Properties

Label 1875.2.a.l.1.4
Level $1875$
Weight $2$
Character 1875.1
Self dual yes
Analytic conductor $14.972$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1875,2,Mod(1,1875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1875, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1875.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1875 = 3 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1875.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.9719503790\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.46840000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 11x^{4} + 8x^{3} + 31x^{2} - 15x - 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.858825\) of defining polynomial
Character \(\chi\) \(=\) 1875.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.858825 q^{2} -1.00000 q^{3} -1.26242 q^{4} -0.858825 q^{6} +3.88045 q^{7} -2.80185 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+0.858825 q^{2} -1.00000 q^{3} -1.26242 q^{4} -0.858825 q^{6} +3.88045 q^{7} -2.80185 q^{8} +1.00000 q^{9} -1.39825 q^{11} +1.26242 q^{12} +3.36204 q^{13} +3.33263 q^{14} +0.118543 q^{16} +3.11590 q^{17} +0.858825 q^{18} -2.70595 q^{19} -3.88045 q^{21} -1.20085 q^{22} -6.43989 q^{23} +2.80185 q^{24} +2.88740 q^{26} -1.00000 q^{27} -4.89876 q^{28} +8.26242 q^{29} -6.34027 q^{31} +5.70550 q^{32} +1.39825 q^{33} +2.67601 q^{34} -1.26242 q^{36} -7.49949 q^{37} -2.32394 q^{38} -3.36204 q^{39} +11.3783 q^{41} -3.33263 q^{42} -3.39725 q^{43} +1.76518 q^{44} -5.53074 q^{46} +8.38291 q^{47} -0.118543 q^{48} +8.05792 q^{49} -3.11590 q^{51} -4.24430 q^{52} +11.4431 q^{53} -0.858825 q^{54} -10.8724 q^{56} +2.70595 q^{57} +7.09597 q^{58} +7.64074 q^{59} +10.8219 q^{61} -5.44518 q^{62} +3.88045 q^{63} +4.66294 q^{64} +1.20085 q^{66} +3.54377 q^{67} -3.93358 q^{68} +6.43989 q^{69} +1.18356 q^{71} -2.80185 q^{72} +2.39461 q^{73} -6.44075 q^{74} +3.41605 q^{76} -5.42585 q^{77} -2.88740 q^{78} +10.6245 q^{79} +1.00000 q^{81} +9.77199 q^{82} +1.40894 q^{83} +4.89876 q^{84} -2.91764 q^{86} -8.26242 q^{87} +3.91769 q^{88} +4.62972 q^{89} +13.0462 q^{91} +8.12984 q^{92} +6.34027 q^{93} +7.19945 q^{94} -5.70550 q^{96} -1.51516 q^{97} +6.92034 q^{98} -1.39825 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} - 6 q^{3} + 11 q^{4} - q^{6} - 2 q^{7} + 6 q^{8} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + q^{2} - 6 q^{3} + 11 q^{4} - q^{6} - 2 q^{7} + 6 q^{8} + 6 q^{9} - 11 q^{12} - 4 q^{14} + 17 q^{16} + 2 q^{17} + q^{18} - 2 q^{19} + 2 q^{21} + 9 q^{22} - q^{23} - 6 q^{24} + 37 q^{26} - 6 q^{27} - 44 q^{28} + 31 q^{29} - 2 q^{31} + 33 q^{32} + 37 q^{34} + 11 q^{36} - 22 q^{37} + 27 q^{38} + 33 q^{41} + 4 q^{42} - 3 q^{43} - 11 q^{44} - 12 q^{46} - 6 q^{47} - 17 q^{48} + 4 q^{49} - 2 q^{51} - 33 q^{52} + 14 q^{53} - q^{54} - 30 q^{56} + 2 q^{57} - q^{58} - 8 q^{59} + 34 q^{61} + 31 q^{62} - 2 q^{63} + 12 q^{64} - 9 q^{66} + 2 q^{67} + 27 q^{68} + q^{69} - 3 q^{71} + 6 q^{72} - 36 q^{73} + 36 q^{74} + 27 q^{76} + 16 q^{77} - 37 q^{78} + 25 q^{79} + 6 q^{81} + 36 q^{82} - 12 q^{83} + 44 q^{84} - 30 q^{86} - 31 q^{87} + 56 q^{88} + 18 q^{89} + 28 q^{91} + 3 q^{92} + 2 q^{93} - 50 q^{94} - 33 q^{96} + 7 q^{97} + 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.858825 0.607281 0.303640 0.952787i \(-0.401798\pi\)
0.303640 + 0.952787i \(0.401798\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.26242 −0.631210
\(5\) 0 0
\(6\) −0.858825 −0.350614
\(7\) 3.88045 1.46667 0.733337 0.679865i \(-0.237962\pi\)
0.733337 + 0.679865i \(0.237962\pi\)
\(8\) −2.80185 −0.990603
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.39825 −0.421589 −0.210794 0.977530i \(-0.567605\pi\)
−0.210794 + 0.977530i \(0.567605\pi\)
\(12\) 1.26242 0.364429
\(13\) 3.36204 0.932461 0.466230 0.884663i \(-0.345612\pi\)
0.466230 + 0.884663i \(0.345612\pi\)
\(14\) 3.33263 0.890683
\(15\) 0 0
\(16\) 0.118543 0.0296359
\(17\) 3.11590 0.755717 0.377859 0.925863i \(-0.376661\pi\)
0.377859 + 0.925863i \(0.376661\pi\)
\(18\) 0.858825 0.202427
\(19\) −2.70595 −0.620788 −0.310394 0.950608i \(-0.600461\pi\)
−0.310394 + 0.950608i \(0.600461\pi\)
\(20\) 0 0
\(21\) −3.88045 −0.846784
\(22\) −1.20085 −0.256023
\(23\) −6.43989 −1.34281 −0.671405 0.741091i \(-0.734309\pi\)
−0.671405 + 0.741091i \(0.734309\pi\)
\(24\) 2.80185 0.571925
\(25\) 0 0
\(26\) 2.88740 0.566266
\(27\) −1.00000 −0.192450
\(28\) −4.89876 −0.925779
\(29\) 8.26242 1.53429 0.767146 0.641472i \(-0.221676\pi\)
0.767146 + 0.641472i \(0.221676\pi\)
\(30\) 0 0
\(31\) −6.34027 −1.13875 −0.569373 0.822079i \(-0.692814\pi\)
−0.569373 + 0.822079i \(0.692814\pi\)
\(32\) 5.70550 1.00860
\(33\) 1.39825 0.243404
\(34\) 2.67601 0.458933
\(35\) 0 0
\(36\) −1.26242 −0.210403
\(37\) −7.49949 −1.23291 −0.616454 0.787391i \(-0.711432\pi\)
−0.616454 + 0.787391i \(0.711432\pi\)
\(38\) −2.32394 −0.376993
\(39\) −3.36204 −0.538357
\(40\) 0 0
\(41\) 11.3783 1.77700 0.888498 0.458881i \(-0.151750\pi\)
