Properties

 Label 1872.4.a.d.1.1 Level $1872$ Weight $4$ Character 1872.1 Self dual yes Analytic conductor $110.452$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1872,4,Mod(1,1872)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1872, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1872.1");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1872 = 2^{4} \cdot 3^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 1872.a (trivial)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$110.451575531$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 78) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 1872.1

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-10.0000 q^{5} +8.00000 q^{7} +O(q^{10})$$ $$q-10.0000 q^{5} +8.00000 q^{7} +40.0000 q^{11} +13.0000 q^{13} -130.000 q^{17} +20.0000 q^{19} -25.0000 q^{25} +18.0000 q^{29} +184.000 q^{31} -80.0000 q^{35} -74.0000 q^{37} +362.000 q^{41} -76.0000 q^{43} -452.000 q^{47} -279.000 q^{49} -382.000 q^{53} -400.000 q^{55} +464.000 q^{59} +358.000 q^{61} -130.000 q^{65} +700.000 q^{67} -748.000 q^{71} +1058.00 q^{73} +320.000 q^{77} +976.000 q^{79} -1008.00 q^{83} +1300.00 q^{85} +386.000 q^{89} +104.000 q^{91} -200.000 q^{95} -614.000 q^{97} +O(q^{100})$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0
$$4$$ 0 0
$$5$$ −10.0000 −0.894427 −0.447214 0.894427i $$-0.647584\pi$$
−0.447214 + 0.894427i $$0.647584\pi$$
$$6$$ 0 0
$$7$$ 8.00000 0.431959 0.215980 0.976398i $$-0.430705\pi$$
0.215980 + 0.976398i $$0.430705\pi$$
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ 40.0000 1.09640 0.548202 0.836346i $$-0.315312\pi$$
0.548202 + 0.836346i $$0.315312\pi$$
$$12$$ 0 0
$$13$$ 13.0000 0.277350
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ −130.000 −1.85468 −0.927342 0.374215i $$-0.877912\pi$$
−0.927342 + 0.374215i $$0.877912\pi$$
$$18$$ 0 0
$$19$$ 20.0000 0.241490 0.120745 0.992684i $$-0.461472\pi$$
0.120745 + 0.992684i $$0.461472\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$24$$ 0 0
$$25$$ −25.0000 −0.200000
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ 18.0000 0.115259 0.0576296 0.998338i $$-0.481646\pi$$
0.0576296 + 0.998338i $$0.481646\pi$$
$$30$$ 0 0
$$31$$ 184.000 1.06604 0.533022 0.846101i $$-0.321056\pi$$
0.533022 + 0.846101i $$0.321056\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ −80.0000 −0.386356
$$36$$ 0 0
$$37$$ −74.0000 −0.328798 −0.164399 0.986394i $$-0.552568\pi$$
−0.164399 + 0.986394i $$0.552568\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ 362.000 1.37890 0.689450 0.724333i $$-0.257852\pi$$
0.689450 + 0.724333i $$0.257852\pi$$
$$42$$ 0 0
$$43$$ −76.0000 −0.269532 −0.134766 0.990877i $$-0.543028\pi$$
−0.134766 + 0.990877i $$0.543028\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ −452.000 −1.40279 −0.701393 0.712774i $$-0.747438\pi$$
−0.701393 + 0.712774i $$0.747438\pi$$
$$48$$ 0 0
$$49$$ −279.000 −0.813411
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ −382.000 −0.990033 −0.495016 0.868884i $$-0.664838\pi$$
−0.495016 + 0.868884i $$0.664838\pi$$
$$54$$ 0 0
$$55$$ −400.000 −0.980654
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ 464.000 1.02386 0.511929 0.859028i $$-0.328931\pi$$
0.511929 + 0.859028i $$0.328931\pi$$
$$60$$ 0 0
$$61$$ 358.000 0.751430 0.375715 0.926735i $$-0.377397\pi$$
0.375715 + 0.926735i $$0.377397\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ −130.000 −0.248069
$$66$$ 0 0
$$67$$ 700.000 1.27640 0.638199 0.769872i $$-0.279680\pi$$
0.638199 + 0.769872i $$0.279680\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ −748.000 −1.25030 −0.625150 0.780505i $$-0.714962\pi$$
−0.625150 + 0.780505i $$0.714962\pi$$
$$72$$ 0 0
$$73$$ 1058.00 1.69629 0.848147 0.529760i $$-0.177718\pi$$
0.848147 + 0.529760i $$0.177718\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 320.000 0.473602
$$78$$ 0 0
$$79$$ 976.000 1.38998 0.694991 0.719018i $$-0.255408\pi$$
0.694991 + 0.719018i $$0.255408\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 0 0
