Properties

Label 1875.2.a.g.1.2
Level $1875$
Weight $2$
Character 1875.1
Self dual yes
Analytic conductor $14.972$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1875,2,Mod(1,1875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1875, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1875.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1875 = 3 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1875.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.9719503790\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{15})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.95630\) of defining polynomial
Character \(\chi\) \(=\) 1875.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.209057 q^{2} -1.00000 q^{3} -1.95630 q^{4} +0.209057 q^{6} +0.591023 q^{7} +0.827091 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-0.209057 q^{2} -1.00000 q^{3} -1.95630 q^{4} +0.209057 q^{6} +0.591023 q^{7} +0.827091 q^{8} +1.00000 q^{9} -0.870796 q^{11} +1.95630 q^{12} +1.15057 q^{13} -0.123557 q^{14} +3.73968 q^{16} -4.93395 q^{17} -0.209057 q^{18} -2.84943 q^{19} -0.591023 q^{21} +0.182046 q^{22} +6.91259 q^{23} -0.827091 q^{24} -0.240534 q^{26} -1.00000 q^{27} -1.15622 q^{28} -7.48883 q^{29} +3.45991 q^{31} -2.43599 q^{32} +0.870796 q^{33} +1.03148 q^{34} -1.95630 q^{36} +10.1681 q^{37} +0.595693 q^{38} -1.15057 q^{39} +9.11409 q^{41} +0.123557 q^{42} -2.81486 q^{43} +1.70353 q^{44} -1.44512 q^{46} +6.68842 q^{47} -3.73968 q^{48} -6.65069 q^{49} +4.93395 q^{51} -2.25085 q^{52} +3.87238 q^{53} +0.209057 q^{54} +0.488830 q^{56} +2.84943 q^{57} +1.56559 q^{58} -11.5277 q^{59} -12.7564 q^{61} -0.723318 q^{62} +0.591023 q^{63} -6.97010 q^{64} -0.182046 q^{66} -7.60292 q^{67} +9.65227 q^{68} -6.91259 q^{69} -15.0566 q^{71} +0.827091 q^{72} -2.98798 q^{73} -2.12571 q^{74} +5.57433 q^{76} -0.514660 q^{77} +0.240534 q^{78} +3.33728 q^{79} +1.00000 q^{81} -1.90536 q^{82} -9.73310 q^{83} +1.15622 q^{84} +0.588467 q^{86} +7.48883 q^{87} -0.720227 q^{88} +0.645045 q^{89} +0.680012 q^{91} -13.5231 q^{92} -3.45991 q^{93} -1.39826 q^{94} +2.43599 q^{96} +11.6970 q^{97} +1.39037 q^{98} -0.870796 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - 4 q^{3} + q^{4} - q^{6} + 5 q^{7} - 3 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + q^{2} - 4 q^{3} + q^{4} - q^{6} + 5 q^{7} - 3 q^{8} + 4 q^{9} - 6 q^{11} - q^{12} + 7 q^{13} - 10 q^{14} - 9 q^{16} - 7 q^{17} + q^{18} - 9 q^{19} - 5 q^{21} + 6 q^{22} + 10 q^{23} + 3 q^{24} - 2 q^{26} - 4 q^{27} + 5 q^{28} - 28 q^{29} - 10 q^{31} + 6 q^{33} + 7 q^{34} + q^{36} - 10 q^{37} - 6 q^{38} - 7 q^{39} + 10 q^{42} + q^{43} - 9 q^{44} + 5 q^{46} - 23 q^{47} + 9 q^{48} - 3 q^{49} + 7 q^{51} + 13 q^{52} - q^{54} + 9 q^{57} - 2 q^{58} + 4 q^{59} - 43 q^{61} - 10 q^{62} + 5 q^{63} - 7 q^{64} - 6 q^{66} + 8 q^{67} - 3 q^{68} - 10 q^{69} - 27 q^{71} - 3 q^{72} + 15 q^{73} + 5 q^{74} + 9 q^{76} - 15 q^{77} + 2 q^{78} + 10 q^{79} + 4 q^{81} - 20 q^{82} + 3 q^{83} - 5 q^{84} + 24 q^{86} + 28 q^{87} - 3 q^{88} - 9 q^{89} + 5 q^{91} - 15 q^{92} + 10 q^{93} - 22 q^{94} + 13 q^{97} - 42 q^{98} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.209057 −0.147826 −0.0739128 0.997265i \(-0.523549\pi\)
−0.0739128 + 0.997265i \(0.523549\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.95630 −0.978148
\(5\) 0 0
\(6\) 0.209057 0.0853471
\(7\) 0.591023 0.223386 0.111693 0.993743i \(-0.464373\pi\)
0.111693 + 0.993743i \(0.464373\pi\)
\(8\) 0.827091 0.292421
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −0.870796 −0.262555 −0.131277 0.991346i \(-0.541908\pi\)
−0.131277 + 0.991346i \(0.541908\pi\)
\(12\) 1.95630 0.564734
\(13\) 1.15057 0.319110 0.159555 0.987189i \(-0.448994\pi\)
0.159555 + 0.987189i \(0.448994\pi\)
\(14\) −0.123557 −0.0330221
\(15\) 0 0
\(16\) 3.73968 0.934920
\(17\) −4.93395 −1.19666 −0.598330 0.801250i \(-0.704169\pi\)
−0.598330 + 0.801250i \(0.704169\pi\)
\(18\) −0.209057 −0.0492752
\(19\) −2.84943 −0.653704 −0.326852 0.945075i \(-0.605988\pi\)
−0.326852 + 0.945075i \(0.605988\pi\)
\(20\) 0 0
\(21\) −0.591023 −0.128972
\(22\) 0.182046 0.0388123
\(23\) 6.91259 1.44137 0.720687 0.693260i \(-0.243826\pi\)
0.720687 + 0.693260i \(0.243826\pi\)
\(24\) −0.827091 −0.168829
\(25\) 0 0
\(26\) −0.240534 −0.0471727
\(27\) −1.00000 −0.192450
\(28\) −1.15622 −0.218504
\(29\) −7.48883 −1.39064 −0.695320 0.718700i \(-0.744738\pi\)
−0.695320 + 0.718700i \(0.744738\pi\)
\(30\) 0 0
\(31\) 3.45991 0.621418 0.310709 0.950505i \(-0.399434\pi\)
0.310709 + 0.950505i \(0.399434\pi\)
\(32\) −2.43599 −0.430626
\(33\) 0.870796 0.151586
\(34\) 1.03148 0.176897
\(35\) 0 0
\(36\) −1.95630 −0.326049
\(37\) 10.1681 1.67163 0.835814 0.549013i \(-0.184996\pi\)
0.835814 + 0.549013i \(0.184996\pi\)
\(38\) 0.595693 0.0966342
\(39\) −1.15057 −0.184238
\(40\) 0 0
\(41\) 9.11409 1.42338 0.711691 0.702493i \(-0.247930\pi\)
0.711691 + 0.702493i \(0.247930\pi\)
\(42\) 0.123557 0.0190653
