Newspace parameters
Level: | \( N \) | \(=\) | \( 1875 = 3 \cdot 5^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1875.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(14.9719503790\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{5}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x - 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 75) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
1.00000 | 1.00000 | −1.00000 | 0 | 1.00000 | −4.47214 | −3.00000 | 1.00000 | 0 | ||||||||||||||||||||||||
1.2 | 1.00000 | 1.00000 | −1.00000 | 0 | 1.00000 | 4.47214 | −3.00000 | 1.00000 | 0 | |||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \(-1\) |
\(5\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1875.2.a.d | 2 | |
3.b | odd | 2 | 1 | 5625.2.a.a | 2 | ||
5.b | even | 2 | 1 | 1875.2.a.a | 2 | ||
5.c | odd | 4 | 2 | 1875.2.b.b | 4 | ||
15.d | odd | 2 | 1 | 5625.2.a.h | 2 | ||
25.d | even | 5 | 2 | 75.2.g.a | ✓ | 4 | |
25.e | even | 10 | 2 | 375.2.g.a | 4 | ||
25.f | odd | 20 | 4 | 375.2.i.a | 8 | ||
75.j | odd | 10 | 2 | 225.2.h.a | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
75.2.g.a | ✓ | 4 | 25.d | even | 5 | 2 | |
225.2.h.a | 4 | 75.j | odd | 10 | 2 | ||
375.2.g.a | 4 | 25.e | even | 10 | 2 | ||
375.2.i.a | 8 | 25.f | odd | 20 | 4 | ||
1875.2.a.a | 2 | 5.b | even | 2 | 1 | ||
1875.2.a.d | 2 | 1.a | even | 1 | 1 | trivial | |
1875.2.b.b | 4 | 5.c | odd | 4 | 2 | ||
5625.2.a.a | 2 | 3.b | odd | 2 | 1 | ||
5625.2.a.h | 2 | 15.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2} - 1 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1875))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T - 1)^{2} \)
$3$
\( (T - 1)^{2} \)
$5$
\( T^{2} \)
$7$
\( T^{2} - 20 \)
$11$
\( T^{2} - 2T - 4 \)
$13$
\( T^{2} - 9T + 19 \)
$17$
\( T^{2} - T - 11 \)
$19$
\( T^{2} + 2T - 4 \)
$23$
\( T^{2} - 20 \)
$29$
\( T^{2} - 11T + 29 \)
$31$
\( T^{2} - 10T + 20 \)
$37$
\( T^{2} - 5T - 25 \)
$41$
\( T^{2} + 5T + 5 \)
$43$
\( T^{2} - 2T - 44 \)
$47$
\( T^{2} + 6T + 4 \)
$53$
\( T^{2} - 5T + 5 \)
$59$
\( (T + 4)^{2} \)
$61$
\( T^{2} - T - 1 \)
$67$
\( T^{2} - 6T + 4 \)
$71$
\( T^{2} + 6T + 4 \)
$73$
\( T^{2} + 5T - 25 \)
$79$
\( T^{2} \)
$83$
\( T^{2} - 16T + 44 \)
$89$
\( T^{2} - 13T + 41 \)
$97$
\( T^{2} - 11T + 19 \)
show more
show less