$$83$$ −1008.00 −1.33304 −0.666520 0.745487i $$-0.732217\pi$$
−0.666520 + 0.745487i $$0.732217\pi$$
$$84$$ 0 0
$$85$$ 1300.00 1.65888
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 386.000 0.459729 0.229865 0.973223i $$-0.426172\pi$$
0.229865 + 0.973223i $$0.426172\pi$$
$$90$$ 0 0
$$91$$ 104.000 0.119804
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ −200.000 −0.215995
$$96$$ 0 0
$$97$$ −614.000 −0.642704 −0.321352 0.946960i $$-0.604137\pi$$
−0.321352 + 0.946960i $$0.604137\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ −518.000 −0.510326 −0.255163 0.966898i $$-0.582129\pi$$
−0.255163 + 0.966898i $$0.582129\pi$$
$$102$$ 0 0
$$103$$ −112.000 −0.107143 −0.0535713 0.998564i $$-0.517060\pi$$
−0.0535713 + 0.998564i $$0.517060\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ −372.000 −0.336099 −0.168050 0.985779i $$-0.553747\pi$$
−0.168050 + 0.985779i $$0.553747\pi$$
$$108$$ 0 0
$$109$$ 934.000 0.820743 0.410371 0.911918i $$-0.365399\pi$$
0.410371 + 0.911918i $$0.365399\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ −1914.00 −1.59340 −0.796699 0.604376i $$-0.793422\pi$$
−0.796699 + 0.604376i $$0.793422\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ −1040.00 −0.801148
$$120$$ 0 0
$$121$$ 269.000 0.202104
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 1500.00 1.07331
$$126$$ 0 0
$$127$$ −1296.00 −0.905523 −0.452761 0.891632i $$-0.649561\pi$$
−0.452761 + 0.891632i $$0.649561\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ −892.000 −0.594919 −0.297460 0.954734i $$-0.596139\pi$$
−0.297460 + 0.954734i $$0.596139\pi$$
$$132$$ 0 0
$$133$$ 160.000 0.104314
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ −2326.00 −1.45054 −0.725269 0.688466i $$-0.758284\pi$$
−0.725269 + 0.688466i $$0.758284\pi$$
$$138$$ 0 0
$$139$$ −1932.00 −1.17892 −0.589461 0.807797i $$-0.700660\pi$$
−0.589461 + 0.807797i $$0.700660\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 520.000 0.304088
$$144$$ 0 0
$$145$$ −180.000 −0.103091
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ −882.000 −0.484941 −0.242471 0.970159i $$-0.577958\pi$$
−0.242471 + 0.970159i $$0.577958\pi$$
$$150$$ 0 0
$$151$$ 1776.00 0.957145 0.478572 0.878048i $$-0.341154\pi$$
0.478572 + 0.878048i $$0.341154\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ −1840.00 −0.953499
$$156$$ 0 0
$$157$$ −2410.00 −1.22509 −0.612544 0.790436i $$-0.709854\pi$$
−0.612544 + 0.790436i $$0.709854\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ −3212.00 −1.54346 −0.771728 0.635953i $$-0.780607\pi$$
−0.771728 + 0.635953i $$0.780607\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 1668.00 0.772896 0.386448 0.922311i $$-0.373702\pi$$
0.386448 + 0.922311i $$0.373702\pi$$
$$168$$ 0 0
$$169$$ 169.000 0.0769231
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ −3598.00 −1.58122 −0.790609 0.612321i $$-0.790236\pi$$
−0.790609 + 0.612321i $$0.790236\pi$$
$$174$$ 0 0
$$175$$ −200.000 −0.0863919
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 1068.00 0.445956 0.222978 0.974824i $$-0.428422\pi$$
0.222978 + 0.974824i $$0.428422\pi$$
$$180$$ 0 0
$$181$$ −4786.00 −1.96542 −0.982709 0.185158i $$-0.940720\pi$$
−0.982709 + 0.185158i $$0.940720\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 740.000 0.294086
$$186$$ 0 0
$$187$$ −5200.00 −2.03348
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −1312.00 −0.497031 −0.248516 0.968628i $$-0.579943\pi$$
−0.248516 + 0.968628i $$0.579943\pi$$
$$192$$ 0 0
$$193$$ −350.000 −0.130537 −0.0652683 0.997868i $$-0.520790\pi$$
−0.0652683 + 0.997868i $$0.520790\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 342.000 0.123688 0.0618439 0.998086i $$-0.480302\pi$$
0.0618439 + 0.998086i $$0.480302\pi$$
$$198$$ 0 0
$$199$$ 3368.00 1.19975 0.599877 0.800092i $$-0.295216\pi$$
0.599877 + 0.800092i $$0.295216\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 144.000 0.0497873
$$204$$ 0 0
$$205$$ −3620.00 −1.23333