\(43\) −2.81486 −0.429263 −0.214631 0.976695i \(-0.568855\pi\)
−0.214631 + 0.976695i \(0.568855\pi\)
\(44\) 1.70353 0.256817
\(45\) 0 0
\(46\) −1.44512 −0.213072
\(47\) 6.68842 0.975606 0.487803 0.872954i \(-0.337798\pi\)
0.487803 + 0.872954i \(0.337798\pi\)
\(48\) −3.73968 −0.539777
\(49\) −6.65069 −0.950099
\(50\) 0 0
\(51\) 4.93395 0.690892
\(52\) −2.25085 −0.312137
\(53\) 3.87238 0.531912 0.265956 0.963985i \(-0.414312\pi\)
0.265956 + 0.963985i \(0.414312\pi\)
\(54\) 0.209057 0.0284490
\(55\) 0 0
\(56\) 0.488830 0.0653226
\(57\) 2.84943 0.377416
\(58\) 1.56559 0.205572
\(59\) −11.5277 −1.50078 −0.750392 0.660993i \(-0.770135\pi\)
−0.750392 + 0.660993i \(0.770135\pi\)
\(60\) 0 0
\(61\) −12.7564 −1.63329 −0.816643 0.577143i \(-0.804168\pi\)
−0.816643 + 0.577143i \(0.804168\pi\)
\(62\) −0.723318 −0.0918615
\(63\) 0.591023 0.0744619
\(64\) −6.97010 −0.871263
\(65\) 0 0
\(66\) −0.182046 −0.0224083
\(67\) −7.60292 −0.928845 −0.464422 0.885614i \(-0.653738\pi\)
−0.464422 + 0.885614i \(0.653738\pi\)
\(68\) 9.65227 1.17051
\(69\) −6.91259 −0.832178
\(70\) 0 0
\(71\) −15.0566 −1.78689 −0.893444 0.449175i \(-0.851718\pi\)
−0.893444 + 0.449175i \(0.851718\pi\)
\(72\) 0.827091 0.0974736
\(73\) −2.98798 −0.349716 −0.174858 0.984594i \(-0.555947\pi\)
−0.174858 + 0.984594i \(0.555947\pi\)
\(74\) −2.12571 −0.247109
\(75\) 0 0
\(76\) 5.57433 0.639419
\(77\) −0.514660 −0.0586510
\(78\) 0.240534 0.0272351
\(79\) 3.33728 0.375474 0.187737 0.982219i \(-0.439885\pi\)
0.187737 + 0.982219i \(0.439885\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −1.90536 −0.210412
\(83\) −9.73310 −1.06835 −0.534173 0.845375i \(-0.679377\pi\)
−0.534173 + 0.845375i \(0.679377\pi\)
\(84\) 1.15622 0.126153
\(85\) 0 0
\(86\) 0.588467 0.0634560
\(87\) 7.48883 0.802887
\(88\) −0.720227 −0.0767765
\(89\) 0.645045 0.0683746 0.0341873 0.999415i \(-0.489116\pi\)
0.0341873 + 0.999415i \(0.489116\pi\)
\(90\) 0 0
\(91\) 0.680012 0.0712847
\(92\) −13.5231 −1.40988
\(93\) −3.45991 −0.358776
\(94\) −1.39826 −0.144220
\(95\) 0 0
\(96\) 2.43599 0.248622
\(97\) 11.6970 1.18765 0.593823 0.804596i \(-0.297618\pi\)
0.593823 + 0.804596i \(0.297618\pi\)
\(98\) 1.39037 0.140449
\(99\) −0.870796 −0.0875183
\(100\) 0 0
\(101\) −14.7636 −1.46903 −0.734517 0.678591i \(-0.762591\pi\)
−0.734517 + 0.678591i \(0.762591\pi\)
\(102\) −1.03148 −0.102131
\(103\) −1.41969 −0.139887 −0.0699433 0.997551i \(-0.522282\pi\)
−0.0699433 + 0.997551i \(0.522282\pi\)
\(104\) 0.951625 0.0933145
\(105\) 0 0
\(106\) −0.809547 −0.0786301
\(107\) −14.9579 −1.44603 −0.723016 0.690831i \(-0.757245\pi\)
−0.723016 + 0.690831i \(0.757245\pi\)
\(108\) 1.95630 0.188245
\(109\) −11.0977 −1.06297 −0.531485 0.847068i \(-0.678366\pi\)
−0.531485 + 0.847068i \(0.678366\pi\)
\(110\) 0 0
\(111\) −10.1681 −0.965115
\(112\) 2.21024 0.208848
\(113\) −12.1069 −1.13892 −0.569459 0.822020i \(-0.692847\pi\)
−0.569459 + 0.822020i \(0.692847\pi\)
\(114\) −0.595693 −0.0557918
\(115\) 0 0
\(116\) 14.6504 1.36025
\(117\) 1.15057 0.106370
\(118\) 2.40995 0.221854
\(119\) −2.91608 −0.267317
\(120\) 0 0
\(121\) −10.2417 −0.931065
\(122\) 2.66681 0.241442
\(123\) −9.11409 −0.821790
\(124\) −6.76860 −0.607838
\(125\) 0 0
\(126\) −0.123557 −0.0110074
\(127\) 0.541671 0.0480656 0.0240328 0.999711i \(-0.492349\pi\)
0.0240328 + 0.999711i \(0.492349\pi\)
\(128\) 6.32912 0.559421
\(129\) 2.81486 0.247835
\(130\) 0 0
\(131\) −2.46747 −0.215583 −0.107792 0.994173i \(-0.534378\pi\)
−0.107792 + 0.994173i \(0.534378\pi\)
\(132\) −1.70353 −0.148274
\(133\) −1.68408 −0.146028
\(134\) 1.58944 0.137307
\(135\) 0 0
\(136\) −4.08083 −0.349928
\(137\) −5.64471 −0.482261 −0.241130 0.970493i \(-0.577518\pi\)
−0.241130 + 0.970493i \(0.577518\pi\)
\(138\) 1.44512 0.123017
\(139\) −0.326034 −0.0276538 −0.0138269 0.999904i \(-0.504401\pi\)
−0.0138269 + 0.999904i \(0.504401\pi\)
\(140\) 0 0
\(141\) −6.68842 −0.563267
\(142\) 3.14768 0.264148
\(143\) −1.00191 −0.0837839
\(144\) 3.73968 0.311640
\(145\) 0 0
\(146\) 0.624657 0.0516970
\(147\) 6.65069 0.548540
\(148\) −19.8918 −1.63510
\(149\) −0.637614 −0.0522354 −0.0261177 0.999659i \(-0.508314\pi\)
−0.0261177 + 0.999659i \(0.508314\pi\)
\(150\) 0 0
\(151\) 11.3948 0.927299 0.463649 0.886019i \(-0.346540\pi\)
0.463649 + 0.886019i \(0.346540\pi\)
\(152\) −2.35674 −0.191157
\(153\) −4.93395 −0.398887
\(154\) 0.107593 0.00867011
\(155\) 0 0
\(156\) 2.25085 0.180212
\(157\) 2.86068 0.228307 0.114154 0.993463i \(-0.463584\pi\)
0.114154 + 0.993463i \(0.463584\pi\)
\(158\) −0.697683 −0.0555046
\(159\) −3.87238 −0.307099
\(160\) 0 0
\(161\) 4.08550 0.321982
\(162\) −0.209057 −0.0164251
\(163\) 14.1106 1.10523 0.552614 0.833437i \(-0.313630\pi\)
0.552614 + 0.833437i \(0.313630\pi\)
\(164\) −17.8299 −1.39228
\(165\) 0 0
\(166\) 2.03477 0.157929
\(167\) −7.49041 −0.579625 −0.289813 0.957083i \(-0.593593\pi\)
−0.289813 + 0.957083i \(0.593593\pi\)
\(168\) −0.488830 −0.0377140
\(169\) −11.6762 −0.898169
\(170\) 0 0
\(171\) −2.84943 −0.217901