0.888498 + 0.458881i \(0.151750\pi\)
\(42\) −3.33263 −0.514236
\(43\) −3.39725 −0.518076 −0.259038 0.965867i \(-0.583405\pi\)
−0.259038 + 0.965867i \(0.583405\pi\)
\(44\) 1.76518 0.266111
\(45\) 0 0
\(46\) −5.53074 −0.815463
\(47\) 8.38291 1.22277 0.611387 0.791332i \(-0.290612\pi\)
0.611387 + 0.791332i \(0.290612\pi\)
\(48\) −0.118543 −0.0171103
\(49\) 8.05792 1.15113
\(50\) 0 0
\(51\) −3.11590 −0.436314
\(52\) −4.24430 −0.588579
\(53\) 11.4431 1.57184 0.785918 0.618330i \(-0.212191\pi\)
0.785918 + 0.618330i \(0.212191\pi\)
\(54\) −0.858825 −0.116871
\(55\) 0 0
\(56\) −10.8724 −1.45289
\(57\) 2.70595 0.358412
\(58\) 7.09597 0.931747
\(59\) 7.64074 0.994740 0.497370 0.867539i \(-0.334299\pi\)
0.497370 + 0.867539i \(0.334299\pi\)
\(60\) 0 0
\(61\) 10.8219 1.38560 0.692798 0.721132i \(-0.256378\pi\)
0.692798 + 0.721132i \(0.256378\pi\)
\(62\) −5.44518 −0.691539
\(63\) 3.88045 0.488891
\(64\) 4.66294 0.582868
\(65\) 0 0
\(66\) 1.20085 0.147815
\(67\) 3.54377 0.432940 0.216470 0.976289i \(-0.430546\pi\)
0.216470 + 0.976289i \(0.430546\pi\)
\(68\) −3.93358 −0.477016
\(69\) 6.43989 0.775271
\(70\) 0 0
\(71\) 1.18356 0.140463 0.0702317 0.997531i \(-0.477626\pi\)
0.0702317 + 0.997531i \(0.477626\pi\)
\(72\) −2.80185 −0.330201
\(73\) 2.39461 0.280268 0.140134 0.990133i \(-0.455247\pi\)
0.140134 + 0.990133i \(0.455247\pi\)
\(74\) −6.44075 −0.748722
\(75\) 0 0
\(76\) 3.41605 0.391847
\(77\) −5.42585 −0.618333
\(78\) −2.88740 −0.326934
\(79\) 10.6245 1.19534 0.597672 0.801740i \(-0.296092\pi\)
0.597672 + 0.801740i \(0.296092\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 9.77199 1.07914
\(83\) 1.40894 0.154651 0.0773255 0.997006i \(-0.475362\pi\)
0.0773255 + 0.997006i \(0.475362\pi\)
\(84\) 4.89876 0.534499
\(85\) 0 0
\(86\) −2.91764 −0.314617
\(87\) −8.26242 −0.885824
\(88\) 3.91769 0.417627
\(89\) 4.62972 0.490750 0.245375 0.969428i \(-0.421089\pi\)
0.245375 + 0.969428i \(0.421089\pi\)
\(90\) 0 0
\(91\) 13.0462 1.36762
\(92\) 8.12984 0.847595
\(93\) 6.34027 0.657456
\(94\) 7.19945 0.742567
\(95\) 0 0
\(96\) −5.70550 −0.582315
\(97\) −1.51516 −0.153841 −0.0769204 0.997037i \(-0.524509\pi\)
−0.0769204 + 0.997037i \(0.524509\pi\)
\(98\) 6.92034 0.699060
\(99\) −1.39825 −0.140530
\(100\) 0 0
\(101\) 17.2376 1.71521 0.857604 0.514310i \(-0.171952\pi\)
0.857604 + 0.514310i \(0.171952\pi\)
\(102\) −2.67601 −0.264965
\(103\) −10.9905 −1.08292 −0.541461 0.840726i \(-0.682129\pi\)
−0.541461 + 0.840726i \(0.682129\pi\)
\(104\) −9.41991 −0.923698
\(105\) 0 0
\(106\) 9.82766 0.954546
\(107\) 6.80699 0.658056 0.329028 0.944320i \(-0.393279\pi\)
0.329028 + 0.944320i \(0.393279\pi\)
\(108\) 1.26242 0.121476
\(109\) −11.4451 −1.09624 −0.548121 0.836399i \(-0.684657\pi\)
−0.548121 + 0.836399i \(0.684657\pi\)
\(110\) 0 0
\(111\) 7.49949 0.711820
\(112\) 0.460003 0.0434662
\(113\) −16.2686 −1.53042 −0.765210 0.643781i \(-0.777365\pi\)
−0.765210 + 0.643781i \(0.777365\pi\)
\(114\) 2.32394 0.217657
\(115\) 0 0
\(116\) −10.4306 −0.968461
\(117\) 3.36204 0.310820
\(118\) 6.56206 0.604087
\(119\) 12.0911 1.10839
\(120\) 0 0
\(121\) −9.04489 −0.822263
\(122\) 9.29408 0.841446
\(123\) −11.3783 −1.02595
\(124\) 8.00409 0.718788
\(125\) 0 0
\(126\) 3.33263 0.296894
\(127\) −16.2477 −1.44175 −0.720875 0.693065i \(-0.756260\pi\)
−0.720875 + 0.693065i \(0.756260\pi\)
\(128\) −7.40636 −0.654636
\(129\) 3.39725 0.299111
\(130\) 0 0
\(131\) −15.3119 −1.33781 −0.668903 0.743349i \(-0.733236\pi\)
−0.668903 + 0.743349i \(0.733236\pi\)
\(132\) −1.76518 −0.153639
\(133\) −10.5003 −0.910493
\(134\) 3.04348 0.262916
\(135\) 0 0
\(136\) −8.73028 −0.748615
\(137\) 6.86417 0.586445 0.293223 0.956044i \(-0.405272\pi\)
0.293223 + 0.956044i \(0.405272\pi\)
\(138\) 5.53074 0.470808
\(139\) 13.8225 1.17241 0.586203 0.810164i \(-0.300622\pi\)
0.586203 + 0.810164i \(0.300622\pi\)
\(140\) 0 0
\(141\) −8.38291 −0.705968
\(142\) 1.01647 0.0853007
\(143\) −4.70097 −0.393115
\(144\) 0.118543 0.00987862
\(145\) 0 0
\(146\) 2.05655 0.170201
\(147\) −8.05792 −0.664606
\(148\) 9.46751 0.778224
\(149\) 7.09597 0.581325 0.290662 0.956826i \(-0.406124\pi\)
0.290662 + 0.956826i \(0.406124\pi\)
\(150\) 0 0
\(151\) 19.1474 1.55819 0.779097 0.626903i \(-0.215678\pi\)
0.779097 + 0.626903i \(0.215678\pi\)
\(152\) 7.58166 0.614954
\(153\) 3.11590 0.251906
\(154\) −4.65986 −0.375502
\(155\) 0 0
\(156\) 4.24430 0.339816
\(157\) −11.8114 −0.942653 −0.471326 0.881959i \(-0.656225\pi\)
−0.471326 + 0.881959i \(0.656225\pi\)
\(158\) 9.12455 0.725910
\(159\) −11.4431 −0.907500
\(160\) 0 0
\(161\) −24.9897 −1.96946
\(162\) 0.858825 0.0674757
\(163\) 8.92635 0.699165 0.349583 0.936906i \(-0.386323\pi\)
0.349583 + 0.936906i \(0.386323\pi\)
\(164\) −14.3642 −1.12166
\(165\) 0 0
\(166\) 1.21003 0.0939166
\(167\) 15.8114 1.22352 0.611762 0.791042i \(-0.290461\pi\)
0.611762 + 0.791042i \(0.290461\pi\)
\(168\) 10.8724 0.838827
\(169\) −1.69672 −0.130517
\(170\) 0 0