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 800.000 0.264771
$$210$$ 0 0
$$211$$ 2004.00 0.653844 0.326922 0.945051i $$-0.393989\pi$$
0.326922 + 0.945051i $$0.393989\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 760.000 0.241077
$$216$$ 0 0
$$217$$ 1472.00 0.460488
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ −1690.00 −0.514397
$$222$$ 0 0
$$223$$ 5608.00 1.68403 0.842017 0.539451i $$-0.181368\pi$$
0.842017 + 0.539451i $$0.181368\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ −1928.00 −0.563726 −0.281863 0.959455i $$-0.590952\pi$$
−0.281863 + 0.959455i $$0.590952\pi$$
$$228$$ 0 0
$$229$$ −3938.00 −1.13638 −0.568189 0.822898i $$-0.692356\pi$$
−0.568189 + 0.822898i $$0.692356\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ −2562.00 −0.720353 −0.360176 0.932884i $$-0.617283\pi$$
−0.360176 + 0.932884i $$0.617283\pi$$
$$234$$ 0 0
$$235$$ 4520.00 1.25469
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 7164.00 1.93891 0.969457 0.245260i $$-0.0788733\pi$$
0.969457 + 0.245260i $$0.0788733\pi$$
$$240$$ 0 0
$$241$$ −6182.00 −1.65236 −0.826178 0.563410i $$-0.809489\pi$$
−0.826178 + 0.563410i $$0.809489\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 2790.00 0.727537
$$246$$ 0 0
$$247$$ 260.000 0.0669773
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ −1396.00 −0.351055 −0.175527 0.984475i $$-0.556163\pi$$
−0.175527 + 0.984475i $$0.556163\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ −6906.00 −1.67620 −0.838102 0.545514i $$-0.816335\pi$$
−0.838102 + 0.545514i $$0.816335\pi$$
$$258$$ 0 0
$$259$$ −592.000 −0.142027
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ −6848.00 −1.60557 −0.802787 0.596266i $$-0.796650\pi$$
−0.802787 + 0.596266i $$0.796650\pi$$
$$264$$ 0 0
$$265$$ 3820.00 0.885512
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ 6034.00 1.36766 0.683828 0.729643i $$-0.260314\pi$$
0.683828 + 0.729643i $$0.260314\pi$$
$$270$$ 0 0
$$271$$ −4832.00 −1.08311 −0.541556 0.840665i $$-0.682164\pi$$
−0.541556 + 0.840665i $$0.682164\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ −1000.00 −0.219281
$$276$$ 0 0
$$277$$ −4082.00 −0.885428 −0.442714 0.896663i $$-0.645984\pi$$
−0.442714 + 0.896663i $$0.645984\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ −3350.00 −0.711189 −0.355595 0.934640i $$-0.615722\pi$$
−0.355595 + 0.934640i $$0.615722\pi$$
$$282$$ 0 0
$$283$$ −7796.00 −1.63754 −0.818770 0.574121i $$-0.805344\pi$$
−0.818770 + 0.574121i $$0.805344\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 2896.00 0.595629
$$288$$ 0 0
$$289$$ 11987.0 2.43985
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ −3922.00 −0.781999 −0.390999 0.920391i $$-0.627871\pi$$
−0.390999 + 0.920391i $$0.627871\pi$$
$$294$$ 0 0
$$295$$ −4640.00 −0.915767
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ 0 0
$$300$$ 0 0
$$301$$ −608.000 −0.116427
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ −3580.00 −0.672099
$$306$$ 0 0
$$307$$ −5956.00 −1.10725 −0.553627 0.832765i $$-0.686757\pi$$
−0.553627 + 0.832765i $$0.686757\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ 2352.00 0.428841 0.214421 0.976741i $$-0.431214\pi$$
0.214421 + 0.976741i $$0.431214\pi$$
$$312$$ 0 0
$$313$$ 8442.00 1.52450 0.762252 0.647280i $$-0.224093\pi$$
0.762252 + 0.647280i $$0.224093\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 5550.00 0.983341 0.491670 0.870781i $$-0.336386\pi$$
0.491670 + 0.870781i $$0.336386\pi$$
$$318$$ 0 0
$$319$$ 720.000 0.126371
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ −2600.00 −0.447888
$$324$$ 0 0
$$325$$ −325.000 −0.0554700
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ −3616.00 −0.605947
$$330$$ 0 0
$$331$$ −140.000 −0.0232480 −0.0116240 0.999932i $$-0.503700\pi$$
−0.0116240 + 0.999932i $$0.503700\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ −7000.00 −1.14164
$$336$$ 0 0
$$337$$ −6174.00 −0.997980 −0.498990 0.866608i $$-0.666296\pi$$