\(172\) 5.50670 0.419882
\(173\) 20.3231 1.54514 0.772570 0.634929i \(-0.218971\pi\)
0.772570 + 0.634929i \(0.218971\pi\)
\(174\) −1.56559 −0.118687
\(175\) 0 0
\(176\) −3.25650 −0.245468
\(177\) 11.5277 0.866478
\(178\) −0.134851 −0.0101075
\(179\) 1.13209 0.0846164 0.0423082 0.999105i \(-0.486529\pi\)
0.0423082 + 0.999105i \(0.486529\pi\)
\(180\) 0 0
\(181\) 4.96450 0.369008 0.184504 0.982832i \(-0.440932\pi\)
0.184504 + 0.982832i \(0.440932\pi\)
\(182\) −0.142161 −0.0105377
\(183\) 12.7564 0.942978
\(184\) 5.71734 0.421488
\(185\) 0 0
\(186\) 0.723318 0.0530362
\(187\) 4.29647 0.314189
\(188\) −13.0845 −0.954287
\(189\) −0.591023 −0.0429906
\(190\) 0 0
\(191\) 6.44610 0.466424 0.233212 0.972426i \(-0.425076\pi\)
0.233212 + 0.972426i \(0.425076\pi\)
\(192\) 6.97010 0.503024
\(193\) −18.4312 −1.32671 −0.663353 0.748307i \(-0.730867\pi\)
−0.663353 + 0.748307i \(0.730867\pi\)
\(194\) −2.44533 −0.175564
\(195\) 0 0
\(196\) 13.0107 0.929337
\(197\) −16.8343 −1.19940 −0.599698 0.800227i \(-0.704713\pi\)
−0.599698 + 0.800227i \(0.704713\pi\)
\(198\) 0.182046 0.0129374
\(199\) 16.9968 1.20487 0.602435 0.798168i \(-0.294197\pi\)
0.602435 + 0.798168i \(0.294197\pi\)
\(200\) 0 0
\(201\) 7.60292 0.536269
\(202\) 3.08643 0.217161
\(203\) −4.42607 −0.310649
\(204\) −9.65227 −0.675794
\(205\) 0 0
\(206\) 0.296797 0.0206788
\(207\) 6.91259 0.480458
\(208\) 4.30276 0.298343
\(209\) 2.48127 0.171633
\(210\) 0 0
\(211\) 5.00874 0.344816 0.172408 0.985026i \(-0.444845\pi\)
0.172408 + 0.985026i \(0.444845\pi\)
\(212\) −7.57551 −0.520288
\(213\) 15.0566 1.03166
\(214\) 3.12705 0.213761
\(215\) 0 0
\(216\) −0.827091 −0.0562764
\(217\) 2.04489 0.138816
\(218\) 2.32006 0.157134
\(219\) 2.98798 0.201909
\(220\) 0 0
\(221\) −5.67685 −0.381866
\(222\) 2.12571 0.142669
\(223\) 15.9452 1.06777 0.533886 0.845556i \(-0.320731\pi\)
0.533886 + 0.845556i \(0.320731\pi\)
\(224\) −1.43972 −0.0961957
\(225\) 0 0
\(226\) 2.53102 0.168361
\(227\) −26.8967 −1.78520 −0.892600 0.450850i \(-0.851121\pi\)
−0.892600 + 0.450850i \(0.851121\pi\)
\(228\) −5.57433 −0.369169
\(229\) −2.94598 −0.194676 −0.0973378 0.995251i \(-0.531033\pi\)
−0.0973378 + 0.995251i \(0.531033\pi\)
\(230\) 0 0
\(231\) 0.514660 0.0338622
\(232\) −6.19394 −0.406652
\(233\) −23.4054 −1.53334 −0.766670 0.642041i \(-0.778088\pi\)
−0.766670 + 0.642041i \(0.778088\pi\)
\(234\) −0.240534 −0.0157242
\(235\) 0 0
\(236\) 22.5517 1.46799
\(237\) −3.33728 −0.216780
\(238\) 0.609627 0.0395162
\(239\) 14.7790 0.955973 0.477987 0.878367i \(-0.341367\pi\)
0.477987 + 0.878367i \(0.341367\pi\)
\(240\) 0 0
\(241\) −14.3894 −0.926903 −0.463451 0.886122i \(-0.653389\pi\)
−0.463451 + 0.886122i \(0.653389\pi\)
\(242\) 2.14110 0.137635
\(243\) −1.00000 −0.0641500
\(244\) 24.9552 1.59760
\(245\) 0 0
\(246\) 1.90536 0.121482
\(247\) −3.27847 −0.208604
\(248\) 2.86166 0.181716
\(249\) 9.73310 0.616810
\(250\) 0 0
\(251\) −18.7342 −1.18249 −0.591247 0.806490i \(-0.701364\pi\)
−0.591247 + 0.806490i \(0.701364\pi\)
\(252\) −1.15622 −0.0728347
\(253\) −6.01945 −0.378440
\(254\) −0.113240 −0.00710532
\(255\) 0 0
\(256\) 12.6171 0.788566
\(257\) −6.42218 −0.400605 −0.200302 0.979734i \(-0.564192\pi\)
−0.200302 + 0.979734i \(0.564192\pi\)
\(258\) −0.588467 −0.0366363
\(259\) 6.00959 0.373418
\(260\) 0 0
\(261\) −7.48883 −0.463547
\(262\) 0.515841 0.0318687
\(263\) −14.2071 −0.876050 −0.438025 0.898963i \(-0.644322\pi\)
−0.438025 + 0.898963i \(0.644322\pi\)
\(264\) 0.720227 0.0443269
\(265\) 0 0
\(266\) 0.352068 0.0215867
\(267\) −0.645045 −0.0394761
\(268\) 14.8736 0.908547
\(269\) −8.67115 −0.528689 −0.264345 0.964428i \(-0.585156\pi\)
−0.264345 + 0.964428i \(0.585156\pi\)
\(270\) 0 0
\(271\) 11.5697 0.702807 0.351403 0.936224i \(-0.385705\pi\)
0.351403 + 0.936224i \(0.385705\pi\)
\(272\) −18.4514 −1.11878
\(273\) −0.680012 −0.0411562
\(274\) 1.18007 0.0712904
\(275\) 0 0
\(276\) 13.5231 0.813993
\(277\) 19.2540 1.15686 0.578431 0.815732i \(-0.303665\pi\)
0.578431 + 0.815732i \(0.303665\pi\)
\(278\) 0.0681596 0.00408794
\(279\) 3.45991 0.207139
\(280\) 0 0
\(281\) −3.21917 −0.192040 −0.0960198 0.995379i \(-0.530611\pi\)
−0.0960198 + 0.995379i \(0.530611\pi\)
\(282\) 1.39826 0.0832652
\(283\) 30.6086 1.81949 0.909745 0.415167i \(-0.136277\pi\)
0.909745 + 0.415167i \(0.136277\pi\)
\(284\) 29.4551 1.74784
\(285\) 0 0
\(286\) 0.209456 0.0123854
\(287\) 5.38664 0.317963
\(288\) −2.43599 −0.143542
\(289\) 7.34391 0.431995
\(290\) 0 0
\(291\) −11.6970 −0.685688
\(292\) 5.84536 0.342074
\(293\) −12.6725 −0.740333 −0.370166 0.928965i \(-0.620699\pi\)
−0.370166 + 0.928965i \(0.620699\pi\)
\(294\) −1.39037 −0.0810882
\(295\) 0 0
\(296\) 8.40995 0.488819
\(297\) 0.870796 0.0505287
\(298\) 0.133298 0.00772173
\(299\) 7.95341 0.459958
\(300\) 0 0
\(301\) −1.66365 −0.0958911
\(302\) −2.38217 −0.137078
\(303\) 14.7636 0.848147
\(304\) −10.6560 −0.611162
\(305\) 0 0
\(306\) 1.03148 0.0589656
\(307\) 28.0055 1.59836 0.799180 0.601092i \(-0.205268\pi\)
