09984 0.283763
\(324\) 5.76803 0.320446
\(325\) 0 0
\(326\) −42.9713 −2.37996
\(327\) 15.2352 0.842507
\(328\) 40.5312 2.23796
\(329\) 37.7515 2.08131
\(330\) 0 0
\(331\) −33.9172 −1.86426 −0.932128 0.362129i \(-0.882050\pi\)
−0.932128 + 0.362129i \(0.882050\pi\)
\(332\) −70.1595 −3.85050
\(333\) 10.1161 0.554360
\(334\) 48.5085 2.65427
\(335\) 0 0
\(336\) 55.8626 3.04755
\(337\) 17.7792 0.968494 0.484247 0.874931i \(-0.339094\pi\)
0.484247 + 0.874931i \(0.339094\pi\)
\(338\) −36.1339 −1.96542
\(339\) −2.20391 −0.119700
\(340\) 0 0
\(341\) 7.81416 0.423161
\(342\) 5.40980 0.292528
\(343\) 12.8441 0.693518
\(344\) −101.211 −5.45693
\(345\) 0 0
\(346\) −53.7181 −2.88790
\(347\) −12.2251 −0.656277 −0.328138 0.944630i \(-0.606421\pi\)
−0.328138 + 0.944630i \(0.606421\pi\)
\(348\) −7.10602 −0.380923
\(349\) 12.8425 0.687441 0.343720 0.939072i \(-0.388313\pi\)
0.343720 + 0.939072i \(0.388313\pi\)
\(350\) 0 0
\(351\) −0.188171 −0.0100438
\(352\) 83.7579 4.46431
\(353\) 17.4163 0.926976 0.463488 0.886103i \(-0.346598\pi\)
0.463488 + 0.886103i \(0.346598\pi\)
\(354\) 19.2552 1.02340
\(355\) 0 0
\(356\) −87.5749 −4.64146
\(357\) 8.27641 0.438034
\(358\) 66.3167 3.50494
\(359\) −3.82947 −0.202111 −0.101056 0.994881i \(-0.532222\pi\)
−0.101056 + 0.994881i \(0.532222\pi\)
\(360\) 0 0
\(361\) −15.2325 −0.801712
\(362\) −29.7918 −1.56582
\(363\) 2.31633 0.121576
\(364\) −3.41893 −0.179201
\(365\) 0 0
\(366\) −15.8488 −0.828428
\(367\) −29.6282 −1.54658 −0.773289 0.634054i \(-0.781390\pi\)
−0.773289 + 0.634054i \(0.781390\pi\)
\(368\) −23.1336 −1.20592
\(369\) 3.85940 0.200912
\(370\) 0 0
\(371\) −1.16399 −0.0604314
\(372\) −15.2953 −0.793025
\(373\) 11.4595 0.593350 0.296675 0.954978i \(-0.404122\pi\)
0.296675 + 0.954978i \(0.404122\pi\)
\(374\) 21.5794 1.11584
\(375\) 0 0
\(376\) −125.862 −6.49083
\(377\) 0.231820 0.0119393
\(378\) 8.77943 0.451565
\(379\) −2.19307 −0.112650 −0.0563251 0.998412i \(-0.517938\pi\)
−0.0563251 + 0.998412i \(0.517938\pi\)
\(380\) 0 0
\(381\) 14.9689 0.766879
\(382\) −40.0177 −2.04749
\(383\) −10.1997 −0.521181 −0.260591 0.965449i \(-0.583917\pi\)
−0.260591 + 0.965449i \(0.583917\pi\)
\(384\) −65.0920 −3.32171
\(385\) 0 0
\(386\) 5.44904 0.277349
\(387\) −9.63734 −0.489894
\(388\) 80.1960 4.07134
\(389\) 28.5482 1.44745 0.723726 0.690088i \(-0.242428\pi\)
0.723726 + 0.690088i \(0.242428\pi\)
\(390\) 0 0
\(391\) −3.42740 −0.173331
\(392\) 30.6920 1.55018
\(393\) −11.2957 −0.569794
\(394\) −3.28764 −0.165629
\(395\) 0 0
\(396\) 16.9973 0.854146
\(397\) 37.1827 1.86614 0.933072 0.359688i \(-0.117117\pi\)
0.933072 + 0.359688i \(0.117117\pi\)
\(398\) −18.2785 −0.916218
\(399\) 6.11415 0.306090
\(400\) 0 0
\(401\) 7.38648 0.368863 0.184432 0.982845i \(-0.440956\pi\)
0.184432 + 0.982845i \(0.440956\pi\)
\(402\) −9.03550 −0.450650
\(403\) 0.498979 0.0248559
\(404\) −55.7877 −2.77554
\(405\) 0 0
\(406\) −10.8160 −0.536787
\(407\) 29.8102 1.47764
\(408\) −27.5932 −1.36607