−0.498990 + 0.866608i $$0.666296\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 7360.00 1.16882
$$342$$ 0 0
$$343$$ −4976.00 −0.783320
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ −2988.00 −0.462260 −0.231130 0.972923i $$-0.574242\pi$$
−0.231130 + 0.972923i $$0.574242\pi$$
$$348$$ 0 0
$$349$$ −162.000 −0.0248472 −0.0124236 0.999923i $$-0.503955\pi$$
−0.0124236 + 0.999923i $$0.503955\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 10754.0 1.62147 0.810733 0.585416i $$-0.199069\pi$$
0.810733 + 0.585416i $$0.199069\pi$$
$$354$$ 0 0
$$355$$ 7480.00 1.11830
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 3588.00 0.527486 0.263743 0.964593i $$-0.415043\pi$$
0.263743 + 0.964593i $$0.415043\pi$$
$$360$$ 0 0
$$361$$ −6459.00 −0.941682
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ −10580.0 −1.51721
$$366$$ 0 0
$$367$$ −11272.0 −1.60325 −0.801626 0.597826i $$-0.796032\pi$$
−0.801626 + 0.597826i $$0.796032\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ −3056.00 −0.427654
$$372$$ 0 0
$$373$$ −10914.0 −1.51503 −0.757514 0.652819i $$-0.773586\pi$$
−0.757514 + 0.652819i $$0.773586\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 234.000 0.0319671
$$378$$ 0 0
$$379$$ −8100.00 −1.09781 −0.548904 0.835886i $$-0.684955\pi$$
−0.548904 + 0.835886i $$0.684955\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 6180.00 0.824499 0.412250 0.911071i $$-0.364743\pi$$
0.412250 + 0.911071i $$0.364743\pi$$
$$384$$ 0 0
$$385$$ −3200.00 −0.423603
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ 7522.00 0.980413 0.490206 0.871606i $$-0.336921\pi$$
0.490206 + 0.871606i $$0.336921\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ −9760.00 −1.24324
$$396$$ 0 0
$$397$$ 6078.00 0.768378 0.384189 0.923254i $$-0.374481\pi$$
0.384189 + 0.923254i $$0.374481\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −1830.00 −0.227895 −0.113947 0.993487i $$-0.536350\pi$$
−0.113947 + 0.993487i $$0.536350\pi$$
$$402$$ 0 0
$$403$$ 2392.00 0.295668
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ −2960.00 −0.360496
$$408$$ 0 0
$$409$$ 12434.0 1.50323 0.751616 0.659601i $$-0.229275\pi$$
0.751616 + 0.659601i $$0.229275\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ 3712.00 0.442265
$$414$$ 0 0
$$415$$ 10080.0 1.19231
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ −14188.0 −1.65425 −0.827123 0.562021i $$-0.810024\pi$$
−0.827123 + 0.562021i $$0.810024\pi$$
$$420$$ 0 0
$$421$$ 8638.00 0.999977 0.499989 0.866032i $$-0.333338\pi$$
0.499989 + 0.866032i $$0.333338\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ 3250.00 0.370937
$$426$$ 0 0
$$427$$ 2864.00 0.324587
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 4292.00 0.479671 0.239836 0.970813i $$-0.422906\pi$$
0.239836 + 0.970813i $$0.422906\pi$$
$$432$$ 0 0
$$433$$ −5982.00 −0.663918 −0.331959 0.943294i $$-0.607710\pi$$
−0.331959 + 0.943294i $$0.607710\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 0 0
$$438$$ 0 0
$$439$$ −256.000 −0.0278319 −0.0139160 0.999903i $$-0.504430\pi$$
−0.0139160 + 0.999903i $$0.504430\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ 12556.0 1.34662 0.673311 0.739359i $$-0.264872\pi$$
0.673311 + 0.739359i $$0.264872\pi$$
$$444$$ 0 0
$$445$$ −3860.00 −0.411194
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ −5574.00 −0.585865 −0.292932 0.956133i $$-0.594631\pi$$
−0.292932 + 0.956133i $$0.594631\pi$$
$$450$$ 0 0
$$451$$ 14480.0 1.51183
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ −1040.00 −0.107156
$$456$$ 0 0
$$457$$ 1266.00 0.129586 0.0647932 0.997899i $$-0.479361\pi$$
0.0647932 + 0.997899i $$0.479361\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ −7554.00 −0.763178 −0.381589 0.924332i $$-0.624623\pi$$
−0.381589 + 0.924332i $$0.624623\pi$$
$$462$$ 0 0
$$463$$ 6752.00 0.677737 0.338868 0.940834i $$-0.389956\pi$$
0.338868 + 0.940834i $$0.389956\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 7924.00 0.785180 0.392590 0.919714i $$-0.371579\pi$$
