Newspace parameters
Level: | \( N \) | \(=\) | \( 1875 = 3 \cdot 5^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1875.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(14.9719503790\) |
Analytic rank: | \(1\) |
Dimension: | \(4\) |
Coefficient field: | 4.4.5125.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - 2x^{3} - 6x^{2} + 7x + 11 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 75) |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - 2x^{3} - 6x^{2} + 7x + 11 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{2} - \nu - 4 \)
|
\(\beta_{3}\) | \(=\) |
\( \nu^{3} - \nu^{2} - 4\nu \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{2} + \beta _1 + 4 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{3} + \beta_{2} + 5\beta _1 + 4 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.70636 | −1.00000 | 5.32440 | 0 | 2.70636 | −0.470294 | −8.99702 | 1.00000 | 0 | ||||||||||||||||||||||||||||||
1.2 | −2.12233 | −1.00000 | 2.50430 | 0 | 2.12233 | −4.35840 | −1.07029 | 1.00000 | 0 | |||||||||||||||||||||||||||||||
1.3 | 1.12233 | −1.00000 | −0.740367 | 0 | −1.12233 | −1.11373 | −3.07561 | 1.00000 | 0 | |||||||||||||||||||||||||||||||
1.4 | 1.70636 | −1.00000 | 0.911672 | 0 | −1.70636 | 3.94243 | −1.85708 | 1.00000 | 0 | |||||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \(1\) |
\(5\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1875.2.a.e | 4 | |
3.b | odd | 2 | 1 | 5625.2.a.n | 4 | ||
5.b | even | 2 | 1 | 1875.2.a.h | 4 | ||
5.c | odd | 4 | 2 | 1875.2.b.c | 8 | ||
15.d | odd | 2 | 1 | 5625.2.a.i | 4 | ||
25.d | even | 5 | 2 | 375.2.g.b | 8 | ||
25.e | even | 10 | 2 | 75.2.g.b | ✓ | 8 | |
25.f | odd | 20 | 4 | 375.2.i.b | 16 | ||
75.h | odd | 10 | 2 | 225.2.h.c | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
75.2.g.b | ✓ | 8 | 25.e | even | 10 | 2 | |
225.2.h.c | 8 | 75.h | odd | 10 | 2 | ||
375.2.g.b | 8 | 25.d | even | 5 | 2 | ||
375.2.i.b | 16 | 25.f | odd | 20 | 4 | ||
1875.2.a.e | 4 | 1.a | even | 1 | 1 | trivial | |
1875.2.a.h | 4 | 5.b | even | 2 | 1 | ||
1875.2.b.c | 8 | 5.c | odd | 4 | 2 | ||
5625.2.a.i | 4 | 15.d | odd | 2 | 1 | ||
5625.2.a.n | 4 | 3.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} + 2T_{2}^{3} - 6T_{2}^{2} - 7T_{2} + 11 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1875))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} + 2 T^{3} - 6 T^{2} - 7 T + 11 \)
$3$
\( (T + 1)^{4} \)
$5$
\( T^{4} \)
$7$
\( T^{4} + 2 T^{3} - 16 T^{2} - 27 T - 9 \)
$11$
\( T^{4} + 7 T^{3} - 6 T^{2} - 92 T - 109 \)
$13$
\( T^{4} + T^{3} - 14 T^{2} - 24 T - 9 \)
$17$
\( T^{4} + 2 T^{3} - 6 T^{2} - 7 T + 11 \)
$19$
\( T^{4} - 5 T^{3} - 35 T^{2} + 75 T + 275 \)
$23$
\( T^{4} + T^{3} - 24 T^{2} + 46 T - 19 \)
$29$
\( T^{4} + 20 T^{3} + 140 T^{2} + \cdots + 405 \)
$31$
\( T^{4} - 23 T^{3} + 184 T^{2} + \cdots + 711 \)
$37$
\( T^{4} + 2 T^{3} - 46 T^{2} - 47 T + 1 \)
$41$
\( (T^{2} + 6 T - 11)^{2} \)
$43$
\( T^{4} + 16 T^{3} + 61 T^{2} - 24 T - 99 \)
$47$
\( T^{4} + 2 T^{3} - 36 T^{2} - 37 T + 311 \)
$53$
\( T^{4} - 4 T^{3} - 34 T^{2} + 51 T + 261 \)
$59$
\( T^{4} + 15 T^{3} - 45 T^{2} + \cdots - 3645 \)
$61$
\( T^{4} + 2 T^{3} - 56 T^{2} + 78 T - 9 \)
$67$
\( T^{4} + 2 T^{3} - 31 T^{2} - 12 T + 171 \)
$71$
\( T^{4} + 2 T^{3} - 216 T^{2} + \cdots + 911 \)
$73$
\( T^{4} + 16 T^{3} - 49 T^{2} + \cdots - 4869 \)
$79$
\( T^{4} - 35 T^{3} + 320 T^{2} + \cdots - 9845 \)
$83$
\( T^{4} + 16 T^{3} - 54 T^{2} + \cdots - 979 \)
$89$
\( T^{4} + 35 T^{3} + 420 T^{2} + \cdots + 3305 \)
$97$
\( T^{4} + 12 T^{3} - 86 T^{2} + \cdots + 2101 \)
show more
show less