0.799180 + 0.601092i \(0.205268\pi\)
\(308\) 1.00683 0.0573693
\(309\) 1.41969 0.0807636
\(310\) 0 0
\(311\) 29.1437 1.65259 0.826293 0.563241i \(-0.190446\pi\)
0.826293 + 0.563241i \(0.190446\pi\)
\(312\) −0.951625 −0.0538751
\(313\) 19.1782 1.08402 0.542009 0.840373i \(-0.317664\pi\)
0.542009 + 0.840373i \(0.317664\pi\)
\(314\) −0.598045 −0.0337497
\(315\) 0 0
\(316\) −6.52871 −0.367269
\(317\) 19.8985 1.11761 0.558804 0.829300i \(-0.311260\pi\)
0.558804 + 0.829300i \(0.311260\pi\)
\(318\) 0.809547 0.0453971
\(319\) 6.52124 0.365119
\(320\) 0 0
\(321\) 14.9579 0.834867
\(322\) −0.854102 −0.0475972
\(323\) 14.0590 0.782262
\(324\) −1.95630 −0.108683
\(325\) 0 0
\(326\) −2.94992 −0.163381
\(327\) 11.0977 0.613706
\(328\) 7.53818 0.416226
\(329\) 3.95301 0.217936
\(330\) 0 0
\(331\) −27.8128 −1.52873 −0.764366 0.644783i \(-0.776948\pi\)
−0.764366 + 0.644783i \(0.776948\pi\)
\(332\) 19.0408 1.04500
\(333\) 10.1681 0.557209
\(334\) 1.56592 0.0856834
\(335\) 0 0
\(336\) −2.21024 −0.120578
\(337\) −31.7776 −1.73104 −0.865518 0.500877i \(-0.833011\pi\)
−0.865518 + 0.500877i \(0.833011\pi\)
\(338\) 2.44099 0.132772
\(339\) 12.1069 0.657555
\(340\) 0 0
\(341\) −3.01287 −0.163156
\(342\) 0.595693 0.0322114
\(343\) −8.06787 −0.435624
\(344\) −2.32815 −0.125525
\(345\) 0 0
\(346\) −4.24869 −0.228411
\(347\) −27.6962 −1.48681 −0.743404 0.668842i \(-0.766790\pi\)
−0.743404 + 0.668842i \(0.766790\pi\)
\(348\) −14.6504 −0.785342
\(349\) −11.3435 −0.607206 −0.303603 0.952799i \(-0.598190\pi\)
−0.303603 + 0.952799i \(0.598190\pi\)
\(350\) 0 0
\(351\) −1.15057 −0.0614128
\(352\) 2.12125 0.113063
\(353\) −13.2761 −0.706614 −0.353307 0.935507i \(-0.614943\pi\)
−0.353307 + 0.935507i \(0.614943\pi\)
\(354\) −2.40995 −0.128088
\(355\) 0 0
\(356\) −1.26190 −0.0668805
\(357\) 2.91608 0.154335
\(358\) −0.236671 −0.0125085
\(359\) 0.547922 0.0289182 0.0144591 0.999895i \(-0.495397\pi\)
0.0144591 + 0.999895i \(0.495397\pi\)
\(360\) 0 0
\(361\) −10.8807 −0.572671
\(362\) −1.03786 −0.0545489
\(363\) 10.2417 0.537551
\(364\) −1.33030 −0.0697269
\(365\) 0 0
\(366\) −2.66681 −0.139396
\(367\) 32.3147 1.68681 0.843406 0.537277i \(-0.180547\pi\)
0.843406 + 0.537277i \(0.180547\pi\)
\(368\) 25.8509 1.34757
\(369\) 9.11409 0.474461
\(370\) 0 0
\(371\) 2.28866 0.118821
\(372\) 6.76860 0.350936
\(373\) −15.2740 −0.790860 −0.395430 0.918496i \(-0.629404\pi\)
−0.395430 + 0.918496i \(0.629404\pi\)
\(374\) −0.898206 −0.0464451
\(375\) 0 0
\(376\) 5.53193 0.285288
\(377\) −8.61641 −0.443768
\(378\) 0.123557 0.00635511
\(379\) 11.5928 0.595482 0.297741 0.954647i \(-0.403767\pi\)
0.297741 + 0.954647i \(0.403767\pi\)
\(380\) 0 0
\(381\) −0.541671 −0.0277507
\(382\) −1.34760 −0.0689493
\(383\) −27.1864 −1.38916 −0.694580 0.719416i \(-0.744410\pi\)
−0.694580 + 0.719416i \(0.744410\pi\)
\(384\) −6.32912 −0.322982
\(385\) 0 0
\(386\) 3.85317 0.196121
\(387\) −2.81486 −0.143088
\(388\) −22.8827 −1.16169
\(389\) 36.2825 1.83959 0.919797 0.392394i \(-0.128353\pi\)
0.919797 + 0.392394i \(0.128353\pi\)
\(390\) 0 0
\(391\) −34.1064 −1.72484
\(392\) −5.50073 −0.277829
\(393\) 2.46747 0.124467
\(394\) 3.51933 0.177301
\(395\) 0 0
\(396\) 1.70353 0.0856058
\(397\) −24.6879 −1.23905 −0.619525 0.784977i \(-0.712675\pi\)
−0.619525 + 0.784977i \(0.712675\pi\)
\(398\) −3.55330 −0.178111
\(399\) 1.68408 0.0843094
\(400\) 0 0
\(401\) −34.4435 −1.72003 −0.860014 0.510271i \(-0.829545\pi\)
−0.860014 + 0.510271i \(0.829545\pi\)
\(402\) −1.58944 −0.0792742
\(403\) 3.98086 0.198301
\(404\) 28.8820 1.43693
\(405\) 0 0
\(406\) 0.925301 0.0459219
\(407\) −8.85435 −0.438894
\(408\) 4.08083 0.202031
\(409\) −12.9896 −0.642294 −0.321147 0.947029i \(-0.604068\pi\)
−0.321147 + 0.947029i \(0.604068\pi\)
\(410\) 0 0
\(411\) 5.64471 0.278433
\(412\) 2.77734 0.136830
\(413\) −6.81316 −0.335254
\(414\) −1.44512 −0.0710240
\(415\) 0 0
\(416\) −2.80277 −0.137417
\(417\) 0.326034 0.0159659
\(418\) −0.518727 −0.0253718
\(419\) 18.5116 0.904353 0.452177 0.891928i \(-0.350648\pi\)
0.452177 + 0.891928i \(0.350648\pi\)
\(420\) 0 0
\(421\) 23.8357 1.16168 0.580841 0.814017i \(-0.302724\pi\)
0.580841 + 0.814017i \(0.302724\pi\)
\(422\) −1.04711 −0.0509726
\(423\) 6.68842 0.325202
\(424\) 3.20281 0.155542
\(425\) 0 0
\(426\) −3.14768 −0.152506
\(427\) −7.53931 −0.364853
\(428\) 29.2620 1.41443
\(429\) 1.00191 0.0483727
\(430\) 0 0
\(431\) −29.6800 −1.42963 −0.714817 0.699312i \(-0.753490\pi\)
−0.714817 + 0.699312i \(0.753490\pi\)
\(432\) −3.73968 −0.179926
\(433\) −18.0164 −0.865811 −0.432906 0.901439i \(-0.642512\pi\)
−0.432906 + 0.901439i \(0.642512\pi\)
\(434\) −0.427497 −0.0205205
\(435\) 0 0
\(436\) 21.7104 1.03974
\(437\) −19.6970 −0.942233
\(438\) −0.624657 −0.0298473
\(439\) 21.0442 1.00438 0.502191 0.864757i \(-0.332527\pi\)
0.502191 + 0.864757i \(0.332527\pi\)
\(440\) 0 0
\(441\) −6.65069 −0.316700
\(442\) 1.18679 0.0564496
\(443\) −4.15877 −0.197589 −0.0987946 0.995108i \(-0.531499\pi\)