\(409\) −5.19942 −0.257095 −0.128547 0.991703i \(-0.541031\pi\)
−0.128547 + 0.991703i \(0.541031\pi\)
\(410\) 0 0
\(411\) −4.17877 −0.206124
\(412\) 50.1492 2.47068
\(413\) 21.7622 1.07085
\(414\) −3.63570 −0.178685
\(415\) 0 0
\(416\) 5.34842 0.262228
\(417\) 15.3552 0.751949
\(418\) 15.9416 0.779730
\(419\) −14.9205 −0.728914 −0.364457 0.931220i \(-0.618745\pi\)
−0.364457 + 0.931220i \(0.618745\pi\)
\(420\) 0 0
\(421\) −0.0666925 −0.00325039 −0.00162520 0.999999i \(-0.500517\pi\)
−0.00162520 + 0.999999i \(0.500517\pi\)
\(422\) 34.4414 1.67658
\(423\) −11.9846 −0.582712
\(424\) 3.88069 0.188463
\(425\) 0 0
\(426\) −18.6732 −0.904719
\(427\) −17.9123 −0.866835
\(428\) −14.7999 −0.715382
\(429\) −0.554502 −0.0267716
\(430\) 0 0
\(431\) 27.6996 1.33424 0.667121 0.744950i \(-0.267527\pi\)
0.667121 + 0.744950i \(0.267527\pi\)
\(432\) −17.7341 −0.853235
\(433\) −30.5626 −1.46874 −0.734372 0.678748i \(-0.762523\pi\)
−0.734372 + 0.678748i \(0.762523\pi\)
\(434\) −23.2807 −1.11751
\(435\) 0 0
\(436\) −87.8770 −4.20854
\(437\) −2.53197 −0.121120
\(438\) 26.3923 1.26107
\(439\) 11.0968 0.529623 0.264812 0.964300i \(-0.414690\pi\)
0.264812 + 0.964300i \(0.414690\pi\)
\(440\) 0 0
\(441\) 2.92250 0.139167
\(442\) 1.37797 0.0655432
\(443\) −9.82831 −0.466957 −0.233479 0.972362i \(-0.575011\pi\)
−0.233479 + 0.972362i \(0.575011\pi\)
\(444\) −58.3501 −2.76917
\(445\) 0 0
\(446\) −20.3653 −0.964324
\(447\) −3.43364 −0.162405
\(448\) −137.815 −6.51114
\(449\) −19.1301 −0.902805 −0.451402 0.892320i \(-0.649076\pi\)
−0.451402 + 0.892320i \(0.649076\pi\)
\(450\) 0 0
\(451\) 11.3729 0.535529
\(452\) 12.7122 0.597933
\(453\) −10.7716 −0.506094
\(454\) −58.5858 −2.74957
\(455\) 0 0
\(456\) −20.3843 −0.954582
\(457\) 18.7578 0.877452 0.438726 0.898621i \(-0.355430\pi\)
0.438726 + 0.898621i \(0.355430\pi\)
\(458\) 54.5003 2.54663
\(459\) −2.62743 −0.122638
\(460\) 0 0
\(461\) −37.6208 −1.75217 −0.876087 0.482153i \(-0.839855\pi\)
−0.876087 + 0.482153i \(0.839855\pi\)
\(462\) 25.8713 1.20364
\(463\) −19.9275 −0.926111 −0.463056 0.886329i \(-0.653247\pi\)
−0.463056 + 0.886329i \(0.653247\pi\)
\(464\) 21.8479 1.01426
\(465\) 0 0
\(466\) 33.8558 1.56834
\(467\) 27.3667 1.26638 0.633190 0.773997i \(-0.281745\pi\)
0.633190 + 0.773997i \(0.281745\pi\)
\(468\) 1.08537 0.0501714
\(469\) −10.2119 −0.471542
\(470\) 0 0
\(471\) 13.4045 0.617649
\(472\) −72.5542 −3.33958
\(473\) −28.3994 −1.30581
\(474\) −1.17097 −0.0537845
\(475\) 0 0
\(476\) −47.7386 −2.18810
\(477\) 0.369521 0.0169192
\(478\) 37.4915 1.71482
\(479\) −38.5742 −1.76250 −0.881250 0.472650i \(-0.843297\pi\)
−0.881250 + 0.472650i \(0.843297\pi\)
\(480\) 0 0
\(481\) 1.90356 0.0867946
\(482\) 55.5669 2.53100
\(483\) −4.10907 −0.186969
\(484\) −13.3607 −0.607303
\(485\) 0 0
\(486\) −2.78712 −0.126426
\(487\) −18.4995 −0.838294 −0.419147 0.907918i \(-0.637671\pi\)
−0.419147 + 0.907918i \(0.637671\pi\)
\(488\) 59.7187 2.70334
\(489\) 15.4178 0.697218
\(490\) 0 0