\(171\) −2.70595 −0.206929
\(172\) 4.28876 0.327015
\(173\) 16.3259 1.24124 0.620619 0.784112i \(-0.286881\pi\)
0.620619 + 0.784112i \(0.286881\pi\)
\(174\) −7.09597 −0.537944
\(175\) 0 0
\(176\) −0.165754 −0.0124942
\(177\) −7.64074 −0.574313
\(178\) 3.97612 0.298023
\(179\) −0.852080 −0.0636875 −0.0318437 0.999493i \(-0.510138\pi\)
−0.0318437 + 0.999493i \(0.510138\pi\)
\(180\) 0 0
\(181\) 21.9643 1.63260 0.816298 0.577631i \(-0.196023\pi\)
0.816298 + 0.577631i \(0.196023\pi\)
\(182\) 11.2044 0.830527
\(183\) −10.8219 −0.799974
\(184\) 18.0436 1.33019
\(185\) 0 0
\(186\) 5.44518 0.399260
\(187\) −4.35682 −0.318602
\(188\) −10.5828 −0.771827
\(189\) −3.88045 −0.282261
\(190\) 0 0
\(191\) −1.15408 −0.0835065 −0.0417532 0.999128i \(-0.513294\pi\)
−0.0417532 + 0.999128i \(0.513294\pi\)
\(192\) −4.66294 −0.336519
\(193\) −0.983419 −0.0707880 −0.0353940 0.999373i \(-0.511269\pi\)
−0.0353940 + 0.999373i \(0.511269\pi\)
\(194\) −1.30125 −0.0934246
\(195\) 0 0
\(196\) −10.1725 −0.726606
\(197\) −7.40726 −0.527745 −0.263873 0.964558i \(-0.585000\pi\)
−0.263873 + 0.964558i \(0.585000\pi\)
\(198\) −1.20085 −0.0853410
\(199\) −13.5887 −0.963274 −0.481637 0.876371i \(-0.659958\pi\)
−0.481637 + 0.876371i \(0.659958\pi\)
\(200\) 0 0
\(201\) −3.54377 −0.249958
\(202\) 14.8041 1.04161
\(203\) 32.0619 2.25031
\(204\) 3.93358 0.275405
\(205\) 0 0
\(206\) −9.43888 −0.657638
\(207\) −6.43989 −0.447603
\(208\) 0.398547 0.0276343
\(209\) 3.78360 0.261717
\(210\) 0 0
\(211\) 26.2982 1.81044 0.905221 0.424941i \(-0.139705\pi\)
0.905221 + 0.424941i \(0.139705\pi\)
\(212\) −14.4461 −0.992159
\(213\) −1.18356 −0.0810965
\(214\) 5.84601 0.399625
\(215\) 0 0
\(216\) 2.80185 0.190642
\(217\) −24.6031 −1.67017
\(218\) −9.82934 −0.665727
\(219\) −2.39461 −0.161813
\(220\) 0 0
\(221\) 10.4758 0.704677
\(222\) 6.44075 0.432275
\(223\) −13.5470 −0.907176 −0.453588 0.891212i \(-0.649856\pi\)
−0.453588 + 0.891212i \(0.649856\pi\)
\(224\) 22.1399 1.47929
\(225\) 0 0
\(226\) −13.9719 −0.929395
\(227\) 0.265434 0.0176175 0.00880874 0.999961i \(-0.497196\pi\)
0.00880874 + 0.999961i \(0.497196\pi\)
\(228\) −3.41605 −0.226233
\(229\) 4.28115 0.282906 0.141453 0.989945i \(-0.454823\pi\)
0.141453 + 0.989945i \(0.454823\pi\)
\(230\) 0 0
\(231\) 5.42585 0.356995
\(232\) −23.1500 −1.51987
\(233\) −6.74720 −0.442024 −0.221012 0.975271i \(-0.570936\pi\)
−0.221012 + 0.975271i \(0.570936\pi\)
\(234\) 2.88740 0.188755
\(235\) 0 0
\(236\) −9.64582 −0.627890
\(237\) −10.6245 −0.690133
\(238\) 10.3841 0.673104
\(239\) −0.307310 −0.0198782 −0.00993912 0.999951i \(-0.503164\pi\)
−0.00993912 + 0.999951i \(0.503164\pi\)
\(240\) 0 0
\(241\) −11.1233 −0.716513 −0.358256 0.933623i \(-0.616629\pi\)
−0.358256 + 0.933623i \(0.616629\pi\)
\(242\) −7.76798 −0.499344
\(243\) −1.00000 −0.0641500
\(244\) −13.6617 −0.874602
\(245\) 0 0
\(246\) −9.77199 −0.623039
\(247\) −9.09751 −0.578860
\(248\) 17.7645 1.12805
\(249\) −1.40894 −0.0892878
\(250\) 0 0
\(251\) −20.5499 −1.29710 −0.648549 0.761173i \(-0.724624\pi\)
−0.648549 + 0.761173i \(0.724624\pi\)
\(252\) −4.89876 −0.308593
\(253\) 9.00459 0.566114
\(254\) −13.9539 −0.875548
\(255\) 0 0
\(256\) −15.6866 −0.980415
\(257\) −2.43352 −0.151799 −0.0758996 0.997115i \(-0.524183\pi\)
−0.0758996 + 0.997115i \(0.524183\pi\)
\(258\) 2.91764 0.181644
\(259\) −29.1014 −1.80827
\(260\) 0 0
\(261\) 8.26242 0.511431
\(262\) −13.1502 −0.812425
\(263\) −20.1748 −1.24403 −0.622017 0.783004i \(-0.713686\pi\)
−0.622017 + 0.783004i \(0.713686\pi\)
\(264\) −3.91769 −0.241117
\(265\) 0 0
\(266\) −9.01794 −0.552925
\(267\) −4.62972 −0.283334
\(268\) −4.47372 −0.273276
\(269\) −18.6834 −1.13915 −0.569574 0.821940i \(-0.692892\pi\)
−0.569574 + 0.821940i \(0.692892\pi\)
\(270\) 0 0
\(271\) 7.61184 0.462387 0.231193 0.972908i \(-0.425737\pi\)
0.231193 + 0.972908i \(0.425737\pi\)
\(272\) 0.369370 0.0223963
\(273\) −13.0462 −0.789593
\(274\) 5.89512 0.356137
\(275\) 0 0
\(276\) −8.12984 −0.489359
\(277\) −8.17364 −0.491107 −0.245553 0.969383i \(-0.578970\pi\)
−0.245553 + 0.969383i \(0.578970\pi\)
\(278\) 11.8711 0.711980
\(279\) −6.34027 −0.379582
\(280\) 0 0
\(281\) 14.8891 0.888211 0.444105 0.895975i \(-0.353522\pi\)
0.444105 + 0.895975i \(0.353522\pi\)
\(282\) −7.19945 −0.428721
\(283\) −1.35203 −0.0803698 −0.0401849 0.999192i \(-0.512795\pi\)
−0.0401849 + 0.999192i \(0.512795\pi\)
\(284\) −1.49416 −0.0886618
\(285\) 0 0
\(286\) −4.03731 −0.238731
\(287\) 44.1531 2.60627
\(288\) 5.70550 0.336200
\(289\) −7.29115 −0.428891
\(290\) 0 0
\(291\) 1.51516 0.0888201
\(292\) −3.02300 −0.176908
\(293\) −10.4773 −0.612091 −0.306045 0.952017i \(-0.599006\pi\)
−0.306045 + 0.952017i \(0.599006\pi\)
\(294\) −6.92034 −0.403603
\(295\) 0 0
\(296\) 21.0124 1.22132
\(297\) 1.39825 0.0811348
\(298\) 6.09420 0.353027
\(299\) −21.6511 −1.25212
\(300\) 0 0
\(301\) −13.1829 −0.759848
\(302\) 16.4443 0.946262
\(303\) −17.2376 −0.990276
\(304\) −0.320773 −0.0183976
\(305\) 0 0