−0.0987946 + 0.995108i \(0.531499\pi\)
\(444\) 19.8918 0.944024
\(445\) 0 0
\(446\) −3.33346 −0.157844
\(447\) 0.637614 0.0301581
\(448\) −4.11949 −0.194628
\(449\) −7.39256 −0.348876 −0.174438 0.984668i \(-0.555811\pi\)
−0.174438 + 0.984668i \(0.555811\pi\)
\(450\) 0 0
\(451\) −7.93651 −0.373716
\(452\) 23.6846 1.11403
\(453\) −11.3948 −0.535376
\(454\) 5.62295 0.263898
\(455\) 0 0
\(456\) 2.35674 0.110364
\(457\) −0.573353 −0.0268203 −0.0134102 0.999910i \(-0.504269\pi\)
−0.0134102 + 0.999910i \(0.504269\pi\)
\(458\) 0.615877 0.0287780
\(459\) 4.93395 0.230297
\(460\) 0 0
\(461\) 3.74666 0.174499 0.0872497 0.996186i \(-0.472192\pi\)
0.0872497 + 0.996186i \(0.472192\pi\)
\(462\) −0.107593 −0.00500569
\(463\) 17.3803 0.807732 0.403866 0.914818i \(-0.367666\pi\)
0.403866 + 0.914818i \(0.367666\pi\)
\(464\) −28.0058 −1.30014
\(465\) 0 0
\(466\) 4.89307 0.226667
\(467\) 10.0211 0.463720 0.231860 0.972749i \(-0.425519\pi\)
0.231860 + 0.972749i \(0.425519\pi\)
\(468\) −2.25085 −0.104046
\(469\) −4.49350 −0.207491
\(470\) 0 0
\(471\) −2.86068 −0.131813
\(472\) −9.53449 −0.438860
\(473\) 2.45117 0.112705
\(474\) 0.697683 0.0320456
\(475\) 0 0
\(476\) 5.70471 0.261475
\(477\) 3.87238 0.177304
\(478\) −3.08965 −0.141317
\(479\) 18.6136 0.850476 0.425238 0.905082i \(-0.360190\pi\)
0.425238 + 0.905082i \(0.360190\pi\)
\(480\) 0 0
\(481\) 11.6991 0.533433
\(482\) 3.00820 0.137020
\(483\) −4.08550 −0.185897
\(484\) 20.0358 0.910719
\(485\) 0 0
\(486\) 0.209057 0.00948301
\(487\) 2.07209 0.0938954 0.0469477 0.998897i \(-0.485051\pi\)
0.0469477 + 0.998897i \(0.485051\pi\)
\(488\) −10.5507 −0.477607
\(489\) −14.1106 −0.638103
\(490\) 0 0
\(491\) −22.2355 −1.00348 −0.501738 0.865020i \(-0.667306\pi\)
−0.501738 + 0.865020i \(0.667306\pi\)
\(492\) 17.8299 0.803832
\(493\) 36.9495 1.66412
\(494\) 0.685386 0.0308370
\(495\) 0 0
\(496\) 12.9390 0.580976
\(497\) −8.89878 −0.399165
\(498\) −2.03477 −0.0911803
\(499\) 28.2713 1.26560 0.632798 0.774317i \(-0.281906\pi\)
0.632798 + 0.774317i \(0.281906\pi\)
\(500\) 0 0
\(501\) 7.49041 0.334647
\(502\) 3.91652 0.174803
\(503\) −3.39793 −0.151506 −0.0757531 0.997127i \(-0.524136\pi\)
−0.0757531 + 0.997127i \(0.524136\pi\)
\(504\) 0.488830 0.0217742
\(505\) 0 0
\(506\) 1.25841 0.0559431
\(507\) 11.6762 0.518558
\(508\) −1.05967 −0.0470152
\(509\) −10.8405 −0.480497 −0.240248 0.970711i \(-0.577229\pi\)
−0.240248 + 0.970711i \(0.577229\pi\)
\(510\) 0 0
\(511\) −1.76596 −0.0781216
\(512\) −15.2959 −0.675991
\(513\) 2.84943 0.125805
\(514\) 1.34260 0.0592196
\(515\) 0 0
\(516\) −5.50670 −0.242419
\(517\) −5.82425 −0.256150
\(518\) −1.25635 −0.0552007
\(519\) −20.3231 −0.892087
\(520\) 0 0
\(521\) 15.6473 0.685519 0.342760 0.939423i \(-0.388638\pi\)
0.342760 + 0.939423i \(0.388638\pi\)
\(522\) 1.56559 0.0685241
\(523\) −18.3578 −0.802729 −0.401364 0.915918i \(-0.631464\pi\)
−0.401364 + 0.915918i \(0.631464\pi\)
\(524\) 4.82709 0.210872
\(525\) 0 0
\(526\) 2.97010 0.129503
\(527\) −17.0710 −0.743626
\(528\) 3.25650 0.141721
\(529\) 24.7839 1.07756
\(530\) 0 0
\(531\) −11.5277 −0.500261
\(532\) 3.29456 0.142837
\(533\) 10.4864 0.454216
\(534\) 0.134851 0.00583558
\(535\) 0 0
\(536\) −6.28831 −0.271613
\(537\) −1.13209 −0.0488533
\(538\) 1.81276 0.0781538
\(539\) 5.79139 0.249453
\(540\) 0 0
\(541\) −13.8856 −0.596988 −0.298494 0.954412i \(-0.596484\pi\)
−0.298494 + 0.954412i \(0.596484\pi\)
\(542\) −2.41872 −0.103893
\(543\) −4.96450 −0.213047
\(544\) 12.0191 0.515313
\(545\) 0 0
\(546\) 0.142161 0.00608394
\(547\) 41.9134 1.79209 0.896043 0.443966i \(-0.146429\pi\)
0.896043 + 0.443966i \(0.146429\pi\)
\(548\) 11.0427 0.471722
\(549\) −12.7564 −0.544429
\(550\) 0 0
\(551\) 21.3389 0.909068
\(552\) −5.71734 −0.243346
\(553\) 1.97241 0.0838755
\(554\) −4.02518 −0.171014
\(555\) 0 0
\(556\) 0.637818 0.0270495
\(557\) −8.04257 −0.340774 −0.170387 0.985377i \(-0.554502\pi\)
−0.170387 + 0.985377i \(0.554502\pi\)
\(558\) −0.723318 −0.0306205
\(559\) −3.23869 −0.136982
\(560\) 0 0
\(561\) −4.29647 −0.181397
\(562\) 0.672990 0.0283884
\(563\) 5.67464 0.239158 0.119579 0.992825i \(-0.461846\pi\)
0.119579 + 0.992825i \(0.461846\pi\)
\(564\) 13.0845 0.550958
\(565\) 0 0
\(566\) −6.39893 −0.268967
\(567\) 0.591023 0.0248206
\(568\) −12.4532 −0.522523
\(569\) 8.25303 0.345985 0.172993 0.984923i \(-0.444656\pi\)
0.172993 + 0.984923i \(0.444656\pi\)
\(570\) 0 0
\(571\) −17.5703 −0.735293 −0.367646 0.929966i \(-0.619836\pi\)
−0.367646 + 0.929966i \(0.619836\pi\)
\(572\) 1.96003 0.0819531
\(573\) −6.44610 −0.269290
\(574\) −1.12611 −0.0470031
\(575\) 0 0
\(576\) −6.97010 −0.290421
\(577\) 29.6207 1.23313 0.616564 0.787305i \(-0.288524\pi\)
0.616564 + 0.787305i \(0.288524\pi\)
\(578\) −1.53529 −0.0638598
\(579\) 18.4312 0.765974
\(580\) 0 0
\(581\) −5.75249 −0.238653
\(582\) 2.44533 0.101362
\(583\) −3.37205 −0.139656
\(584\) −2.47133 −0.102264
\(585\) 0 0
\(586\) 2.64926 0.109440
\(587\) −18.1475 −0.749027 −0.374513 0.927222i \(-0.622190\pi\)