\(491\) 19.7211 0.890000 0.445000 0.895531i \(-0.353204\pi\)
0.445000 + 0.895531i \(0.353204\pi\)
\(492\) −22.2611 −1.00361
\(493\) 3.23691 0.145783
\(494\) 1.01796 0.0458004
\(495\) 0 0
\(496\) 47.0263 2.11154
\(497\) −21.1044 −0.946663
\(498\) 33.9011 1.51915
\(499\) −36.2906 −1.62459 −0.812296 0.583245i \(-0.801783\pi\)
−0.812296 + 0.583245i \(0.801783\pi\)
\(500\) 0 0
\(501\) −17.4045 −0.777578
\(502\) −7.69280 −0.343347
\(503\) 2.66163 0.118676 0.0593382 0.998238i \(-0.481101\pi\)
0.0593382 + 0.998238i \(0.481101\pi\)
\(504\) −33.0812 −1.47355
\(505\) 0 0
\(506\) −10.7137 −0.476283
\(507\) 12.9646 0.575778
\(508\) −86.3410 −3.83076
\(509\) 22.8322 1.01202 0.506010 0.862528i \(-0.331120\pi\)
0.506010 + 0.862528i \(0.331120\pi\)
\(510\) 0 0
\(511\) 29.8285 1.31954
\(512\) 131.576 5.81488
\(513\) −1.94100 −0.0856972
\(514\) −48.1748 −2.12490
\(515\) 0 0
\(516\) 55.5885 2.44715
\(517\) −35.3163 −1.55321
\(518\) −88.8137 −3.90225
\(519\) 19.2737 0.846021
\(520\) 0 0
\(521\) −12.3029 −0.539001 −0.269501 0.963000i \(-0.586859\pi\)
−0.269501 + 0.963000i \(0.586859\pi\)
\(522\) 3.43364 0.150286
\(523\) −33.3902 −1.46005 −0.730025 0.683420i \(-0.760492\pi\)
−0.730025 + 0.683420i \(0.760492\pi\)
\(524\) 65.1541 2.84627
\(525\) 0 0
\(526\) −11.0531 −0.481939
\(527\) 6.96726 0.303499
\(528\) −52.2591 −2.27429
\(529\) −21.2984 −0.926016
\(530\) 0 0
\(531\) −6.90864 −0.299809
\(532\) −35.2666 −1.52900
\(533\) 0.726225 0.0314563
\(534\) 42.3163 1.83121
\(535\) 0 0
\(536\) 34.0461 1.47057
\(537\) −23.7940 −1.02679
\(538\) 3.33238 0.143669
\(539\) 8.61204 0.370947
\(540\) 0 0
\(541\) 5.98673 0.257389 0.128695 0.991684i \(-0.458921\pi\)
0.128695 + 0.991684i \(0.458921\pi\)
\(542\) −6.08413 −0.261336
\(543\) 10.6891 0.458714
\(544\) 74.6802 3.20189
\(545\) 0 0
\(546\) 1.65203 0.0707003
\(547\) 4.47889 0.191503 0.0957516 0.995405i \(-0.469475\pi\)
0.0957516 + 0.995405i \(0.469475\pi\)
\(548\) 24.1033 1.02964
\(549\) 5.68643 0.242691
\(550\) 0 0
\(551\) 2.39124 0.101870
\(552\) 13.6995 0.583088
\(553\) −1.32343 −0.0562780
\(554\) 5.43972 0.231112
\(555\) 0 0
\(556\) −88.5695 −3.75618
\(557\) −14.4278 −0.611326 −0.305663 0.952140i \(-0.598878\pi\)
−0.305663 + 0.952140i \(0.598878\pi\)
\(558\) 7.39071 0.312874
\(559\) −1.81346 −0.0767014
\(560\) 0 0
\(561\) −7.74253 −0.326890
\(562\) 6.41401 0.270559
\(563\) 27.6973 1.16730 0.583652 0.812004i \(-0.301623\pi\)
0.583652 + 0.812004i \(0.301623\pi\)
\(564\) 69.1277 2.91080
\(565\) 0 0
\(566\) −29.6715 −1.24719
\(567\) −3.15000 −0.132288
\(568\) 70.3612 2.95229
\(569\) 35.6179 1.49318 0.746590 0.665285i \(-0.231690\pi\)
0.746590 + 0.665285i \(0.231690\pi\)
\(570\) 0 0
\(571\) 5.85044 0.244833 0.122417 0.992479i \(-0.460936\pi\)
0.122417 + 0.992479i \(0.460936\pi\)
\(572\) 3.19839 0.133731
\(573\) 14.3581 0.599818
\(574\) −33.8833 −1.41426
\(575\) 0 0
\(576\) 43.7507 1.82295
\(577\) 12.0524 0.501746 0.250873 0.968020i \(-0.419282\pi\)
0.250873 + 0.968020i \(0.419282\pi\)
\(578\) −28.1404 −1.17049