0.392590 + 0.919714i $$0.371579\pi$$
$$468$$ 0 0
$$469$$ 5600.00 0.551352
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ −3040.00 −0.295517
$$474$$ 0 0
$$475$$ −500.000 −0.0482980
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ −11084.0 −1.05729 −0.528644 0.848844i $$-0.677299\pi$$
−0.528644 + 0.848844i $$0.677299\pi$$
$$480$$ 0 0
$$481$$ −962.000 −0.0911922
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 6140.00 0.574852
$$486$$ 0 0
$$487$$ −4432.00 −0.412388 −0.206194 0.978511i $$-0.566108\pi$$
−0.206194 + 0.978511i $$0.566108\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ −1140.00 −0.104781 −0.0523905 0.998627i $$-0.516684\pi$$
−0.0523905 + 0.998627i $$0.516684\pi$$
$$492$$ 0 0
$$493$$ −2340.00 −0.213769
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ −5984.00 −0.540079
$$498$$ 0 0
$$499$$ −1764.00 −0.158251 −0.0791257 0.996865i $$-0.525213\pi$$
−0.0791257 + 0.996865i $$0.525213\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 16976.0 1.50482 0.752408 0.658697i $$-0.228892\pi$$
0.752408 + 0.658697i $$0.228892\pi$$
$$504$$ 0 0
$$505$$ 5180.00 0.456449
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ −9474.00 −0.825005 −0.412503 0.910956i $$-0.635345\pi$$
−0.412503 + 0.910956i $$0.635345\pi$$
$$510$$ 0 0
$$511$$ 8464.00 0.732731
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 1120.00 0.0958313
$$516$$ 0 0
$$517$$ −18080.0 −1.53802
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ −14114.0 −1.18684 −0.593422 0.804892i $$-0.702223\pi$$
−0.593422 + 0.804892i $$0.702223\pi$$
$$522$$ 0 0
$$523$$ −20284.0 −1.69590 −0.847952 0.530074i $$-0.822164\pi$$
−0.847952 + 0.530074i $$0.822164\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ −23920.0 −1.97718
$$528$$ 0 0
$$529$$ −12167.0 −1.00000
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 4706.00 0.382438
$$534$$ 0 0
$$535$$ 3720.00 0.300616
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ −11160.0 −0.891828
$$540$$ 0 0
$$541$$ −14362.0 −1.14135 −0.570675 0.821176i $$-0.693318\pi$$
−0.570675 + 0.821176i $$0.693318\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ −9340.00 −0.734095
$$546$$ 0 0
$$547$$ 20956.0 1.63805 0.819025 0.573757i $$-0.194515\pi$$
0.819025 + 0.573757i $$0.194515\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ 360.000 0.0278340
$$552$$ 0 0
$$553$$ 7808.00 0.600416
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 4134.00 0.314476 0.157238 0.987561i $$-0.449741\pi$$
0.157238 + 0.987561i $$0.449741\pi$$
$$558$$ 0 0
$$559$$ −988.000 −0.0747548
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ −16228.0 −1.21479 −0.607397 0.794399i $$-0.707786\pi$$
−0.607397 + 0.794399i $$0.707786\pi$$
$$564$$ 0 0
$$565$$ 19140.0 1.42518
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ −2514.00 −0.185224 −0.0926119 0.995702i $$-0.529522\pi$$
−0.0926119 + 0.995702i $$0.529522\pi$$
$$570$$ 0 0
$$571$$ 11612.0 0.851046 0.425523 0.904948i $$-0.360090\pi$$
0.425523 + 0.904948i $$0.360090\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ 6354.00 0.458441 0.229221 0.973375i $$-0.426382\pi$$
0.229221 + 0.973375i $$0.426382\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ −8064.00 −0.575819
$$582$$ 0 0
$$583$$ −15280.0 −1.08548
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ −13240.0 −0.930960 −0.465480 0.885059i $$-0.654118\pi$$
−0.465480 + 0.885059i $$0.654118\pi$$
$$588$$ 0 0
$$589$$ 3680.00 0.257439
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 1146.00 0.0793602 0.0396801 0.999212i $$-0.487366\pi$$
0.0396801 + 0.999212i $$0.487366\pi$$
$$594$$ 0 0
$$595$$ 10400.0 0.716569
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 10464.0 0.713769 0.356884 0.934149i $$-0.383839\pi$$
0.356884 + 0.934149i $$0.383839\pi$$
$$600$$ 0 0
$$601$$ 6650.00 0.451346 0.225673 0.974203i $$-0.427542\pi$$
0.225673 + 0.974203i $$0.427542\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ −2690.00 −0.180767
$$606$$ 0 0
$$607$$ 6664.00 0.445607 0.222803 0.974863i $$-0.428479\pi$$