−0.374513 + 0.927222i \(0.622190\pi\)
\(588\) −13.0107 −0.536553
\(589\) −9.85877 −0.406224
\(590\) 0 0
\(591\) 16.8343 0.692471
\(592\) 38.0255 1.56284
\(593\) −26.0022 −1.06778 −0.533891 0.845553i \(-0.679271\pi\)
−0.533891 + 0.845553i \(0.679271\pi\)
\(594\) −0.182046 −0.00746943
\(595\) 0 0
\(596\) 1.24736 0.0510939
\(597\) −16.9968 −0.695632
\(598\) −1.66272 −0.0679935
\(599\) 20.6259 0.842753 0.421376 0.906886i \(-0.361547\pi\)
0.421376 + 0.906886i \(0.361547\pi\)
\(600\) 0 0
\(601\) −17.7602 −0.724452 −0.362226 0.932090i \(-0.617983\pi\)
−0.362226 + 0.932090i \(0.617983\pi\)
\(602\) 0.347797 0.0141752
\(603\) −7.60292 −0.309615
\(604\) −22.2917 −0.907035
\(605\) 0 0
\(606\) −3.08643 −0.125378
\(607\) −13.0143 −0.528232 −0.264116 0.964491i \(-0.585080\pi\)
−0.264116 + 0.964491i \(0.585080\pi\)
\(608\) 6.94118 0.281502
\(609\) 4.42607 0.179353
\(610\) 0 0
\(611\) 7.69548 0.311326
\(612\) 9.65227 0.390170
\(613\) −21.9959 −0.888407 −0.444204 0.895926i \(-0.646513\pi\)
−0.444204 + 0.895926i \(0.646513\pi\)
\(614\) −5.85475 −0.236278
\(615\) 0 0
\(616\) −0.425671 −0.0171508
\(617\) 33.3091 1.34097 0.670487 0.741922i \(-0.266085\pi\)
0.670487 + 0.741922i \(0.266085\pi\)
\(618\) −0.296797 −0.0119389
\(619\) −27.9714 −1.12426 −0.562132 0.827048i \(-0.690019\pi\)
−0.562132 + 0.827048i \(0.690019\pi\)
\(620\) 0 0
\(621\) −6.91259 −0.277393
\(622\) −6.09268 −0.244294
\(623\) 0.381236 0.0152739
\(624\) −4.30276 −0.172248
\(625\) 0 0
\(626\) −4.00934 −0.160245
\(627\) −2.48127 −0.0990925
\(628\) −5.59634 −0.223318
\(629\) −50.1690 −2.00037
\(630\) 0 0
\(631\) −23.0172 −0.916301 −0.458150 0.888875i \(-0.651488\pi\)
−0.458150 + 0.888875i \(0.651488\pi\)
\(632\) 2.76024 0.109796
\(633\) −5.00874 −0.199079
\(634\) −4.15991 −0.165211
\(635\) 0 0
\(636\) 7.57551 0.300388
\(637\) −7.65208 −0.303186
\(638\) −1.36331 −0.0539740
\(639\) −15.0566 −0.595629
\(640\) 0 0
\(641\) 29.1915 1.15300 0.576498 0.817099i \(-0.304419\pi\)
0.576498 + 0.817099i \(0.304419\pi\)
\(642\) −3.12705 −0.123415
\(643\) −29.6236 −1.16824 −0.584119 0.811668i \(-0.698560\pi\)
−0.584119 + 0.811668i \(0.698560\pi\)
\(644\) −7.99244 −0.314946
\(645\) 0 0
\(646\) −2.93912 −0.115638
\(647\) 49.0862 1.92978 0.964889 0.262657i \(-0.0845987\pi\)
0.964889 + 0.262657i \(0.0845987\pi\)
\(648\) 0.827091 0.0324912
\(649\) 10.0383 0.394038
\(650\) 0 0
\(651\) −2.04489 −0.0801454
\(652\) −27.6045 −1.08108
\(653\) −11.6946 −0.457645 −0.228823 0.973468i \(-0.573488\pi\)
−0.228823 + 0.973468i \(0.573488\pi\)
\(654\) −2.32006 −0.0907214
\(655\) 0 0
\(656\) 34.0838 1.33075
\(657\) −2.98798 −0.116572
\(658\) −0.826404 −0.0322166
\(659\) 1.18709 0.0462424 0.0231212 0.999733i \(-0.492640\pi\)
0.0231212 + 0.999733i \(0.492640\pi\)
\(660\) 0 0
\(661\) 3.72234 0.144782 0.0723912 0.997376i \(-0.476937\pi\)
0.0723912 + 0.997376i \(0.476937\pi\)
\(662\) 5.81446 0.225986
\(663\) 5.67685 0.220471
\(664\) −8.05016 −0.312407
\(665\) 0 0
\(666\) −2.12571 −0.0823698
\(667\) −51.7672 −2.00443
\(668\) 14.6535 0.566959
\(669\) −15.9452 −0.616479
\(670\) 0 0
\(671\) 11.1082 0.428827
\(672\) 1.43972 0.0555386
\(673\) 46.9935 1.81147 0.905734 0.423847i \(-0.139320\pi\)
0.905734 + 0.423847i \(0.139320\pi\)
\(674\) 6.64333 0.255892
\(675\) 0 0
\(676\) 22.8421 0.878541
\(677\) 36.4081 1.39928 0.699639 0.714497i \(-0.253344\pi\)
0.699639 + 0.714497i \(0.253344\pi\)
\(678\) −2.53102 −0.0972034
\(679\) 6.91317 0.265303
\(680\) 0 0
\(681\) 26.8967 1.03069
\(682\) 0.629862 0.0241187
\(683\) 4.66507 0.178504 0.0892519 0.996009i \(-0.471552\pi\)
0.0892519 + 0.996009i \(0.471552\pi\)
\(684\) 5.57433 0.213140
\(685\) 0 0
\(686\) 1.68664 0.0643964
\(687\) 2.94598 0.112396
\(688\) −10.5267 −0.401326
\(689\) 4.45543 0.169738
\(690\) 0 0
\(691\) 31.9254 1.21450 0.607249 0.794511i \(-0.292273\pi\)
0.607249 + 0.794511i \(0.292273\pi\)
\(692\) −39.7581 −1.51138
\(693\) −0.514660 −0.0195503
\(694\) 5.79008 0.219788
\(695\) 0 0
\(696\) 6.19394 0.234781
\(697\) −44.9685 −1.70330
\(698\) 2.37144 0.0897605
\(699\) 23.4054 0.885275
\(700\) 0 0
\(701\) −3.09598 −0.116933 −0.0584667 0.998289i \(-0.518621\pi\)
−0.0584667 + 0.998289i \(0.518621\pi\)
\(702\) 0.240534 0.00907838
\(703\) −28.9733 −1.09275
\(704\) 6.06954 0.228754
\(705\) 0 0
\(706\) 2.77546 0.104456
\(707\) −8.72563 −0.328161
\(708\) −22.5517 −0.847543
\(709\) 47.0490 1.76696 0.883481 0.468468i \(-0.155194\pi\)
0.883481 + 0.468468i \(0.155194\pi\)
\(710\) 0 0
\(711\) 3.33728 0.125158
\(712\) 0.533511 0.0199942
\(713\) 23.9169 0.895696
\(714\) −0.609627 −0.0228147
\(715\) 0 0
\(716\) −2.21470 −0.0827674
\(717\) −14.7790 −0.551931
\(718\) −0.114547 −0.00427485
\(719\) 25.7083 0.958757 0.479378 0.877608i \(-0.340862\pi\)
0.479378 + 0.877608i \(0.340862\pi\)
\(720\) 0 0
\(721\) −0.839072 −0.0312487
\(722\) 2.27469 0.0846553
\(723\) 14.3894 0.535147
\(724\) −9.71202 −0.360945
\(725\) 0 0
\(726\) −2.14110 −0.0794637
\(727\) −35.4025 −1.31301 −0.656504 0.754323i \(-0.727965\pi\)