\(579\) −1.95508 −0.0812503
\(580\) 0 0
\(581\) 38.3150 1.58958
\(582\) −38.7508 −1.60627
\(583\) 1.08891 0.0450979
\(584\) −99.4470 −4.11515
\(585\) 0 0
\(586\) 41.6928 1.72232
\(587\) 40.2350 1.66068 0.830339 0.557259i \(-0.188147\pi\)
0.830339 + 0.557259i \(0.188147\pi\)
\(588\) −16.8571 −0.695174
\(589\) 5.14702 0.212079
\(590\) 0 0
\(591\) 1.17958 0.0485215
\(592\) 179.401 7.37332
\(593\) 33.4086 1.37193 0.685964 0.727636i \(-0.259381\pi\)
0.685964 + 0.727636i \(0.259381\pi\)
\(594\) −8.21310 −0.336988
\(595\) 0 0
\(596\) 19.8053 0.811258
\(597\) 6.55820 0.268409
\(598\) −0.684132 −0.0279763
\(599\) −24.6421 −1.00685 −0.503424 0.864040i \(-0.667927\pi\)
−0.503424 + 0.864040i \(0.667927\pi\)
\(600\) 0 0
\(601\) 16.6327 0.678461 0.339230 0.940703i \(-0.389833\pi\)
0.339230 + 0.940703i \(0.389833\pi\)
\(602\) 84.6103 3.44846
\(603\) 3.24188 0.132019
\(604\) 62.1310 2.52807
\(605\) 0 0
\(606\) 26.9567 1.09504
\(607\) 29.4057 1.19354 0.596770 0.802412i \(-0.296450\pi\)
0.596770 + 0.802412i \(0.296450\pi\)
\(608\) 55.1695 2.23742
\(609\) 3.88069 0.157254
\(610\) 0 0
\(611\) −2.25515 −0.0912337
\(612\) 15.1551 0.612609
\(613\) 12.1702 0.491549 0.245775 0.969327i \(-0.420958\pi\)
0.245775 + 0.969327i \(0.420958\pi\)
\(614\) −8.56574 −0.345685
\(615\) 0 0
\(616\) −97.4838 −3.92774
\(617\) −39.1024 −1.57420 −0.787102 0.616823i \(-0.788419\pi\)
−0.787102 + 0.616823i \(0.788419\pi\)
\(618\) −24.2322 −0.974761
\(619\) −4.72717 −0.190001 −0.0950006 0.995477i \(-0.530285\pi\)
−0.0950006 + 0.995477i \(0.530285\pi\)
\(620\) 0 0
\(621\) 1.30447 0.0523464
\(622\) 69.4258 2.78372
\(623\) 47.8258 1.91610
\(624\) −3.33705 −0.133589
\(625\) 0 0
\(626\) 25.8801 1.03438
\(627\) −5.71975 −0.228425
\(628\) −77.3179 −3.08532
\(629\) 26.5794 1.05979
\(630\) 0 0
\(631\) −33.8710 −1.34838 −0.674191 0.738557i \(-0.735508\pi\)
−0.674191 + 0.738557i \(0.735508\pi\)
\(632\) 4.41226 0.175510
\(633\) −12.3573 −0.491160
\(634\) 57.8842 2.29888
\(635\) 0 0
\(636\) −2.13141 −0.0845158
\(637\) 0.549929 0.0217890
\(638\) 10.1183 0.400586
\(639\) 6.69982 0.265041
\(640\) 0 0
\(641\) 15.9571 0.630269 0.315135 0.949047i \(-0.397950\pi\)
0.315135 + 0.949047i \(0.397950\pi\)
\(642\) 7.15134 0.282241
\(643\) −10.2436 −0.403968 −0.201984 0.979389i \(-0.564739\pi\)
−0.201984 + 0.979389i \(0.564739\pi\)
\(644\) 23.7013 0.933960
\(645\) 0 0
\(646\) 14.2139 0.559237
\(647\) −6.00244 −0.235980 −0.117990 0.993015i \(-0.537645\pi\)
−0.117990 + 0.993015i \(0.537645\pi\)
\(648\) 10.5020 0.412556
\(649\) −20.3584 −0.799138
\(650\) 0 0
\(651\) 8.35298 0.327379
\(652\) −88.9305 −3.48279
\(653\) 33.1069 1.29557 0.647787 0.761822i \(-0.275695\pi\)
0.647787 + 0.761822i \(0.275695\pi\)
\(654\) 42.4622 1.66040
\(655\) 0 0
\(656\) 68.4431 2.67226
\(657\) −9.46938 −0.369436
\(658\) 105.218 4.10183
\(659\) 19.5593 0.761922 0.380961 0.924591i \(-0.375593\pi\)
0.380961 + 0.924591i \(0.375593\pi\)
\(660\) 0 0
\(661\) 30.5290 1.18744 0.593721 0.804671i \(-0.297658\pi\)