\(306\) 2.67601 0.152978
\(307\) 10.4991 0.599216 0.299608 0.954062i \(-0.403144\pi\)
0.299608 + 0.954062i \(0.403144\pi\)
\(308\) 6.84971 0.390298
\(309\) 10.9905 0.625225
\(310\) 0 0
\(311\) −4.68539 −0.265684 −0.132842 0.991137i \(-0.542410\pi\)
−0.132842 + 0.991137i \(0.542410\pi\)
\(312\) 9.41991 0.533297
\(313\) −17.2431 −0.974635 −0.487317 0.873225i \(-0.662025\pi\)
−0.487317 + 0.873225i \(0.662025\pi\)
\(314\) −10.1439 −0.572455
\(315\) 0 0
\(316\) −13.4125 −0.754513
\(317\) −8.94648 −0.502484 −0.251242 0.967924i \(-0.580839\pi\)
−0.251242 + 0.967924i \(0.580839\pi\)
\(318\) −9.82766 −0.551108
\(319\) −11.5529 −0.646841
\(320\) 0 0
\(321\) −6.80699 −0.379929
\(322\) −21.4618 −1.19602
\(323\) −8.43148 −0.469140
\(324\) −1.26242 −0.0701344
\(325\) 0 0
\(326\) 7.66617 0.424590
\(327\) 11.4451 0.632916
\(328\) −31.8803 −1.76030
\(329\) 32.5295 1.79341
\(330\) 0 0
\(331\) 12.0810 0.664034 0.332017 0.943273i \(-0.392271\pi\)
0.332017 + 0.943273i \(0.392271\pi\)
\(332\) −1.77867 −0.0976172
\(333\) −7.49949 −0.410970
\(334\) 13.5792 0.743022
\(335\) 0 0
\(336\) −0.460003 −0.0250952
\(337\) 15.2014 0.828074 0.414037 0.910260i \(-0.364118\pi\)
0.414037 + 0.910260i \(0.364118\pi\)
\(338\) −1.45718 −0.0792603
\(339\) 16.2686 0.883588
\(340\) 0 0
\(341\) 8.86530 0.480083
\(342\) −2.32394 −0.125664
\(343\) 4.10522 0.221661
\(344\) 9.51857 0.513207
\(345\) 0 0
\(346\) 14.0211 0.753780
\(347\) −8.51395 −0.457053 −0.228526 0.973538i \(-0.573391\pi\)
−0.228526 + 0.973538i \(0.573391\pi\)
\(348\) 10.4306 0.559141
\(349\) −6.72703 −0.360090 −0.180045 0.983658i \(-0.557624\pi\)
−0.180045 + 0.983658i \(0.557624\pi\)
\(350\) 0 0
\(351\) −3.36204 −0.179452
\(352\) −7.97773 −0.425215
\(353\) 13.3066 0.708239 0.354119 0.935200i \(-0.384781\pi\)
0.354119 + 0.935200i \(0.384781\pi\)
\(354\) −6.56206 −0.348770
\(355\) 0 0
\(356\) −5.84465 −0.309766
\(357\) −12.0911 −0.639930
\(358\) −0.731788 −0.0386762
\(359\) −27.1766 −1.43433 −0.717163 0.696905i \(-0.754560\pi\)
−0.717163 + 0.696905i \(0.754560\pi\)
\(360\) 0 0
\(361\) −11.6778 −0.614622
\(362\) 18.8635 0.991445
\(363\) 9.04489 0.474734
\(364\) −16.4698 −0.863253
\(365\) 0 0
\(366\) −9.29408 −0.485809
\(367\) 15.9939 0.834877 0.417439 0.908705i \(-0.362928\pi\)
0.417439 + 0.908705i \(0.362928\pi\)
\(368\) −0.763407 −0.0397953
\(369\) 11.3783 0.592332
\(370\) 0 0
\(371\) 44.4046 2.30537
\(372\) −8.00409 −0.414992
\(373\) −31.2294 −1.61700 −0.808499 0.588497i \(-0.799720\pi\)
−0.808499 + 0.588497i \(0.799720\pi\)
\(374\) −3.74174 −0.193481
\(375\) 0 0
\(376\) −23.4876 −1.21128
\(377\) 27.7785 1.43067
\(378\) −3.33263 −0.171412
\(379\) −32.2022 −1.65412 −0.827059 0.562115i \(-0.809988\pi\)
−0.827059 + 0.562115i \(0.809988\pi\)
\(380\) 0 0
\(381\) 16.2477 0.832395
\(382\) −0.991154 −0.0507119
\(383\) −19.4271 −0.992678 −0.496339 0.868129i \(-0.665323\pi\)
−0.496339 + 0.868129i \(0.665323\pi\)
\(384\) 7.40636 0.377954
\(385\) 0 0
\(386\) −0.844584 −0.0429882
\(387\) −3.39725 −0.172692
\(388\) 1.91276 0.0971059
\(389\) 7.87404 0.399230 0.199615 0.979874i \(-0.436031\pi\)
0.199615 + 0.979874i \(0.436031\pi\)
\(390\) 0 0
\(391\) −20.0661 −1.01478
\(392\) −22.5771 −1.14031
\(393\) 15.3119 0.772383
\(394\) −6.36154 −0.320490
\(395\) 0 0
\(396\) 1.76518 0.0887037
\(397\) 28.4801 1.42938 0.714689 0.699443i \(-0.246568\pi\)
0.714689 + 0.699443i \(0.246568\pi\)
\(398\) −11.6703 −0.584978
\(399\) 10.5003 0.525674
\(400\) 0 0
\(401\) 23.2147 1.15929 0.579643 0.814870i \(-0.303192\pi\)
0.579643 + 0.814870i \(0.303192\pi\)
\(402\) −3.04348 −0.151795
\(403\) −21.3162 −1.06184
\(404\) −21.7611 −1.08266
\(405\) 0 0
\(406\) 27.5356 1.36657
\(407\) 10.4862 0.519781
\(408\) 8.73028 0.432213
\(409\) 4.32217 0.213718 0.106859 0.994274i \(-0.465921\pi\)
0.106859 + 0.994274i \(0.465921\pi\)
\(410\) 0 0
\(411\) −6.86417 −0.338584
\(412\) 13.8746 0.683551
\(413\) 29.6495 1.45896
\(414\) −5.53074 −0.271821
\(415\) 0 0
\(416\) 19.1821 0.940480
\(417\) −13.8225 −0.676889
\(418\) 3.24945 0.158936
\(419\) −1.96426 −0.0959604 −0.0479802 0.998848i \(-0.515278\pi\)
−0.0479802 + 0.998848i \(0.515278\pi\)
\(420\) 0 0
\(421\) 2.13023 0.103821 0.0519106 0.998652i \(-0.483469\pi\)
0.0519106 + 0.998652i \(0.483469\pi\)
\(422\) 22.5855 1.09945
\(423\) 8.38291 0.407591
\(424\) −32.0619 −1.55707
\(425\) 0 0
\(426\) −1.01647 −0.0492484
\(427\) 41.9937 2.03222
\(428\) −8.59328 −0.415372
\(429\) 4.70097 0.226965
\(430\) 0 0
\(431\) 0.0662228 0.00318984 0.00159492 0.999999i \(-0.499492\pi\)
0.00159492 + 0.999999i \(0.499492\pi\)
\(432\) −0.118543 −0.00570343
\(433\) −1.22844 −0.0590352 −0.0295176 0.999564i \(-0.509397\pi\)
−0.0295176 + 0.999564i \(0.509397\pi\)
\(434\) −21.1298 −1.01426
\(435\) 0 0
\(436\) 14.4485 0.691959
\(437\) 17.4260 0.833600
\(438\) −2.05655 −0.0982657
\(439\) −37.8322 −1.80563 −0.902816 0.430028i \(-0.858504\pi\)
−0.902816 + 0.430028i \(0.858504\pi\)
\(440\) 0 0
\(441\) 8.05792 0.383711