0.222803 + 0.974863i $$0.428479\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ −5876.00 −0.389063
$$612$$ 0 0
$$613$$ 2134.00 0.140606 0.0703030 0.997526i $$-0.477603\pi$$
0.0703030 + 0.997526i $$0.477603\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 714.000 0.0465876 0.0232938 0.999729i $$-0.492585\pi$$
0.0232938 + 0.999729i $$0.492585\pi$$
$$618$$ 0 0
$$619$$ −29228.0 −1.89786 −0.948928 0.315494i $$-0.897830\pi$$
−0.948928 + 0.315494i $$0.897830\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 3088.00 0.198584
$$624$$ 0 0
$$625$$ −11875.0 −0.760000
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 9620.00 0.609816
$$630$$ 0 0
$$631$$ 13536.0 0.853977 0.426989 0.904257i $$-0.359574\pi$$
0.426989 + 0.904257i $$0.359574\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ 12960.0 0.809924
$$636$$ 0 0
$$637$$ −3627.00 −0.225600
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ −17218.0 −1.06095 −0.530476 0.847700i $$-0.677987\pi$$
−0.530476 + 0.847700i $$0.677987\pi$$
$$642$$ 0 0
$$643$$ −15044.0 −0.922671 −0.461335 0.887226i $$-0.652630\pi$$
−0.461335 + 0.887226i $$0.652630\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 25176.0 1.52978 0.764892 0.644158i $$-0.222792\pi$$
0.764892 + 0.644158i $$0.222792\pi$$
$$648$$ 0 0
$$649$$ 18560.0 1.12256
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 16034.0 0.960887 0.480443 0.877026i $$-0.340476\pi$$
0.480443 + 0.877026i $$0.340476\pi$$
$$654$$ 0 0
$$655$$ 8920.00 0.532112
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ 25356.0 1.49883 0.749415 0.662100i $$-0.230335\pi$$
0.749415 + 0.662100i $$0.230335\pi$$
$$660$$ 0 0
$$661$$ 18310.0 1.07742 0.538711 0.842490i $$-0.318911\pi$$
0.538711 + 0.842490i $$0.318911\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ −1600.00 −0.0933013
$$666$$ 0 0
$$667$$ 0 0
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 14320.0 0.823871
$$672$$ 0 0
$$673$$ 24802.0 1.42057 0.710287 0.703912i $$-0.248565\pi$$
0.710287 + 0.703912i $$0.248565\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ 22706.0 1.28901 0.644507 0.764598i $$-0.277063\pi$$
0.644507 + 0.764598i $$0.277063\pi$$
$$678$$ 0 0
$$679$$ −4912.00 −0.277622
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ −14792.0 −0.828697 −0.414349 0.910118i $$-0.635991\pi$$
−0.414349 + 0.910118i $$0.635991\pi$$
$$684$$ 0 0
$$685$$ 23260.0 1.29740
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ −4966.00 −0.274586
$$690$$ 0 0
$$691$$ 1148.00 0.0632011 0.0316006 0.999501i $$-0.489940\pi$$
0.0316006 + 0.999501i $$0.489940\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 19320.0 1.05446
$$696$$ 0 0
$$697$$ −47060.0 −2.55742
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ −14870.0 −0.801187 −0.400594 0.916256i $$-0.631196\pi$$
−0.400594 + 0.916256i $$0.631196\pi$$
$$702$$ 0 0
$$703$$ −1480.00 −0.0794015
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ −4144.00 −0.220440
$$708$$ 0 0
$$709$$ −6354.00 −0.336572 −0.168286 0.985738i $$-0.553823\pi$$
−0.168286 + 0.985738i $$0.553823\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 0 0
$$714$$ 0 0
$$715$$ −5200.00 −0.271985
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 9288.00 0.481758 0.240879 0.970555i $$-0.422564\pi$$
0.240879 + 0.970555i $$0.422564\pi$$
$$720$$ 0 0
$$721$$ −896.000 −0.0462813
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ −450.000 −0.0230518
$$726$$ 0 0
$$727$$ 21544.0 1.09907 0.549534 0.835471i $$-0.314805\pi$$
0.549534 + 0.835471i $$0.314805\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ 9880.00 0.499897
$$732$$ 0 0
$$733$$ 19990.0 1.00730 0.503648 0.863909i $$-0.331991\pi$$
0.503648 + 0.863909i $$0.331991\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 28000.0 1.39945
$$738$$ 0 0
$$739$$ −532.000 −0.0264816 −0.0132408 0.999912i $$-0.504215\pi$$
−0.0132408 + 0.999912i $$0.504215\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ −25452.0 −1.25672 −0.628360 0.777922i $$-0.716274\pi$$
