Properties

Label 1875.2.a.f
Level $1875$
Weight $2$
Character orbit 1875.a
Self dual yes
Analytic conductor $14.972$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1875,2,Mod(1,1875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1875, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1875.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1875 = 3 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1875.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.9719503790\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{15})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} + \beta_{2}) q^{2} + q^{3} + \beta_1 q^{4} + (\beta_{3} + \beta_{2}) q^{6} + ( - 2 \beta_{3} - \beta_{2} - 2) q^{7} + ( - \beta_{2} + 1) q^{8} + q^{9} + ( - \beta_{2} - \beta_1 - 1) q^{11}+ \cdots + ( - \beta_{2} - \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + 4 q^{3} + q^{4} - q^{6} - 5 q^{7} + 3 q^{8} + 4 q^{9} - 6 q^{11} + q^{12} - 7 q^{13} - 10 q^{14} - 9 q^{16} + 7 q^{17} - q^{18} - 9 q^{19} - 5 q^{21} - 6 q^{22} - 10 q^{23} + 3 q^{24}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{15} + \zeta_{15}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.33826
−0.209057
−1.95630
1.82709
−1.82709 1.00000 1.33826 0 −1.82709 1.44512 1.20906 1.00000 0
1.2 −1.33826 1.00000 −0.209057 0 −1.33826 −1.27977 2.95630 1.00000 0
1.3 0.209057 1.00000 −1.95630 0 0.209057 −0.591023 −0.827091 1.00000 0
1.4 1.95630 1.00000 1.82709 0 1.95630 −4.57433 −0.338261 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1875.2.a.f 4
3.b odd 2 1 5625.2.a.m 4
5.b even 2 1 1875.2.a.g yes 4
5.c odd 4 2 1875.2.b.d 8
15.d odd 2 1 5625.2.a.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1875.2.a.f 4 1.a even 1 1 trivial
1875.2.a.g yes 4 5.b even 2 1
1875.2.b.d 8 5.c odd 4 2
5625.2.a.j 4 15.d odd 2 1
5625.2.a.m 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + T_{2}^{3} - 4T_{2}^{2} - 4T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1875))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + T^{3} - 4 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( (T - 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 5 T^{3} + \cdots - 5 \) Copy content Toggle raw display
$11$ \( T^{4} + 6 T^{3} + \cdots - 9 \) Copy content Toggle raw display
$13$ \( T^{4} + 7 T^{3} + \cdots - 89 \) Copy content Toggle raw display
$17$ \( T^{4} - 7 T^{3} + \cdots - 359 \) Copy content Toggle raw display
$19$ \( T^{4} + 9 T^{3} + \cdots - 9 \) Copy content Toggle raw display
$23$ \( T^{4} + 10 T^{3} + \cdots - 5 \) Copy content Toggle raw display
$29$ \( T^{4} + 28 T^{3} + \cdots + 1801 \) Copy content Toggle raw display
$31$ \( T^{4} + 10 T^{3} + \cdots - 125 \) Copy content Toggle raw display
$37$ \( T^{4} - 10 T^{3} + \cdots - 1475 \) Copy content Toggle raw display
$41$ \( T^{4} - 70 T^{2} + \cdots + 145 \) Copy content Toggle raw display
$43$ \( T^{4} + T^{3} + \cdots - 419 \) Copy content Toggle raw display
$47$ \( T^{4} - 23 T^{3} + \cdots - 6089 \) Copy content Toggle raw display
$53$ \( T^{4} - 145 T^{2} + \cdots + 2995 \) Copy content Toggle raw display
$59$ \( T^{4} - 4 T^{3} + \cdots + 1531 \) Copy content Toggle raw display
$61$ \( T^{4} + 43 T^{3} + \cdots + 10261 \) Copy content Toggle raw display
$67$ \( T^{4} + 8 T^{3} + \cdots + 151 \) Copy content Toggle raw display
$71$ \( T^{4} + 27 T^{3} + \cdots + 271 \) Copy content Toggle raw display
$73$ \( T^{4} + 15 T^{3} + \cdots + 2745 \) Copy content Toggle raw display
$79$ \( T^{4} - 10 T^{3} + \cdots - 3155 \) Copy content Toggle raw display
$83$ \( T^{4} + 3 T^{3} + \cdots + 13491 \) Copy content Toggle raw display
$89$ \( T^{4} + 9 T^{3} + \cdots + 61 \) Copy content Toggle raw display
$97$ \( T^{4} + 13 T^{3} + \cdots + 14701 \) Copy content Toggle raw display
show more
show less