\(442\) 8.99686 0.427937
\(443\) 26.9171 1.27887 0.639435 0.768845i \(-0.279168\pi\)
0.639435 + 0.768845i \(0.279168\pi\)
\(444\) −9.46751 −0.449308
\(445\) 0 0
\(446\) −11.6345 −0.550910
\(447\) −7.09597 −0.335628
\(448\) 18.0943 0.854877
\(449\) −25.3090 −1.19440 −0.597202 0.802091i \(-0.703721\pi\)
−0.597202 + 0.802091i \(0.703721\pi\)
\(450\) 0 0
\(451\) −15.9098 −0.749162
\(452\) 20.5378 0.966016
\(453\) −19.1474 −0.899624
\(454\) 0.227961 0.0106988
\(455\) 0 0
\(456\) −7.58166 −0.355044
\(457\) −38.0944 −1.78198 −0.890990 0.454023i \(-0.849988\pi\)
−0.890990 + 0.454023i \(0.849988\pi\)
\(458\) 3.67676 0.171804
\(459\) −3.11590 −0.145438
\(460\) 0 0
\(461\) 3.53623 0.164699 0.0823494 0.996604i \(-0.473758\pi\)
0.0823494 + 0.996604i \(0.473758\pi\)
\(462\) 4.65986 0.216796
\(463\) 23.7206 1.10239 0.551195 0.834377i \(-0.314172\pi\)
0.551195 + 0.834377i \(0.314172\pi\)
\(464\) 0.979456 0.0454701
\(465\) 0 0
\(466\) −5.79466 −0.268433
\(467\) 19.0985 0.883774 0.441887 0.897071i \(-0.354309\pi\)
0.441887 + 0.897071i \(0.354309\pi\)
\(468\) −4.24430 −0.196193
\(469\) 13.7514 0.634982
\(470\) 0 0
\(471\) 11.8114 0.544241
\(472\) −21.4082 −0.985392
\(473\) 4.75021 0.218415
\(474\) −9.12455 −0.419104
\(475\) 0 0
\(476\) −15.2641 −0.699627
\(477\) 11.4431 0.523946
\(478\) −0.263926 −0.0120717
\(479\) 18.3034 0.836302 0.418151 0.908378i \(-0.362678\pi\)
0.418151 + 0.908378i \(0.362678\pi\)
\(480\) 0 0
\(481\) −25.2136 −1.14964
\(482\) −9.55294 −0.435124
\(483\) 24.9897 1.13707
\(484\) 11.4184 0.519020
\(485\) 0 0
\(486\) −0.858825 −0.0389571
\(487\) −7.01638 −0.317943 −0.158971 0.987283i \(-0.550818\pi\)
−0.158971 + 0.987283i \(0.550818\pi\)
\(488\) −30.3212 −1.37258
\(489\) −8.92635 −0.403663
\(490\) 0 0
\(491\) −4.63076 −0.208983 −0.104492 0.994526i \(-0.533322\pi\)
−0.104492 + 0.994526i \(0.533322\pi\)
\(492\) 14.3642 0.647589
\(493\) 25.7449 1.15949
\(494\) −7.81316 −0.351531
\(495\) 0 0
\(496\) −0.751598 −0.0337477
\(497\) 4.59277 0.206014
\(498\) −1.21003 −0.0542228
\(499\) −5.44561 −0.243779 −0.121890 0.992544i \(-0.538895\pi\)
−0.121890 + 0.992544i \(0.538895\pi\)
\(500\) 0 0
\(501\) −15.8114 −0.706401
\(502\) −17.6488 −0.787703
\(503\) 17.2645 0.769788 0.384894 0.922961i \(-0.374238\pi\)
0.384894 + 0.922961i \(0.374238\pi\)
\(504\) −10.8724 −0.484297
\(505\) 0 0
\(506\) 7.73336 0.343790
\(507\) 1.69672 0.0753538
\(508\) 20.5114 0.910047
\(509\) −10.1973 −0.451989 −0.225994 0.974129i \(-0.572563\pi\)
−0.225994 + 0.974129i \(0.572563\pi\)
\(510\) 0 0
\(511\) 9.29217 0.411061
\(512\) 1.34063 0.0592481
\(513\) 2.70595 0.119471
\(514\) −2.08997 −0.0921847
\(515\) 0 0
\(516\) −4.28876 −0.188802
\(517\) −11.7214 −0.515508
\(518\) −24.9930 −1.09813
\(519\) −16.3259 −0.716629
\(520\) 0 0
\(521\) 38.5575 1.68923 0.844617 0.535371i \(-0.179828\pi\)
0.844617 + 0.535371i \(0.179828\pi\)
\(522\) 7.09597 0.310582
\(523\) −6.40172 −0.279928 −0.139964 0.990157i \(-0.544699\pi\)
−0.139964 + 0.990157i \(0.544699\pi\)
\(524\) 19.3300 0.844437
\(525\) 0 0
\(526\) −17.3266 −0.755478
\(527\) −19.7557 −0.860570
\(528\) 0.165754 0.00721350
\(529\) 18.4722 0.803137
\(530\) 0 0
\(531\) 7.64074 0.331580
\(532\) 13.2558 0.574712
\(533\) 38.2543 1.65698
\(534\) −3.97612 −0.172064
\(535\) 0 0
\(536\) −9.92910 −0.428872
\(537\) 0.852080 0.0367700
\(538\) −16.0458 −0.691783
\(539\) −11.2670 −0.485304
\(540\) 0 0
\(541\) 28.7378 1.23553 0.617766 0.786362i \(-0.288038\pi\)
0.617766 + 0.786362i \(0.288038\pi\)
\(542\) 6.53724 0.280799
\(543\) −21.9643 −0.942580
\(544\) 17.7778 0.762216
\(545\) 0 0
\(546\) −11.2044 −0.479505
\(547\) 5.20272 0.222452 0.111226 0.993795i \(-0.464522\pi\)
0.111226 + 0.993795i \(0.464522\pi\)
\(548\) −8.66546 −0.370170
\(549\) 10.8219 0.461865
\(550\) 0 0
\(551\) −22.3577 −0.952470
\(552\) −18.0436 −0.767986
\(553\) 41.2277 1.75318
\(554\) −7.01973 −0.298240
\(555\) 0 0
\(556\) −17.4498 −0.740035
\(557\) −33.0079 −1.39859 −0.699296 0.714833i \(-0.746503\pi\)
−0.699296 + 0.714833i \(0.746503\pi\)
\(558\) −5.44518 −0.230513
\(559\) −11.4217 −0.483085
\(560\) 0 0
\(561\) 4.35682 0.183945
\(562\) 12.7872 0.539393
\(563\) 15.1684 0.639270 0.319635 0.947541i \(-0.396440\pi\)
0.319635 + 0.947541i \(0.396440\pi\)
\(564\) 10.5828 0.445614
\(565\) 0 0
\(566\) −1.16116 −0.0488070
\(567\) 3.88045 0.162964
\(568\) −3.31617 −0.139143
\(569\) −29.5024 −1.23681 −0.618403 0.785861i \(-0.712220\pi\)
−0.618403 + 0.785861i \(0.712220\pi\)
\(570\) 0 0
\(571\) 3.12393 0.130733 0.0653663 0.997861i \(-0.479178\pi\)
0.0653663 + 0.997861i \(0.479178\pi\)
\(572\) 5.93460 0.248138
\(573\) 1.15408 0.0482125
\(574\) 37.9197 1.58274
\(575\) 0 0
\(576\) 4.66294 0.194289
\(577\) 28.0748 1.16877 0.584385 0.811476i \(-0.301336\pi\)
0.584385 + 0.811476i \(0.301336\pi\)
\(578\) −6.26182 −0.260458
\(579\) 0.983419 0.0408695
\(580\) 0 0
\(581\) 5.46732 0.226823
\(582\) 1.30125 0.0539387
\(583\) −16.0004 −0.662669
\(584\) −6.70933 −0.277634