−0.656504 + 0.754323i \(0.727965\pi\)
\(728\) 0.562432 0.0208451
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 13.8884 0.513681
\(732\) −24.9552 −0.922372
\(733\) 25.7565 0.951336 0.475668 0.879625i \(-0.342206\pi\)
0.475668 + 0.879625i \(0.342206\pi\)
\(734\) −6.75560 −0.249354
\(735\) 0 0
\(736\) −16.8390 −0.620693
\(737\) 6.62059 0.243873
\(738\) −1.90536 −0.0701374
\(739\) −22.1071 −0.813222 −0.406611 0.913601i \(-0.633289\pi\)
−0.406611 + 0.913601i \(0.633289\pi\)
\(740\) 0 0
\(741\) 3.27847 0.120437
\(742\) −0.478461 −0.0175648
\(743\) 20.2268 0.742049 0.371025 0.928623i \(-0.379007\pi\)
0.371025 + 0.928623i \(0.379007\pi\)
\(744\) −2.86166 −0.104914
\(745\) 0 0
\(746\) 3.19314 0.116909
\(747\) −9.73310 −0.356116
\(748\) −8.40516 −0.307323
\(749\) −8.84045 −0.323023
\(750\) 0 0
\(751\) −1.23206 −0.0449584 −0.0224792 0.999747i \(-0.507156\pi\)
−0.0224792 + 0.999747i \(0.507156\pi\)
\(752\) 25.0126 0.912114
\(753\) 18.7342 0.682714
\(754\) 1.80132 0.0656002
\(755\) 0 0
\(756\) 1.15622 0.0420511
\(757\) 15.2062 0.552678 0.276339 0.961060i \(-0.410879\pi\)
0.276339 + 0.961060i \(0.410879\pi\)
\(758\) −2.42356 −0.0880275
\(759\) 6.01945 0.218492
\(760\) 0 0
\(761\) −32.3209 −1.17163 −0.585817 0.810444i \(-0.699226\pi\)
−0.585817 + 0.810444i \(0.699226\pi\)
\(762\) 0.113240 0.00410226
\(763\) −6.55901 −0.237452
\(764\) −12.6105 −0.456231
\(765\) 0 0
\(766\) 5.68350 0.205353
\(767\) −13.2635 −0.478915
\(768\) −12.6171 −0.455279
\(769\) −28.8068 −1.03880 −0.519400 0.854531i \(-0.673845\pi\)
−0.519400 + 0.854531i \(0.673845\pi\)
\(770\) 0 0
\(771\) 6.42218 0.231289
\(772\) 36.0569 1.29771
\(773\) −38.2458 −1.37561 −0.687803 0.725897i \(-0.741425\pi\)
−0.687803 + 0.725897i \(0.741425\pi\)
\(774\) 0.588467 0.0211520
\(775\) 0 0
\(776\) 9.67444 0.347292
\(777\) −6.00959 −0.215593
\(778\) −7.58510 −0.271939
\(779\) −25.9700 −0.930471
\(780\) 0 0
\(781\) 13.1112 0.469156
\(782\) 7.13018 0.254975
\(783\) 7.48883 0.267629
\(784\) −24.8715 −0.888267
\(785\) 0 0
\(786\) −0.515841 −0.0183994
\(787\) 36.7934 1.31154 0.655771 0.754960i \(-0.272344\pi\)
0.655771 + 0.754960i \(0.272344\pi\)
\(788\) 32.9329 1.17319
\(789\) 14.2071 0.505788
\(790\) 0 0
\(791\) −7.15543 −0.254418
\(792\) −0.720227 −0.0255922
\(793\) −14.6771 −0.521199
\(794\) 5.16117 0.183163
\(795\) 0 0
\(796\) −33.2507 −1.17854
\(797\) 36.6698 1.29891 0.649456 0.760399i \(-0.274997\pi\)
0.649456 + 0.760399i \(0.274997\pi\)
\(798\) −0.352068 −0.0124631
\(799\) −33.0004 −1.16747
\(800\) 0 0
\(801\) 0.645045 0.0227915
\(802\) 7.20066 0.254264
\(803\) 2.60192 0.0918197
\(804\) −14.8736 −0.524550
\(805\) 0 0
\(806\) −0.832227 −0.0293139
\(807\) 8.67115 0.305239
\(808\) −12.2108 −0.429576
\(809\) −39.2361 −1.37947 −0.689735 0.724062i \(-0.742273\pi\)
−0.689735 + 0.724062i \(0.742273\pi\)
\(810\) 0 0
\(811\) 6.70444 0.235425 0.117712 0.993048i \(-0.462444\pi\)
0.117712 + 0.993048i \(0.462444\pi\)
\(812\) 8.65870 0.303861
\(813\) −11.5697 −0.405766
\(814\) 1.85106 0.0648797
\(815\) 0 0
\(816\) 18.4514 0.645929
\(817\) 8.02076 0.280611
\(818\) 2.71557 0.0949475
\(819\) 0.680012 0.0237616
\(820\) 0 0
\(821\) −30.1557 −1.05244 −0.526220 0.850348i \(-0.676391\pi\)
−0.526220 + 0.850348i \(0.676391\pi\)
\(822\) −1.18007 −0.0411596
\(823\) −1.90341 −0.0663487 −0.0331744 0.999450i \(-0.510562\pi\)
−0.0331744 + 0.999450i \(0.510562\pi\)
\(824\) −1.17422 −0.0409057
\(825\) 0 0
\(826\) 1.42434 0.0495590
\(827\) −17.5652 −0.610803 −0.305402 0.952224i \(-0.598791\pi\)
−0.305402 + 0.952224i \(0.598791\pi\)
\(828\) −13.5231 −0.469959
\(829\) −24.0291 −0.834566 −0.417283 0.908777i \(-0.637018\pi\)
−0.417283 + 0.908777i \(0.637018\pi\)
\(830\) 0 0
\(831\) −19.2540 −0.667914
\(832\) −8.01958 −0.278029
\(833\) 32.8142 1.13695
\(834\) −0.0681596 −0.00236017
\(835\) 0 0
\(836\) −4.85410 −0.167883
\(837\) −3.45991 −0.119592
\(838\) −3.86999 −0.133687
\(839\) 1.07320 0.0370511 0.0185255 0.999828i \(-0.494103\pi\)
0.0185255 + 0.999828i \(0.494103\pi\)
\(840\) 0 0
\(841\) 27.0826 0.933882
\(842\) −4.98302 −0.171726
\(843\) 3.21917 0.110874
\(844\) −9.79857 −0.337281
\(845\) 0 0
\(846\) −1.39826 −0.0480732
\(847\) −6.05309 −0.207987
\(848\) 14.4815 0.497295
\(849\) −30.6086 −1.05048
\(850\) 0 0
\(851\) 70.2880 2.40944
\(852\) −29.4551 −1.00912
\(853\) 17.2818 0.591716 0.295858 0.955232i \(-0.404394\pi\)
0.295858 + 0.955232i \(0.404394\pi\)
\(854\) 1.57615 0.0539346
\(855\) 0 0
\(856\) −12.3715 −0.422850
\(857\) −16.2742 −0.555917 −0.277959 0.960593i \(-0.589658\pi\)
−0.277959 + 0.960593i \(0.589658\pi\)
\(858\) −0.209456 −0.00715072
\(859\) −11.2429 −0.383604 −0.191802 0.981434i \(-0.561433\pi\)
−0.191802 + 0.981434i \(0.561433\pi\)
\(860\) 0 0
\(861\) −5.38664 −0.183576
\(862\) 6.20480 0.211336
\(863\) 33.3846 1.13642 0.568212 0.822882i \(-0.307635\pi\)
0.568212 + 0.822882i \(0.307635\pi\)
\(864\) 2.43599 0.0828740
\(865\) 0 0
\(866\) 3.76645 0.127989
\(867\) −7.34391 −0.249412
