Properties

Label 1875.1.h.f
Level $1875$
Weight $1$
Character orbit 1875.h
Analytic conductor $0.936$
Analytic rank $0$
Dimension $8$
Projective image $D_{5}$
CM discriminant -3
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1875,1,Mod(374,1875)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1875, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1875.374"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1875 = 3 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1875.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,2,0,0,0,0,2,0,0,0,0,0,0,-2,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.935746898687\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.3515625.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{20}^{7} q^{3} + \zeta_{20}^{2} q^{4} + ( - \zeta_{20}^{7} - \zeta_{20}^{3}) q^{7} - \zeta_{20}^{4} q^{9} + \zeta_{20}^{9} q^{12} + ( - \zeta_{20}^{5} + \zeta_{20}^{3}) q^{13} + \zeta_{20}^{4} q^{16} + \cdots + (\zeta_{20}^{9} + \zeta_{20}^{5}) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{4} + 2 q^{9} - 2 q^{16} + 4 q^{19} + 6 q^{21} + 6 q^{31} - 2 q^{36} - 6 q^{39} - 4 q^{49} - 4 q^{61} + 2 q^{64} - 4 q^{76} - 6 q^{79} - 2 q^{81} + 4 q^{84} + 2 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1875\mathbb{Z}\right)^\times\).

\(n\) \(626\) \(1252\)
\(\chi(n)\) \(-1\) \(\zeta_{20}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
374.1
−0.587785 0.809017i
0.587785 + 0.809017i
0.951057 + 0.309017i
−0.951057 0.309017i
0.951057 0.309017i
−0.951057 + 0.309017i
−0.587785 + 0.809017i
0.587785 0.809017i
0 −0.951057 0.309017i −0.309017 + 0.951057i 0 0 0.618034i 0 0.809017 + 0.587785i 0
374.2 0 0.951057 + 0.309017i −0.309017 + 0.951057i 0 0 0.618034i 0 0.809017 + 0.587785i 0
749.1 0 −0.587785 + 0.809017i 0.809017 + 0.587785i 0 0 1.61803i 0 −0.309017 0.951057i 0
749.2 0 0.587785 0.809017i 0.809017 + 0.587785i 0 0 1.61803i 0 −0.309017 0.951057i 0
1124.1 0 −0.587785 0.809017i 0.809017 0.587785i 0 0 1.61803i 0 −0.309017 + 0.951057i 0
1124.2 0 0.587785 + 0.809017i 0.809017 0.587785i 0 0 1.61803i 0 −0.309017 + 0.951057i 0
1499.1 0 −0.951057 + 0.309017i −0.309017 0.951057i 0 0 0.618034i 0 0.809017 0.587785i 0
1499.2 0 0.951057 0.309017i −0.309017 0.951057i 0 0 0.618034i 0 0.809017 0.587785i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 374.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
5.b even 2 1 inner
15.d odd 2 1 inner
25.d even 5 1 inner
25.e even 10 1 inner
75.h odd 10 1 inner
75.j odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1875.1.h.f 8
3.b odd 2 1 CM 1875.1.h.f 8
5.b even 2 1 inner 1875.1.h.f 8
5.c odd 4 1 1875.1.j.b 4
5.c odd 4 1 1875.1.j.c 4
15.d odd 2 1 inner 1875.1.h.f 8
15.e even 4 1 1875.1.j.b 4
15.e even 4 1 1875.1.j.c 4
25.d even 5 1 1875.1.d.a 4
25.d even 5 2 1875.1.h.e 8
25.d even 5 1 inner 1875.1.h.f 8
25.e even 10 1 1875.1.d.a 4
25.e even 10 2 1875.1.h.e 8
25.e even 10 1 inner 1875.1.h.f 8
25.f odd 20 1 1875.1.c.a 2
25.f odd 20 1 1875.1.c.b yes 2
25.f odd 20 2 1875.1.j.a 4
25.f odd 20 1 1875.1.j.b 4
25.f odd 20 1 1875.1.j.c 4
25.f odd 20 2 1875.1.j.d 4
75.h odd 10 1 1875.1.d.a 4
75.h odd 10 2 1875.1.h.e 8
75.h odd 10 1 inner 1875.1.h.f 8
75.j odd 10 1 1875.1.d.a 4
75.j odd 10 2 1875.1.h.e 8
75.j odd 10 1 inner 1875.1.h.f 8
75.l even 20 1 1875.1.c.a 2
75.l even 20 1 1875.1.c.b yes 2
75.l even 20 2 1875.1.j.a 4
75.l even 20 1 1875.1.j.b 4
75.l even 20 1 1875.1.j.c 4
75.l even 20 2 1875.1.j.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1875.1.c.a 2 25.f odd 20 1
1875.1.c.a 2 75.l even 20 1
1875.1.c.b yes 2 25.f odd 20 1
1875.1.c.b yes 2 75.l even 20 1
1875.1.d.a 4 25.d even 5 1
1875.1.d.a 4 25.e even 10 1
1875.1.d.a 4 75.h odd 10 1
1875.1.d.a 4 75.j odd 10 1
1875.1.h.e 8 25.d even 5 2
1875.1.h.e 8 25.e even 10 2
1875.1.h.e 8 75.h odd 10 2
1875.1.h.e 8 75.j odd 10 2
1875.1.h.f 8 1.a even 1 1 trivial
1875.1.h.f 8 3.b odd 2 1 CM
1875.1.h.f 8 5.b even 2 1 inner
1875.1.h.f 8 15.d odd 2 1 inner
1875.1.h.f 8 25.d even 5 1 inner
1875.1.h.f 8 25.e even 10 1 inner
1875.1.h.f 8 75.h odd 10 1 inner
1875.1.h.f 8 75.j odd 10 1 inner
1875.1.j.a 4 25.f odd 20 2
1875.1.j.a 4 75.l even 20 2
1875.1.j.b 4 5.c odd 4 1
1875.1.j.b 4 15.e even 4 1
1875.1.j.b 4 25.f odd 20 1
1875.1.j.b 4 75.l even 20 1
1875.1.j.c 4 5.c odd 4 1
1875.1.j.c 4 15.e even 4 1
1875.1.j.c 4 25.f odd 20 1
1875.1.j.c 4 75.l even 20 1
1875.1.j.d 4 25.f odd 20 2
1875.1.j.d 4 75.l even 20 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1875, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{13}^{8} + T_{13}^{6} + 6T_{13}^{4} - 4T_{13}^{2} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} - T^{6} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( (T^{4} + 3 T^{2} + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( T^{8} + T^{6} + 6 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( (T^{4} - 2 T^{3} + 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( (T^{4} - 3 T^{3} + 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} + T^{6} + 6 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( (T^{4} + 3 T^{2} + 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( (T^{4} + 2 T^{3} + 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} + T^{6} + 6 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( T^{8} - 4 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( (T^{4} + 3 T^{3} + 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( T^{8} + T^{6} + 6 T^{4} + \cdots + 1 \) Copy content Toggle raw display
show more
show less