\(585\) 0 0
\(586\) −8.99817 −0.371711
\(587\) −35.9054 −1.48197 −0.740987 0.671520i \(-0.765642\pi\)
−0.740987 + 0.671520i \(0.765642\pi\)
\(588\) 10.1725 0.419506
\(589\) 17.1565 0.706920
\(590\) 0 0
\(591\) 7.40726 0.304694
\(592\) −0.889016 −0.0365383
\(593\) −15.3084 −0.628641 −0.314321 0.949317i \(-0.601777\pi\)
−0.314321 + 0.949317i \(0.601777\pi\)
\(594\) 1.20085 0.0492716
\(595\) 0 0
\(596\) −8.95810 −0.366938
\(597\) 13.5887 0.556147
\(598\) −18.5945 −0.760387
\(599\) −16.2538 −0.664114 −0.332057 0.943259i \(-0.607743\pi\)
−0.332057 + 0.943259i \(0.607743\pi\)
\(600\) 0 0
\(601\) −0.233686 −0.00953223 −0.00476612 0.999989i \(-0.501517\pi\)
−0.00476612 + 0.999989i \(0.501517\pi\)
\(602\) −11.3218 −0.461441
\(603\) 3.54377 0.144313
\(604\) −24.1721 −0.983548
\(605\) 0 0
\(606\) −14.8041 −0.601376
\(607\) −10.6590 −0.432637 −0.216318 0.976323i \(-0.569405\pi\)
−0.216318 + 0.976323i \(0.569405\pi\)
\(608\) −15.4388 −0.626127
\(609\) −32.0619 −1.29922
\(610\) 0 0
\(611\) 28.1836 1.14019
\(612\) −3.93358 −0.159005
\(613\) 17.9094 0.723353 0.361677 0.932304i \(-0.382204\pi\)
0.361677 + 0.932304i \(0.382204\pi\)
\(614\) 9.01689 0.363892
\(615\) 0 0
\(616\) 15.2024 0.612523
\(617\) 31.6418 1.27385 0.636926 0.770925i \(-0.280206\pi\)
0.636926 + 0.770925i \(0.280206\pi\)
\(618\) 9.43888 0.379687
\(619\) 21.8317 0.877488 0.438744 0.898612i \(-0.355423\pi\)
0.438744 + 0.898612i \(0.355423\pi\)
\(620\) 0 0
\(621\) 6.43989 0.258424
\(622\) −4.02393 −0.161345
\(623\) 17.9654 0.719769
\(624\) −0.398547 −0.0159547
\(625\) 0 0
\(626\) −14.8088 −0.591877
\(627\) −3.78360 −0.151103
\(628\) 14.9110 0.595012
\(629\) −23.3677 −0.931730
\(630\) 0 0
\(631\) 1.62102 0.0645318 0.0322659 0.999479i \(-0.489728\pi\)
0.0322659 + 0.999479i \(0.489728\pi\)
\(632\) −29.7681 −1.18411
\(633\) −26.2982 −1.04526
\(634\) −7.68346 −0.305149
\(635\) 0 0
\(636\) 14.4461 0.572823
\(637\) 27.0910 1.07339
\(638\) −9.92196 −0.392814
\(639\) 1.18356 0.0468211
\(640\) 0 0
\(641\) 4.53285 0.179037 0.0895183 0.995985i \(-0.471467\pi\)
0.0895183 + 0.995985i \(0.471467\pi\)
\(642\) −5.84601 −0.230724
\(643\) 12.6562 0.499111 0.249556 0.968360i \(-0.419715\pi\)
0.249556 + 0.968360i \(0.419715\pi\)
\(644\) 31.5475 1.24314
\(645\) 0 0
\(646\) −7.24117 −0.284900
\(647\) −22.3268 −0.877757 −0.438879 0.898546i \(-0.644624\pi\)
−0.438879 + 0.898546i \(0.644624\pi\)
\(648\) −2.80185 −0.110067
\(649\) −10.6837 −0.419371
\(650\) 0 0
\(651\) 24.6031 0.964273
\(652\) −11.2688 −0.441320
\(653\) −29.7988 −1.16612 −0.583058 0.812431i \(-0.698144\pi\)
−0.583058 + 0.812431i \(0.698144\pi\)
\(654\) 9.82934 0.384358
\(655\) 0 0
\(656\) 1.34883 0.0526628
\(657\) 2.39461 0.0934226
\(658\) 27.9371 1.08910
\(659\) 50.2976 1.95932 0.979659 0.200671i \(-0.0643122\pi\)
0.979659 + 0.200671i \(0.0643122\pi\)
\(660\) 0 0
\(661\) −20.8701 −0.811753 −0.405877 0.913928i \(-0.633034\pi\)
−0.405877 + 0.913928i \(0.633034\pi\)
\(662\) 10.3755 0.403255
\(663\) −10.4758 −0.406845
\(664\) −3.94763 −0.153198
\(665\) 0 0
\(666\) −6.44075 −0.249574
\(667\) −53.2091 −2.06026
\(668\) −19.9606 −0.772300
\(669\) 13.5470 0.523758
\(670\) 0 0
\(671\) −15.1317 −0.584152
\(672\) −22.1399 −0.854067
\(673\) −4.50092 −0.173498 −0.0867488 0.996230i \(-0.527648\pi\)
−0.0867488 + 0.996230i \(0.527648\pi\)
\(674\) 13.0554 0.502874
\(675\) 0 0
\(676\) 2.14197 0.0823834
\(677\) −13.5082 −0.519161 −0.259580 0.965721i \(-0.583584\pi\)
−0.259580 + 0.965721i \(0.583584\pi\)
\(678\) 13.9719 0.536586
\(679\) −5.87950 −0.225634
\(680\) 0 0
\(681\) −0.265434 −0.0101715
\(682\) 7.61374 0.291545
\(683\) −6.98466 −0.267261 −0.133630 0.991031i \(-0.542663\pi\)
−0.133630 + 0.991031i \(0.542663\pi\)
\(684\) 3.41605 0.130616
\(685\) 0 0
\(686\) 3.52566 0.134610
\(687\) −4.28115 −0.163336
\(688\) −0.402722 −0.0153536
\(689\) 38.4723 1.46568
\(690\) 0 0
\(691\) −25.6891 −0.977261 −0.488630 0.872491i \(-0.662503\pi\)
−0.488630 + 0.872491i \(0.662503\pi\)
\(692\) −20.6102 −0.783482
\(693\) −5.42585 −0.206111
\(694\) −7.31200 −0.277560
\(695\) 0 0
\(696\) 23.1500 0.877500
\(697\) 35.4537 1.34291
\(698\) −5.77734 −0.218676
\(699\) 6.74720 0.255202
\(700\) 0 0
\(701\) 2.35830 0.0890717 0.0445358 0.999008i \(-0.485819\pi\)
0.0445358 + 0.999008i \(0.485819\pi\)
\(702\) −2.88740 −0.108978
\(703\) 20.2933 0.765375
\(704\) −6.51997 −0.245731
\(705\) 0 0
\(706\) 11.4280 0.430100
\(707\) 66.8898 2.51565
\(708\) 9.64582 0.362512
\(709\) 13.1277 0.493022 0.246511 0.969140i \(-0.420716\pi\)
0.246511 + 0.969140i \(0.420716\pi\)
\(710\) 0 0
\(711\) 10.6245 0.398448
\(712\) −12.9718 −0.486138
\(713\) 40.8306 1.52912
\(714\) −10.3841 −0.388617
\(715\) 0 0
\(716\) 1.07568 0.0402002
\(717\) 0.307310 0.0114767
\(718\) −23.3399 −0.871039
\(719\) −29.5306 −1.10131 −0.550653 0.834735i \(-0.685621\pi\)
−0.550653 + 0.834735i \(0.685621\pi\)
\(720\) 0 0
\(721\) −42.6480 −1.58829
\(722\) −10.0292 −0.373248
\(723\) 11.1233 0.413679
\(724\) −27.7282 −1.03051