−0.628360 + 0.777922i $$0.716274\pi$$
$$744$$ 0 0
$$745$$ 8820.00 0.433745
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ −2976.00 −0.145181
$$750$$ 0 0
$$751$$ −6440.00 −0.312915 −0.156457 0.987685i $$-0.550007\pi$$
−0.156457 + 0.987685i $$0.550007\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ −17760.0 −0.856096
$$756$$ 0 0
$$757$$ −786.000 −0.0377380 −0.0188690 0.999822i $$-0.506007\pi$$
−0.0188690 + 0.999822i $$0.506007\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 1498.00 0.0713567 0.0356784 0.999363i $$-0.488641\pi$$
0.0356784 + 0.999363i $$0.488641\pi$$
$$762$$ 0 0
$$763$$ 7472.00 0.354528
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 6032.00 0.283967
$$768$$ 0 0
$$769$$ 14738.0 0.691113 0.345556 0.938398i $$-0.387690\pi$$
0.345556 + 0.938398i $$0.387690\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ 3822.00 0.177837 0.0889184 0.996039i $$-0.471659\pi$$
0.0889184 + 0.996039i $$0.471659\pi$$
$$774$$ 0 0
$$775$$ −4600.00 −0.213209
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 7240.00 0.332991
$$780$$ 0 0
$$781$$ −29920.0 −1.37083
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 24100.0 1.09575
$$786$$ 0 0
$$787$$ 11900.0 0.538995 0.269498 0.963001i $$-0.413142\pi$$
0.269498 + 0.963001i $$0.413142\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ −15312.0 −0.688283
$$792$$ 0 0
$$793$$ 4654.00 0.208409
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 21274.0 0.945500 0.472750 0.881197i $$-0.343261\pi$$
0.472750 + 0.881197i $$0.343261\pi$$
$$798$$ 0 0
$$799$$ 58760.0 2.60173
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ 42320.0 1.85983
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ 27566.0 1.19798 0.598992 0.800755i $$-0.295568\pi$$
0.598992 + 0.800755i $$0.295568\pi$$
$$810$$ 0 0
$$811$$ 11244.0 0.486844 0.243422 0.969921i $$-0.421730\pi$$
0.243422 + 0.969921i $$0.421730\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ 32120.0 1.38051
$$816$$ 0 0
$$817$$ −1520.00 −0.0650894
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ −13554.0 −0.576173 −0.288086 0.957604i $$-0.593019\pi$$
−0.288086 + 0.957604i $$0.593019\pi$$
$$822$$ 0 0
$$823$$ −14384.0 −0.609228 −0.304614 0.952476i $$-0.598527\pi$$
−0.304614 + 0.952476i $$0.598527\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ −2488.00 −0.104615 −0.0523073 0.998631i $$-0.516658\pi$$
−0.0523073 + 0.998631i $$0.516658\pi$$
$$828$$ 0 0
$$829$$ −20858.0 −0.873858 −0.436929 0.899496i $$-0.643934\pi$$
−0.436929 + 0.899496i $$0.643934\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ 36270.0 1.50862
$$834$$ 0 0
$$835$$ −16680.0 −0.691300
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 23116.0 0.951195 0.475598 0.879663i $$-0.342232\pi$$
0.475598 + 0.879663i $$0.342232\pi$$
$$840$$ 0 0
$$841$$ −24065.0 −0.986715
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ −1690.00 −0.0688021
$$846$$ 0 0
$$847$$ 2152.00 0.0873006
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ 0 0
$$852$$ 0 0
$$853$$ 934.000 0.0374907 0.0187453 0.999824i $$-0.494033\pi$$
0.0187453 + 0.999824i $$0.494033\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ −12642.0 −0.503900 −0.251950 0.967740i $$-0.581072\pi$$
−0.251950 + 0.967740i $$0.581072\pi$$
$$858$$ 0 0
$$859$$ 22796.0 0.905459 0.452730 0.891648i $$-0.350450\pi$$
0.452730 + 0.891648i $$0.350450\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ −76.0000 −0.00299776 −0.00149888 0.999999i $$-0.500477\pi$$
−0.00149888 + 0.999999i $$0.500477\pi$$
$$864$$ 0 0
$$865$$ 35980.0 1.41429
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ 39040.0 1.52398
$$870$$ 0 0
$$871$$ 9100.00 0.354009
$$872$$ 0 0
$$873$$ 0 0
$$874$$ 0 0
$$875$$ 12000.0 0.463627
$$876$$ 0 0
$$877$$ −46130.0 −1.77617 −0.888084 0.459681i $$-0.847964\pi$$
−0.888084 + 0.459681i $$0.847964\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ −6682.00 −0.255530 −0.127765 0.991804i $$-0.540780\pi$$
