[N,k,chi] = [1875,2,Mod(1,1875)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1875, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1875.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(3\)
\(-1\)
\(5\)
\(1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{6} + T_{2}^{5} - 11T_{2}^{4} - 8T_{2}^{3} + 31T_{2}^{2} + 15T_{2} - 9 \)
T2^6 + T2^5 - 11*T2^4 - 8*T2^3 + 31*T2^2 + 15*T2 - 9
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1875))\).
$p$
$F_p(T)$
$2$
\( T^{6} + T^{5} - 11 T^{4} - 8 T^{3} + \cdots - 9 \)
T^6 + T^5 - 11*T^4 - 8*T^3 + 31*T^2 + 15*T - 9
$3$
\( (T - 1)^{6} \)
(T - 1)^6
$5$
\( T^{6} \)
T^6
$7$
\( T^{6} - 2 T^{5} - 21 T^{4} + 42 T^{3} + \cdots - 100 \)
T^6 - 2*T^5 - 21*T^4 + 42*T^3 + 101*T^2 - 160*T - 100
$11$
\( T^{6} - 29 T^{4} - 8 T^{3} + 184 T^{2} + \cdots - 144 \)
T^6 - 29*T^4 - 8*T^3 + 184*T^2 + 96*T - 144
$13$
\( T^{6} - 56 T^{4} - 74 T^{3} + \cdots + 349 \)
T^6 - 56*T^4 - 74*T^3 + 824*T^2 + 2012*T + 349
$17$
\( T^{6} + 2 T^{5} - 55 T^{4} - 80 T^{3} + \cdots - 576 \)
T^6 + 2*T^5 - 55*T^4 - 80*T^3 + 680*T^2 + 1152*T - 576
$19$
\( T^{6} + 2 T^{5} - 74 T^{4} + \cdots - 5725 \)
T^6 + 2*T^5 - 74*T^4 - 120*T^3 + 1410*T^2 + 1150*T - 5725
$23$
\( T^{6} - T^{5} - 69 T^{4} + 144 T^{3} + \cdots - 720 \)
T^6 - T^5 - 69*T^4 + 144*T^3 + 536*T^2 - 240*T - 720
$29$
\( T^{6} - 31 T^{5} + 379 T^{4} + \cdots + 6480 \)
T^6 - 31*T^5 + 379*T^4 - 2320*T^3 + 7420*T^2 - 11520*T + 6480
$31$
\( T^{6} + 2 T^{5} - 86 T^{4} + \cdots + 3155 \)
T^6 + 2*T^5 - 86*T^4 + 28*T^3 + 1726*T^2 - 4590*T + 3155
$37$
\( T^{6} - 22 T^{5} + 59 T^{4} + \cdots - 46100 \)
T^6 - 22*T^5 + 59*T^4 + 1782*T^3 - 16099*T^2 + 47640*T - 46100
$41$
\( T^{6} - 33 T^{5} + 399 T^{4} + \cdots + 720 \)
T^6 - 33*T^5 + 399*T^4 - 2192*T^3 + 5636*T^2 - 5760*T + 720
$43$
\( T^{6} - 3 T^{5} - 76 T^{4} + \cdots - 1289 \)
T^6 - 3*T^5 - 76*T^4 + 21*T^3 + 944*T^2 - 143*T - 1289
$47$
\( T^{6} - 6 T^{5} - 184 T^{4} + \cdots + 80064 \)
T^6 - 6*T^5 - 184*T^4 + 1128*T^3 + 6464*T^2 - 52896*T + 80064
$53$
\( T^{6} + 14 T^{5} - 164 T^{4} + \cdots + 14400 \)
T^6 + 14*T^5 - 164*T^4 - 3056*T^3 - 6544*T^2 + 36960*T + 14400
$59$
\( T^{6} + 8 T^{5} - 69 T^{4} + \cdots - 2880 \)
T^6 + 8*T^5 - 69*T^4 - 600*T^3 + 680*T^2 + 7680*T - 2880
$61$
\( T^{6} - 34 T^{5} + 406 T^{4} + \cdots - 72001 \)
T^6 - 34*T^5 + 406*T^4 - 1728*T^3 - 2166*T^2 + 35806*T - 72001
$67$
\( T^{6} + 2 T^{5} - 110 T^{4} - 540 T^{3} + \cdots + 59 \)
T^6 + 2*T^5 - 110*T^4 - 540*T^3 - 210*T^2 + 1402*T + 59
$71$
\( T^{6} + 3 T^{5} - 225 T^{4} + \cdots - 12816 \)
T^6 + 3*T^5 - 225*T^4 + 160*T^3 + 5780*T^2 + 4128*T - 12816
$73$
\( T^{6} - 36 T^{5} + 431 T^{4} + \cdots + 20380 \)
T^6 - 36*T^5 + 431*T^4 - 1596*T^3 - 3079*T^2 + 17470*T + 20380
$79$
\( T^{6} - 25 T^{5} + 150 T^{4} + \cdots + 2725 \)
T^6 - 25*T^5 + 150*T^4 + 395*T^3 - 3430*T^2 - 5125*T + 2725
$83$
\( T^{6} - 12 T^{5} - 129 T^{4} + \cdots - 23616 \)
T^6 - 12*T^5 - 129*T^4 + 1624*T^3 + 776*T^2 - 19200*T - 23616
$89$
\( T^{6} - 18 T^{5} - 219 T^{4} + \cdots - 42480 \)
T^6 - 18*T^5 - 219*T^4 + 4340*T^3 - 2500*T^2 - 44400*T - 42480
$97$
\( T^{6} + 7 T^{5} - 310 T^{4} + \cdots - 32291 \)
T^6 + 7*T^5 - 310*T^4 - 1585*T^3 + 19270*T^2 - 3213*T - 32291
show more
show less