0.593721 + 0.804671i \(0.297658\pi\)
\(662\) −94.5312 −3.67406
\(663\) −0.494405 −0.0192011
\(664\) −127.741 −4.95730
\(665\) 0 0
\(666\) 28.1948 1.09253
\(667\) −1.60706 −0.0622255
\(668\) 100.390 3.88421
\(669\) 7.30693 0.282502
\(670\) 0 0
\(671\) 16.7568 0.646890
\(672\) 89.5333 3.45382
\(673\) 4.19687 0.161778 0.0808888 0.996723i \(-0.474224\pi\)
0.0808888 + 0.996723i \(0.474224\pi\)
\(674\) 49.5527 1.90870
\(675\) 0 0
\(676\) −74.7802 −2.87616
\(677\) 9.66481 0.371449 0.185724 0.982602i \(-0.440537\pi\)
0.185724 + 0.982602i \(0.440537\pi\)
\(678\) −6.14256 −0.235903
\(679\) −43.7961 −1.68074
\(680\) 0 0
\(681\) 21.0202 0.805495
\(682\) 21.7790 0.833961
\(683\) 9.03781 0.345822 0.172911 0.984937i \(-0.444683\pi\)
0.172911 + 0.984937i \(0.444683\pi\)
\(684\) 11.1957 0.428080
\(685\) 0 0
\(686\) 35.7981 1.36678
\(687\) −19.5544 −0.746045
\(688\) −170.910 −6.51588
\(689\) 0.0695329 0.00264899
\(690\) 0 0
\(691\) −32.1359 −1.22251 −0.611254 0.791435i \(-0.709334\pi\)
−0.611254 + 0.791435i \(0.709334\pi\)
\(692\) −111.171 −4.22610
\(693\) −9.28244 −0.352611
\(694\) −34.0728 −1.29338
\(695\) 0 0
\(696\) −12.9381 −0.490416
\(697\) 10.1403 0.384091
\(698\) 35.7935 1.35480
\(699\) −12.1472 −0.459451
\(700\) 0 0
\(701\) −8.54116 −0.322595 −0.161298 0.986906i \(-0.551568\pi\)
−0.161298 + 0.986906i \(0.551568\pi\)
\(702\) −0.524454 −0.0197942
\(703\) 19.6354 0.740562
\(704\) 128.925 4.85904
\(705\) 0 0
\(706\) 48.5413 1.82688
\(707\) 30.4664 1.14581
\(708\) 39.8493 1.49763
\(709\) 5.04613 0.189511 0.0947556 0.995501i \(-0.469793\pi\)
0.0947556 + 0.995501i \(0.469793\pi\)
\(710\) 0 0
\(711\) 0.420137 0.0157564
\(712\) −159.449 −5.97561
\(713\) −3.45910 −0.129544
\(714\) 23.0673 0.863274
\(715\) 0 0
\(716\) 137.244 5.12907
\(717\) −13.4517 −0.502363
\(718\) −10.6732 −0.398319
\(719\) −19.5253 −0.728170 −0.364085 0.931366i \(-0.618618\pi\)
−0.364085 + 0.931366i \(0.618618\pi\)
\(720\) 0 0
\(721\) −27.3872 −1.01995
\(722\) −42.4549 −1.58001
\(723\) −19.9370 −0.741467
\(724\) −61.6552 −2.29140
\(725\) 0 0
\(726\) 6.45588 0.239600
\(727\) 40.4464 1.50007 0.750037 0.661395i \(-0.230035\pi\)
0.750037 + 0.661395i \(0.230035\pi\)
\(728\) −6.22490 −0.230710
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −25.3215 −0.936548
\(732\) −32.7995 −1.21231
\(733\) 29.3862 1.08540 0.542702 0.839926i \(-0.317401\pi\)
0.542702 + 0.839926i \(0.317401\pi\)
\(734\) −82.5772 −3.04798
\(735\) 0 0
\(736\) −37.0772 −1.36668
\(737\) 9.55318 0.351896
\(738\) 10.7566 0.395956
\(739\) −30.7254 −1.13025 −0.565126 0.825005i \(-0.691172\pi\)
−0.565126 + 0.825005i \(0.691172\pi\)
\(740\) 0 0
\(741\) −0.365239 −0.0134174
\(742\) −3.24418 −0.119098
\(743\) 41.4841 1.52190 0.760952 0.648808i \(-0.224732\pi\)
0.760952 + 0.648808i \(0.224732\pi\)
\(744\) −27.8485 −1.02097
\(745\) 0 0
\(746\) 31.9390 1.16937
\(747\) −12.1635 −0.445039
\(748\) 44.6592 1.63290
\(749\) 8.08244 0.295326
\(750\) 0 0
\(751\) 38.6123 1.40898 0.704491 0.709713i \(-0.251175\pi\)