\(868\) −4.00040 −0.135782
\(869\) −2.90609 −0.0985825
\(870\) 0 0
\(871\) −8.74768 −0.296404
\(872\) −9.17883 −0.310834
\(873\) 11.6970 0.395882
\(874\) 4.11778 0.139286
\(875\) 0 0
\(876\) −5.84536 −0.197497
\(877\) −16.1140 −0.544130 −0.272065 0.962279i \(-0.587707\pi\)
−0.272065 + 0.962279i \(0.587707\pi\)
\(878\) −4.39943 −0.148473
\(879\) 12.6725 0.427431
\(880\) 0 0
\(881\) 25.2799 0.851701 0.425851 0.904793i \(-0.359975\pi\)
0.425851 + 0.904793i \(0.359975\pi\)
\(882\) 1.39037 0.0468163
\(883\) −31.0260 −1.04411 −0.522053 0.852913i \(-0.674834\pi\)
−0.522053 + 0.852913i \(0.674834\pi\)
\(884\) 11.1056 0.373522
\(885\) 0 0
\(886\) 0.869420 0.0292087
\(887\) 38.1973 1.28254 0.641270 0.767316i \(-0.278408\pi\)
0.641270 + 0.767316i \(0.278408\pi\)
\(888\) −8.40995 −0.282220
\(889\) 0.320140 0.0107372
\(890\) 0 0
\(891\) −0.870796 −0.0291728
\(892\) −31.1936 −1.04444
\(893\) −19.0582 −0.637758
\(894\) −0.133298 −0.00445814
\(895\) 0 0
\(896\) 3.74066 0.124967
\(897\) −7.95341 −0.265557
\(898\) 1.54547 0.0515728
\(899\) −25.9107 −0.864169
\(900\) 0 0
\(901\) −19.1061 −0.636517
\(902\) 1.65918 0.0552447
\(903\) 1.66365 0.0553628
\(904\) −10.0135 −0.333043
\(905\) 0 0
\(906\) 2.38217 0.0791423
\(907\) −40.9212 −1.35877 −0.679383 0.733784i \(-0.737753\pi\)
−0.679383 + 0.733784i \(0.737753\pi\)
\(908\) 52.6180 1.74619
\(909\) −14.7636 −0.489678
\(910\) 0 0
\(911\) −45.6189 −1.51142 −0.755710 0.654906i \(-0.772708\pi\)
−0.755710 + 0.654906i \(0.772708\pi\)
\(912\) 10.6560 0.352854
\(913\) 8.47554 0.280500
\(914\) 0.119863 0.00396473
\(915\) 0 0
\(916\) 5.76320 0.190422
\(917\) −1.45833 −0.0481583
\(918\) −1.03148 −0.0340438
\(919\) 20.6582 0.681451 0.340725 0.940163i \(-0.389327\pi\)
0.340725 + 0.940163i \(0.389327\pi\)
\(920\) 0 0
\(921\) −28.0055 −0.922813
\(922\) −0.783265 −0.0257955
\(923\) −17.3236 −0.570214
\(924\) −1.00683 −0.0331222
\(925\) 0 0
\(926\) −3.63348 −0.119404
\(927\) −1.41969 −0.0466289
\(928\) 18.2427 0.598846
\(929\) −23.2327 −0.762239 −0.381119 0.924526i \(-0.624461\pi\)
−0.381119 + 0.924526i \(0.624461\pi\)
\(930\) 0 0
\(931\) 18.9507 0.621084
\(932\) 45.7879 1.49983
\(933\) −29.1437 −0.954121
\(934\) −2.09498 −0.0685497
\(935\) 0 0
\(936\) 0.951625 0.0311048
\(937\) 18.3122 0.598232 0.299116 0.954217i \(-0.403308\pi\)
0.299116 + 0.954217i \(0.403308\pi\)
\(938\) 0.939397 0.0306724
\(939\) −19.1782 −0.625858
\(940\) 0 0
\(941\) 17.3075 0.564209 0.282104 0.959384i \(-0.408968\pi\)
0.282104 + 0.959384i \(0.408968\pi\)
\(942\) 0.598045 0.0194854
\(943\) 63.0020 2.05163
\(944\) −43.1101 −1.40311
\(945\) 0 0
\(946\) −0.512434 −0.0166607
\(947\) 18.4829 0.600613 0.300307 0.953843i \(-0.402911\pi\)
0.300307 + 0.953843i \(0.402911\pi\)
\(948\) 6.52871 0.212043
\(949\) −3.43787 −0.111598
\(950\) 0 0
\(951\) −19.8985 −0.645252
\(952\) −2.41186 −0.0781689
\(953\) 20.8872 0.676604 0.338302 0.941038i \(-0.390148\pi\)
0.338302 + 0.941038i \(0.390148\pi\)
\(954\) −0.809547 −0.0262100
\(955\) 0 0
\(956\) −28.9121 −0.935083
\(957\) −6.52124 −0.210802
\(958\) −3.89130 −0.125722
\(959\) −3.33616 −0.107730
\(960\) 0 0
\(961\) −19.0290 −0.613840
\(962\) −2.44578 −0.0788551
\(963\) −14.9579 −0.482011
\(964\) 28.1499 0.906647
\(965\) 0 0
\(966\) 0.854102 0.0274803
\(967\) −51.2510 −1.64812 −0.824061 0.566501i \(-0.808297\pi\)
−0.824061 + 0.566501i \(0.808297\pi\)
\(968\) −8.47083 −0.272263
\(969\) −14.0590 −0.451639
\(970\) 0 0
\(971\) −38.6012 −1.23877 −0.619385 0.785087i \(-0.712618\pi\)
−0.619385 + 0.785087i \(0.712618\pi\)
\(972\) 1.95630 0.0627482
\(973\) −0.192693 −0.00617747
\(974\) −0.433185 −0.0138801
\(975\) 0 0
\(976\) −47.7048 −1.52699
\(977\) 2.91913 0.0933912 0.0466956 0.998909i \(-0.485131\pi\)
0.0466956 + 0.998909i \(0.485131\pi\)
\(978\) 2.94992 0.0943280
\(979\) −0.561702 −0.0179521
\(980\) 0 0
\(981\) −11.0977 −0.354323
\(982\) 4.64849 0.148339
\(983\) 0.980138 0.0312615 0.0156308 0.999878i \(-0.495024\pi\)
0.0156308 + 0.999878i \(0.495024\pi\)
\(984\) −7.53818 −0.240308
\(985\) 0 0
\(986\) −7.72456 −0.246000
\(987\) −3.95301 −0.125826
\(988\) 6.41365 0.204045
\(989\) −19.4580 −0.618728
\(990\) 0 0
\(991\) 37.0913 1.17824 0.589122 0.808044i \(-0.299474\pi\)
0.589122 + 0.808044i \(0.299474\pi\)
\(992\) −8.42830 −0.267599
\(993\) 27.8128 0.882613
\(994\) 1.86035 0.0590068
\(995\) 0 0
\(996\) −19.0408 −0.603331
\(997\) 16.7675 0.531031 0.265515 0.964107i \(-0.414458\pi\)
0.265515 + 0.964107i \(0.414458\pi\)
\(998\) −5.91031 −0.187088
\(999\) −10.1681 −0.321705
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1875.2.a.g.1.2 yes 4
3.2 odd 2 5625.2.a.j.1.3 4
5.2 odd 4 1875.2.b.d.1249.4 8
5.3 odd 4 1875.2.b.d.1249.5 8
5.4 even 2 1875.2.a.f.1.3 4
15.14 odd 2 5625.2.a.m.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1875.2.a.f.1.3 4 5.4 even 2
1875.2.a.g.1.2 yes 4 1.1 even 1 trivial
1875.2.b.d.1249.4 8 5.2 odd 4
1875.2.b.d.1249.5 8 5.3 odd 4
5625.2.a.j.1.3 4 3.2 odd 2
5625.2.a.m.1.2 4 15.14 odd 2