\(725\) 0 0
\(726\) 7.76798 0.288297
\(727\) −45.2103 −1.67676 −0.838378 0.545089i \(-0.816496\pi\)
−0.838378 + 0.545089i \(0.816496\pi\)
\(728\) −36.5535 −1.35476
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −10.5855 −0.391519
\(732\) 13.6617 0.504952
\(733\) −20.6475 −0.762633 −0.381317 0.924444i \(-0.624529\pi\)
−0.381317 + 0.924444i \(0.624529\pi\)
\(734\) 13.7360 0.507005
\(735\) 0 0
\(736\) −36.7428 −1.35436
\(737\) −4.95508 −0.182523
\(738\) 9.77199 0.359712
\(739\) 26.6229 0.979339 0.489670 0.871908i \(-0.337117\pi\)
0.489670 + 0.871908i \(0.337117\pi\)
\(740\) 0 0
\(741\) 9.09751 0.334205
\(742\) 38.1358 1.40001
\(743\) 34.2594 1.25686 0.628428 0.777868i \(-0.283699\pi\)
0.628428 + 0.777868i \(0.283699\pi\)
\(744\) −17.7645 −0.651277
\(745\) 0 0
\(746\) −26.8206 −0.981972
\(747\) 1.40894 0.0515503
\(748\) 5.50013 0.201105
\(749\) 26.4142 0.965154
\(750\) 0 0
\(751\) 34.9423 1.27506 0.637531 0.770425i \(-0.279956\pi\)
0.637531 + 0.770425i \(0.279956\pi\)
\(752\) 0.993739 0.0362380
\(753\) 20.5499 0.748880
\(754\) 23.8569 0.868817
\(755\) 0 0
\(756\) 4.89876 0.178166
\(757\) 25.4445 0.924796 0.462398 0.886673i \(-0.346989\pi\)
0.462398 + 0.886673i \(0.346989\pi\)
\(758\) −27.6561 −1.00451
\(759\) −9.00459 −0.326846
\(760\) 0 0
\(761\) −14.7352 −0.534149 −0.267075 0.963676i \(-0.586057\pi\)
−0.267075 + 0.963676i \(0.586057\pi\)
\(762\) 13.9539 0.505498
\(763\) −44.4122 −1.60783
\(764\) 1.45694 0.0527101
\(765\) 0 0
\(766\) −16.6845 −0.602834
\(767\) 25.6884 0.927556
\(768\) 15.6866 0.566043
\(769\) 28.9603 1.04434 0.522168 0.852843i \(-0.325123\pi\)
0.522168 + 0.852843i \(0.325123\pi\)
\(770\) 0 0
\(771\) 2.43352 0.0876413
\(772\) 1.24149 0.0446821
\(773\) 19.7129 0.709022 0.354511 0.935052i \(-0.384647\pi\)
0.354511 + 0.935052i \(0.384647\pi\)
\(774\) −2.91764 −0.104872
\(775\) 0 0
\(776\) 4.24524 0.152395
\(777\) 29.1014 1.04401
\(778\) 6.76242 0.242445
\(779\) −30.7892 −1.10314
\(780\) 0 0
\(781\) −1.65492 −0.0592178
\(782\) −17.2332 −0.616259
\(783\) −8.26242 −0.295275
\(784\) 0.955214 0.0341148
\(785\) 0 0
\(786\) 13.1502 0.469054
\(787\) −18.0212 −0.642385 −0.321193 0.947014i \(-0.604084\pi\)
−0.321193 + 0.947014i \(0.604084\pi\)
\(788\) 9.35107 0.333118
\(789\) 20.1748 0.718243
\(790\) 0 0
\(791\) −63.1295 −2.24463
\(792\) 3.91769 0.139209
\(793\) 36.3835 1.29201
\(794\) 24.4595 0.868033
\(795\) 0 0
\(796\) 17.1546 0.608028
\(797\) 17.7479 0.628663 0.314332 0.949313i \(-0.398220\pi\)
0.314332 + 0.949313i \(0.398220\pi\)
\(798\) 9.01794 0.319232
\(799\) 26.1203 0.924071
\(800\) 0 0
\(801\) 4.62972 0.163583
\(802\) 19.9374 0.704012
\(803\) −3.34827 −0.118158
\(804\) 4.47372 0.157776
\(805\) 0 0
\(806\) −18.3069 −0.644833
\(807\) 18.6834 0.657687
\(808\) −48.2972 −1.69909
\(809\) 24.7020 0.868477 0.434238 0.900798i \(-0.357018\pi\)
0.434238 + 0.900798i \(0.357018\pi\)
\(810\) 0 0
\(811\) −13.6855 −0.480561 −0.240281 0.970703i \(-0.577239\pi\)
−0.240281 + 0.970703i \(0.577239\pi\)
\(812\) −40.4756 −1.42042
\(813\) −7.61184 −0.266959
\(814\) 9.00579 0.315653
\(815\) 0 0
\(816\) −0.369370 −0.0129305
\(817\) 9.19279 0.321615
\(818\) 3.71199 0.129787
\(819\) 13.0462 0.455872
\(820\) 0 0
\(821\) −56.1647 −1.96016 −0.980081 0.198600i \(-0.936360\pi\)
−0.980081 + 0.198600i \(0.936360\pi\)
\(822\) −5.89512 −0.205616
\(823\) −15.1705 −0.528810 −0.264405 0.964412i \(-0.585175\pi\)
−0.264405 + 0.964412i \(0.585175\pi\)
\(824\) 30.7936 1.07275
\(825\) 0 0
\(826\) 25.4638 0.885998
\(827\) −12.2655 −0.426515 −0.213257 0.976996i \(-0.568407\pi\)
−0.213257 + 0.976996i \(0.568407\pi\)
\(828\) 8.12984 0.282532
\(829\) 29.4191 1.02177 0.510884 0.859650i \(-0.329318\pi\)
0.510884 + 0.859650i \(0.329318\pi\)
\(830\) 0 0
\(831\) 8.17364 0.283540
\(832\) 15.6770 0.543501
\(833\) 25.1077 0.869930
\(834\) −11.8711 −0.411062
\(835\) 0 0
\(836\) −4.77650 −0.165199
\(837\) 6.34027 0.219152
\(838\) −1.68696 −0.0582749
\(839\) −7.01431 −0.242161 −0.121080 0.992643i \(-0.538636\pi\)
−0.121080 + 0.992643i \(0.538636\pi\)
\(840\) 0 0
\(841\) 39.2676 1.35405
\(842\) 1.82950 0.0630486
\(843\) −14.8891 −0.512809
\(844\) −33.1994 −1.14277
\(845\) 0 0
\(846\) 7.19945 0.247522
\(847\) −35.0983 −1.20599
\(848\) 1.35651 0.0465827
\(849\) 1.35203 0.0464015
\(850\) 0 0
\(851\) 48.2959 1.65556
\(852\) 1.49416 0.0511889
\(853\) −27.1094 −0.928208 −0.464104 0.885781i \(-0.653624\pi\)
−0.464104 + 0.885781i \(0.653624\pi\)
\(854\) 36.0652 1.23413
\(855\) 0 0
\(856\) −19.0721 −0.651872
\(857\) −5.19405 −0.177425 −0.0887127 0.996057i \(-0.528275\pi\)
−0.0887127 + 0.996057i \(0.528275\pi\)
\(858\) 4.03731 0.137832
\(859\) −15.2545 −0.520478 −0.260239 0.965544i \(-0.583801\pi\)
−0.260239 + 0.965544i \(0.583801\pi\)
\(860\) 0 0
\(861\) −44.1531 −1.50473
\(862\) 0.0568738 0.00193713
\(863\) −46.8290 −1.59408 −0.797038 0.603929i \(-0.793601\pi\)
−0.797038 + 0.603929i \(0.793601\pi\)
\(864\) −5.70550 −0.194105
\(865\) 0 0