0.704491 + 0.709713i \(0.251175\pi\)
\(752\) −212.537 −7.75042
\(753\) 2.76013 0.100585
\(754\) 0.646109 0.0235299
\(755\) 0 0
\(756\) 18.1693 0.660811
\(757\) −23.0860 −0.839074 −0.419537 0.907738i \(-0.637807\pi\)
−0.419537 + 0.907738i \(0.637807\pi\)
\(758\) −6.11234 −0.222010
\(759\) 3.84401 0.139529
\(760\) 0 0
\(761\) −31.7092 −1.14946 −0.574728 0.818344i \(-0.694892\pi\)
−0.574728 + 0.818344i \(0.694892\pi\)
\(762\) 41.7200 1.51136
\(763\) 47.9908 1.73738
\(764\) −82.8180 −2.99625
\(765\) 0 0
\(766\) −28.4278 −1.02714
\(767\) −1.30000 −0.0469404
\(768\) −93.9177 −3.38896
\(769\) 38.6475 1.39366 0.696832 0.717235i \(-0.254592\pi\)
0.696832 + 0.717235i \(0.254592\pi\)
\(770\) 0 0
\(771\) 17.2848 0.622497
\(772\) 11.2770 0.405867
\(773\) 38.9958 1.40258 0.701291 0.712875i \(-0.252607\pi\)
0.701291 + 0.712875i \(0.252607\pi\)
\(774\) −26.8604 −0.965478
\(775\) 0 0
\(776\) 146.014 5.24161
\(777\) 31.8658 1.14318
\(778\) 79.5672 2.85262
\(779\) 7.49109 0.268396
\(780\) 0 0
\(781\) 19.7431 0.706463
\(782\) −9.55256 −0.341599
\(783\) −1.23197 −0.0440269
\(784\) 51.8281 1.85100
\(785\) 0 0
\(786\) −31.4825 −1.12294
\(787\) −8.11107 −0.289128 −0.144564 0.989495i \(-0.546178\pi\)
−0.144564 + 0.989495i \(0.546178\pi\)
\(788\) −6.80387 −0.242378
\(789\) 3.96578 0.141186
\(790\) 0 0
\(791\) −6.94231 −0.246840
\(792\) 30.9473 1.09966
\(793\) 1.07002 0.0379975
\(794\) 103.633 3.67778
\(795\) 0 0
\(796\) −37.8279 −1.34078
\(797\) −19.0152 −0.673554 −0.336777 0.941584i \(-0.609337\pi\)
−0.336777 + 0.941584i \(0.609337\pi\)
\(798\) 17.0409 0.603240
\(799\) −31.4888 −1.11399
\(800\) 0 0
\(801\) −15.1828 −0.536458
\(802\) 20.5870 0.726952
\(803\) −27.9044 −0.984726
\(804\) −18.6993 −0.659472
\(805\) 0 0
\(806\) 1.39071 0.0489858
\(807\) −1.19564 −0.0420884
\(808\) −101.574 −3.57335
\(809\) 49.9078 1.75467 0.877333 0.479882i \(-0.159321\pi\)
0.877333 + 0.479882i \(0.159321\pi\)
\(810\) 0 0
\(811\) 30.9727 1.08760 0.543799 0.839215i \(-0.316985\pi\)
0.543799 + 0.839215i \(0.316985\pi\)
\(812\) −22.3840 −0.785523
\(813\) 2.18295 0.0765593
\(814\) 83.0847 2.91212
\(815\) 0 0
\(816\) −46.5953 −1.63116
\(817\) −18.7061 −0.654443
\(818\) −14.4914 −0.506680
\(819\) −0.592737 −0.0207119
\(820\) 0 0
\(821\) 18.9246 0.660473 0.330236 0.943898i \(-0.392872\pi\)
0.330236 + 0.943898i \(0.392872\pi\)
\(822\) −11.6467 −0.406227
\(823\) −9.31122 −0.324569 −0.162284 0.986744i \(-0.551886\pi\)
−0.162284 + 0.986744i \(0.551886\pi\)
\(824\) 91.3076 3.18085
\(825\) 0 0
\(826\) 60.6539 2.11042
\(827\) 23.7383 0.825461 0.412731 0.910853i \(-0.364575\pi\)
0.412731 + 0.910853i \(0.364575\pi\)
\(828\) −7.52421 −0.261484
\(829\) 1.91351 0.0664590 0.0332295 0.999448i \(-0.489421\pi\)
0.0332295 + 0.999448i \(0.489421\pi\)
\(830\) 0 0
\(831\) −1.95174 −0.0677050
\(832\) 8.23260 0.285414
\(833\) 7.67867 0.266050
\(834\) 42.7969 1.48193
\(835\) 0 0
\(836\) 32.9917 1.14104
\(837\) −2.65174 −0.0916575
\(838\) −41.5852 −1.43654