−0.127765 + 0.991804i $$0.540780\pi$$
$$882$$ 0 0
$$883$$ −47404.0 −1.80665 −0.903325 0.428957i $$-0.858881\pi$$
−0.903325 + 0.428957i $$0.858881\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 33672.0 1.27463 0.637314 0.770604i $$-0.280045\pi$$
0.637314 + 0.770604i $$0.280045\pi$$
$$888$$ 0 0
$$889$$ −10368.0 −0.391149
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 0 0
$$893$$ −9040.00 −0.338759
$$894$$ 0 0
$$895$$ −10680.0 −0.398875
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 3312.00 0.122871
$$900$$ 0 0
$$901$$ 49660.0 1.83620
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 47860.0 1.75792
$$906$$ 0 0
$$907$$ 14540.0 0.532296 0.266148 0.963932i $$-0.414249\pi$$
0.266148 + 0.963932i $$0.414249\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ −7840.00 −0.285127 −0.142564 0.989786i $$-0.545535\pi$$
−0.142564 + 0.989786i $$0.545535\pi$$
$$912$$ 0 0
$$913$$ −40320.0 −1.46155
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ −7136.00 −0.256981
$$918$$ 0 0
$$919$$ −47720.0 −1.71288 −0.856440 0.516246i $$-0.827329\pi$$
−0.856440 + 0.516246i $$0.827329\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ −9724.00 −0.346771
$$924$$ 0 0
$$925$$ 1850.00 0.0657596
$$926$$ 0 0
$$927$$ 0 0
$$928$$ 0 0
$$929$$ −7502.00 −0.264944 −0.132472 0.991187i $$-0.542291\pi$$
−0.132472 + 0.991187i $$0.542291\pi$$
$$930$$ 0 0
$$931$$ −5580.00 −0.196431
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ 52000.0 1.81880
$$936$$ 0 0
$$937$$ 22058.0 0.769054 0.384527 0.923114i $$-0.374365\pi$$
0.384527 + 0.923114i $$0.374365\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ −23338.0 −0.808498 −0.404249 0.914649i $$-0.632467\pi$$
−0.404249 + 0.914649i $$0.632467\pi$$
$$942$$ 0 0
$$943$$ 0 0
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ −30488.0 −1.04617 −0.523087 0.852279i $$-0.675220\pi$$
−0.523087 + 0.852279i $$0.675220\pi$$
$$948$$ 0 0
$$949$$ 13754.0 0.470468
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ −9522.00 −0.323660 −0.161830 0.986819i $$-0.551740\pi$$
−0.161830 + 0.986819i $$0.551740\pi$$
$$954$$ 0 0
$$955$$ 13120.0 0.444558
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ −18608.0 −0.626573
$$960$$ 0 0
$$961$$ 4065.00 0.136451
$$962$$ 0 0
$$963$$ 0 0
$$964$$ 0 0
$$965$$ 3500.00 0.116755
$$966$$ 0 0
$$967$$ 7616.00 0.253272 0.126636 0.991949i $$-0.459582\pi$$
0.126636 + 0.991949i $$0.459582\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ 51316.0 1.69599 0.847996 0.530002i $$-0.177809\pi$$
0.847996 + 0.530002i $$0.177809\pi$$
$$972$$ 0 0
$$973$$ −15456.0 −0.509246
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 48666.0 1.59362 0.796808 0.604232i $$-0.206520\pi$$
0.796808 + 0.604232i $$0.206520\pi$$
$$978$$ 0 0
$$979$$ 15440.0 0.504050
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ 17388.0 0.564182 0.282091 0.959388i $$-0.408972\pi$$
0.282091 + 0.959388i $$0.408972\pi$$
$$984$$ 0 0
$$985$$ −3420.00 −0.110630
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ 0 0
$$990$$ 0 0
$$991$$ −11496.0 −0.368499 −0.184249 0.982880i $$-0.558985\pi$$
−0.184249 + 0.982880i $$0.558985\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ −33680.0 −1.07309
$$996$$ 0 0
$$997$$ 48862.0 1.55213 0.776066 0.630652i $$-0.217212\pi$$
0.776066 + 0.630652i $$0.217212\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1872.4.a.d.1.1 1
3.2 odd 2 624.4.a.d.1.1 1
4.3 odd 2 234.4.a.h.1.1 1
12.11 even 2 78.4.a.c.1.1 1
24.5 odd 2 2496.4.a.j.1.1 1
24.11 even 2 2496.4.a.a.1.1 1
60.59 even 2 1950.4.a.l.1.1 1
156.47 odd 4 1014.4.b.h.337.1 2
156.83 odd 4 1014.4.b.h.337.2 2
156.155 even 2 1014.4.a.j.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
78.4.a.c.1.1 1 12.11 even 2
234.4.a.h.1.1 1 4.3 odd 2
624.4.a.d.1.1 1 3.2 odd 2
1014.4.a.j.1.1 1 156.155 even 2
1014.4.b.h.337.1 2 156.47 odd 4
1014.4.b.h.337.2 2 156.83 odd 4
1872.4.a.d.1.1 1 1.1 even 1 trivial
1950.4.a.l.1.1 1 60.59 even 2
2496.4.a.a.1.1 1 24.11 even 2
2496.4.a.j.1.1 1 24.5 odd 2