\(866\) −1.05502 −0.0358510
\(867\) 7.29115 0.247621
\(868\) 31.0595 1.05423
\(869\) −14.8557 −0.503944
\(870\) 0 0
\(871\) 11.9143 0.403700
\(872\) 32.0674 1.08594
\(873\) −1.51516 −0.0512803
\(874\) 14.9659 0.506229
\(875\) 0 0
\(876\) 3.02300 0.102138
\(877\) −0.979616 −0.0330793 −0.0165396 0.999863i \(-0.505265\pi\)
−0.0165396 + 0.999863i \(0.505265\pi\)
\(878\) −32.4912 −1.09653
\(879\) 10.4773 0.353391
\(880\) 0 0
\(881\) 39.0186 1.31457 0.657286 0.753641i \(-0.271704\pi\)
0.657286 + 0.753641i \(0.271704\pi\)
\(882\) 6.92034 0.233020
\(883\) 8.90989 0.299842 0.149921 0.988698i \(-0.452098\pi\)
0.149921 + 0.988698i \(0.452098\pi\)
\(884\) −13.2248 −0.444799
\(885\) 0 0
\(886\) 23.1171 0.776633
\(887\) −51.4215 −1.72656 −0.863282 0.504721i \(-0.831595\pi\)
−0.863282 + 0.504721i \(0.831595\pi\)
\(888\) −21.0124 −0.705131
\(889\) −63.0485 −2.11458
\(890\) 0 0
\(891\) −1.39825 −0.0468432
\(892\) 17.1020 0.572618
\(893\) −22.6838 −0.759083
\(894\) −6.09420 −0.203820
\(895\) 0 0
\(896\) −28.7400 −0.960137
\(897\) 21.6511 0.722910
\(898\) −21.7360 −0.725339
\(899\) −52.3860 −1.74717
\(900\) 0 0
\(901\) 35.6557 1.18786
\(902\) −13.6637 −0.454952
\(903\) 13.1829 0.438698
\(904\) 45.5821 1.51604
\(905\) 0 0
\(906\) −16.4443 −0.546324
\(907\) 18.0057 0.597871 0.298935 0.954273i \(-0.403369\pi\)
0.298935 + 0.954273i \(0.403369\pi\)
\(908\) −0.335089 −0.0111203
\(909\) 17.2376 0.571736
\(910\) 0 0
\(911\) 42.3831 1.40421 0.702107 0.712071i \(-0.252243\pi\)
0.702107 + 0.712071i \(0.252243\pi\)
\(912\) 0.320773 0.0106219
\(913\) −1.97005 −0.0651991
\(914\) −32.7164 −1.08216
\(915\) 0 0
\(916\) −5.40460 −0.178573
\(917\) −59.4171 −1.96213
\(918\) −2.67601 −0.0883216
\(919\) 15.9252 0.525325 0.262662 0.964888i \(-0.415399\pi\)
0.262662 + 0.964888i \(0.415399\pi\)
\(920\) 0 0
\(921\) −10.4991 −0.345957
\(922\) 3.03700 0.100018
\(923\) 3.97919 0.130977
\(924\) −6.84971 −0.225339
\(925\) 0 0
\(926\) 20.3718 0.669460
\(927\) −10.9905 −0.360974
\(928\) 47.1413 1.54749
\(929\) 7.47386 0.245210 0.122605 0.992456i \(-0.460875\pi\)
0.122605 + 0.992456i \(0.460875\pi\)
\(930\) 0 0
\(931\) −21.8043 −0.714609
\(932\) 8.51780 0.279010
\(933\) 4.68539 0.153393
\(934\) 16.4023 0.536699
\(935\) 0 0
\(936\) −9.41991 −0.307899
\(937\) −26.3843 −0.861937 −0.430969 0.902367i \(-0.641828\pi\)
−0.430969 + 0.902367i \(0.641828\pi\)
\(938\) 11.8101 0.385612
\(939\) 17.2431 0.562706
\(940\) 0 0
\(941\) 40.8626 1.33208 0.666041 0.745915i \(-0.267988\pi\)
0.666041 + 0.745915i \(0.267988\pi\)
\(942\) 10.1439 0.330507
\(943\) −73.2751 −2.38617
\(944\) 0.905760 0.0294800
\(945\) 0 0
\(946\) 4.07960 0.132639
\(947\) −44.3060 −1.43975 −0.719876 0.694103i \(-0.755801\pi\)
−0.719876 + 0.694103i \(0.755801\pi\)
\(948\) 13.4125 0.435619
\(949\) 8.05076 0.261339
\(950\) 0 0
\(951\) 8.94648 0.290109
\(952\) −33.8775 −1.09797
\(953\) −21.0768 −0.682744 −0.341372 0.939928i \(-0.610892\pi\)
−0.341372 + 0.939928i \(0.610892\pi\)
\(954\) 9.82766 0.318182
\(955\) 0 0
\(956\) 0.387954 0.0125473
\(957\) 11.5529 0.373454
\(958\) 15.7194 0.507870
\(959\) 26.6361 0.860124
\(960\) 0 0
\(961\) 9.19905 0.296744
\(962\) −21.6540 −0.698154
\(963\) 6.80699 0.219352
\(964\) 14.0422 0.452270
\(965\) 0 0
\(966\) 21.4618 0.690521
\(967\) 9.34590 0.300544 0.150272 0.988645i \(-0.451985\pi\)
0.150272 + 0.988645i \(0.451985\pi\)
\(968\) 25.3424 0.814536
\(969\) 8.43148 0.270858
\(970\) 0 0
\(971\) −49.2708 −1.58118 −0.790588 0.612348i \(-0.790225\pi\)
−0.790588 + 0.612348i \(0.790225\pi\)
\(972\) 1.26242 0.0404921
\(973\) 53.6374 1.71954
\(974\) −6.02584 −0.193080
\(975\) 0 0
\(976\) 1.28286 0.0410634
\(977\) −54.8767 −1.75566 −0.877830 0.478971i \(-0.841010\pi\)
−0.877830 + 0.478971i \(0.841010\pi\)
\(978\) −7.66617 −0.245137
\(979\) −6.47352 −0.206895
\(980\) 0 0
\(981\) −11.4451 −0.365414
\(982\) −3.97701 −0.126912
\(983\) −15.9788 −0.509646 −0.254823 0.966988i \(-0.582017\pi\)
−0.254823 + 0.966988i \(0.582017\pi\)
\(984\) 31.8803 1.01631
\(985\) 0 0
\(986\) 22.1104 0.704137
\(987\) −32.5295 −1.03543
\(988\) 11.4849 0.365382
\(989\) 21.8779 0.695677
\(990\) 0 0
\(991\) −29.2757 −0.929973 −0.464986 0.885318i \(-0.653941\pi\)
−0.464986 + 0.885318i \(0.653941\pi\)
\(992\) −36.1744 −1.14854
\(993\) −12.0810 −0.383380
\(994\) 3.94438 0.125108
\(995\) 0 0
\(996\) 1.77867 0.0563593
\(997\) −19.6838 −0.623392 −0.311696 0.950182i \(-0.600897\pi\)
−0.311696 + 0.950182i \(0.600897\pi\)
\(998\) −4.67683 −0.148042
\(999\) 7.49949 0.237273
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1875.2.a.l.1.4 yes 6
3.2 odd 2 5625.2.a.o.1.3 6
5.2 odd 4 1875.2.b.e.1249.8 12
5.3 odd 4 1875.2.b.e.1249.5 12
5.4 even 2 1875.2.a.i.1.3 6
15.14 odd 2 5625.2.a.r.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1875.2.a.i.1.3 6 5.4 even 2
1875.2.a.l.1.4 yes 6 1.1 even 1 trivial
1875.2.b.e.1249.5 12 5.3 odd 4
1875.2.b.e.1249.8 12 5.2 odd 4
5625.2.a.o.1.3 6 3.2 odd 2
5625.2.a.r.1.4 6 15.14 odd 2