\(839\) 40.5105 1.39858 0.699289 0.714839i \(-0.253500\pi\)
0.699289 + 0.714839i \(0.253500\pi\)
\(840\) 0 0
\(841\) −27.4823 −0.947664
\(842\) −0.185880 −0.00640584
\(843\) −2.30131 −0.0792612
\(844\) 71.2776 2.45348
\(845\) 0 0
\(846\) −33.4025 −1.14840
\(847\) 7.29643 0.250708
\(848\) 6.55314 0.225036
\(849\) 10.6459 0.365367
\(850\) 0 0
\(851\) −13.1961 −0.452358
\(852\) −38.6448 −1.32395
\(853\) 18.7735 0.642792 0.321396 0.946945i \(-0.395848\pi\)
0.321396 + 0.946945i \(0.395848\pi\)
\(854\) −49.9236 −1.70835
\(855\) 0 0
\(856\) −26.9465 −0.921012
\(857\) −10.0276 −0.342536 −0.171268 0.985225i \(-0.554786\pi\)
−0.171268 + 0.985225i \(0.554786\pi\)
\(858\) −1.54546 −0.0527613
\(859\) −28.0443 −0.956858 −0.478429 0.878126i \(-0.658794\pi\)
−0.478429 + 0.878126i \(0.658794\pi\)
\(860\) 0 0
\(861\) 12.1571 0.414313
\(862\) 77.2020 2.62951
\(863\) 9.84666 0.335184 0.167592 0.985856i \(-0.446401\pi\)
0.167592 + 0.985856i \(0.446401\pi\)
\(864\) −28.4233 −0.966979
\(865\) 0 0
\(866\) −85.1815 −2.89459
\(867\) 10.0966 0.342899
\(868\) −48.1802 −1.63534
\(869\) 1.23806 0.0419984
\(870\) 0 0
\(871\) 0.610026 0.0206699
\(872\) −159.999 −5.41826
\(873\) 13.9035 0.470563
\(874\) −7.05690 −0.238703
\(875\) 0 0
\(876\) 54.6197 1.84543
\(877\) 36.9671 1.24829 0.624146 0.781308i \(-0.285447\pi\)
0.624146 + 0.781308i \(0.285447\pi\)
\(878\) 30.9282 1.04378
\(879\) −14.9591 −0.504558
\(880\) 0 0
\(881\) −20.7137 −0.697863 −0.348932 0.937148i \(-0.613455\pi\)
−0.348932 + 0.937148i \(0.613455\pi\)
\(882\) 8.14536 0.274268
\(883\) 12.7254 0.428243 0.214121 0.976807i \(-0.431311\pi\)
0.214121 + 0.976807i \(0.431311\pi\)
\(884\) 2.85175 0.0959146
\(885\) 0 0
\(886\) −27.3927 −0.920275
\(887\) −21.6903 −0.728287 −0.364144 0.931343i \(-0.618638\pi\)
−0.364144 + 0.931343i \(0.618638\pi\)
\(888\) −106.239 −3.56515
\(889\) 47.1520 1.58143
\(890\) 0 0
\(891\) 2.94681 0.0987218
\(892\) −42.1466 −1.41117
\(893\) −23.2621 −0.778437
\(894\) −9.56995 −0.320067
\(895\) 0 0
\(896\) −205.040 −6.84990
\(897\) 0.245462 0.00819574
\(898\) −53.3178 −1.77924
\(899\) 3.26685 0.108956
\(900\) 0 0
\(901\) 0.970891 0.0323451
\(902\) 31.6976 1.05542
\(903\) −30.3576 −1.01024
\(904\) 23.1454 0.769803
\(905\) 0 0
\(906\) −30.0217 −0.997406
\(907\) −3.28462 −0.109064 −0.0545320 0.998512i \(-0.517367\pi\)
−0.0545320 + 0.998512i \(0.517367\pi\)
\(908\) −121.245 −4.02366
\(909\) −9.67188 −0.320796
\(910\) 0 0
\(911\) 28.8264 0.955060 0.477530 0.878615i \(-0.341532\pi\)
0.477530 + 0.878615i \(0.341532\pi\)
\(912\) −34.4220 −1.13983
\(913\) −35.8435 −1.18625
\(914\) 52.2802 1.72927
\(915\) 0 0
\(916\) 112.790 3.72669
\(917\) −35.5815 −1.17500
\(918\) −7.32297 −0.241694
\(919\) −17.3985 −0.573925 −0.286962 0.957942i \(-0.592645\pi\)
−0.286962 + 0.957942i \(0.592645\pi\)
\(920\) 0 0
\(921\) 3.07333 0.101270
\(922\) −104.854 −3.45317
\(923\) 1.26071 0.0414967
\(924\) 53.5414 1.76138
\(925\) 0 0
\(926\) −55.5404 −1.82517
\(927\) 8.69434 0.285560
\(928\) 35.0165 1.14947
\(929\) −24.3715 −0.799603 −0.399801 0.916602i \(-0.630921\pi\)
−0.399801 + 0.916602i \(0.630921\pi\)
\(930\) 0 0
\(931\) 5.67257 0.185911
\(932\) 70.0657 2.29508
\(933\) −24.9095 −0.815501
\(934\) 76.2742 2.49577
\(935\) 0 0
\(936\) 1.97616 0.0645928
\(937\) 14.5784 0.476257 0.238129 0.971234i \(-0.423466\pi\)
0.238129 + 0.971234i \(0.423466\pi\)
\(938\) −28.4618 −0.929311
\(939\) −9.28562 −0.303025
\(940\) 0 0
\(941\) −4.19686 −0.136814 −0.0684068 0.997658i \(-0.521792\pi\)
−0.0684068 + 0.997658i \(0.521792\pi\)
\(942\) 37.3601 1.21726
\(943\) −5.03445 −0.163944
\(944\) −122.519 −3.98765
\(945\) 0 0
\(946\) −79.1525 −2.57347
\(947\) −5.53251 −0.179782 −0.0898912 0.995952i \(-0.528652\pi\)
−0.0898912 + 0.995952i \(0.528652\pi\)
\(948\) −2.42336 −0.0787071
\(949\) −1.78186 −0.0578416
\(950\) 0 0
\(951\) −20.7685 −0.673464
\(952\) −86.9185 −2.81705
\(953\) 50.4779 1.63514 0.817570 0.575830i \(-0.195321\pi\)
0.817570 + 0.575830i \(0.195321\pi\)
\(954\) 1.02990 0.0333442
\(955\) 0 0
\(956\) 77.5899 2.50944
\(957\) −3.63037 −0.117353
\(958\) −107.511 −3.47352
\(959\) −13.1631 −0.425060
\(960\) 0 0
\(961\) −23.9683 −0.773170
\(962\) 5.30544 0.171054
\(963\) −2.56585 −0.0826835
\(964\) 114.998 3.70382
\(965\) 0 0
\(966\) −11.4525 −0.368477
\(967\) −17.0340 −0.547777 −0.273889 0.961761i \(-0.588310\pi\)
−0.273889 + 0.961761i \(0.588310\pi\)
\(968\) −24.3260 −0.781867
\(969\) −5.09984 −0.163831
\(970\) 0 0
\(971\) 23.4172 0.751494 0.375747 0.926722i \(-0.377386\pi\)
0.375747 + 0.926722i \(0.377386\pi\)
\(972\) −5.76803 −0.185010
\(973\) 48.3690 1.55064
\(974\) −51.5604 −1.65210
\(975\) 0 0
\(976\) 100.844 3.22794
\(977\) −20.7626 −0.664253 −0.332127 0.943235i \(-0.607766\pi\)
−0.332127 + 0.943235i \(0.607766\pi\)
\(978\) 42.9713 1.37407
\(979\) −44.7408 −1.42992
\(980\) 0 0
\(981\) −15.2352 −0.486422
\(982\) 54.9650 1.75400
\(983\) 42.1977 1.34590 0.672948 0.739690i \(-0.265028\pi\)
0.672948 + 0.739690i \(0.265028\pi\)
\(984\) −40.5312 −1.29209
\(985\) 0 0
\(986\) 9.02164 0.287308
\(987\) −37.7515 −1.20164
\(988\) 2.10671 0.0670234
\(989\) 12.5716 0.399753
\(990\) 0 0
\(991\) −3.83926 −0.121958 −0.0609791 0.998139i \(-0.519422\pi\)
−0.0609791 + 0.998139i \(0.519422\pi\)
\(992\) 75.3711 2.39303
\(993\) 33.9172 1.07633
\(994\) −58.8206 −1.86567
\(995\) 0 0
\(996\) 70.1595 2.22309
\(997\) 42.2091 1.33678 0.668389 0.743812i \(-0.266984\pi\)
0.668389 + 0.743812i \(0.266984\pi\)
\(998\) −101.146 −3.20173
\(999\) −10.1161 −0.320060
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1875.2.a.l.1.6 yes 6
3.2 odd 2 5625.2.a.o.1.1 6
5.2 odd 4 1875.2.b.e.1249.12 12
5.3 odd 4 1875.2.b.e.1249.1 12
5.4 even 2 1875.2.a.i.1.1 6
15.14 odd 2 5625.2.a.r.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1875.2.a.i.1.1 6 5.4 even 2
1875.2.a.l.1.6 yes 6 1.1 even 1 trivial
1875.2.b.e.1249.1 12 5.3 odd 4
1875.2.b.e.1249.12 12 5.2 odd 4
5625.2.a.o.1.1 6 3.2 odd 2
5625.2.a.r.1.6 6 15.14 odd 2