Properties

Label 1872.4.a.bm
Level $1872$
Weight $4$
Character orbit 1872.a
Self dual yes
Analytic conductor $110.452$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1872,4,Mod(1,1872)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1872, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1872.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1872.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,8,0,-36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(110.451575531\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.18257.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 26x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 2 \beta_1 + 3) q^{5} + ( - \beta_1 - 12) q^{7} + ( - 4 \beta_{2} + 2 \beta_1 + 16) q^{11} + 13 q^{13} + (13 \beta_{2} + 6 \beta_1 + 43) q^{17} + (4 \beta_{2} + 2 \beta_1 - 40) q^{19} + (8 \beta_{2} + 80) q^{23}+ \cdots + ( - 20 \beta_{2} - 80 \beta_1 + 718) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 8 q^{5} - 36 q^{7} + 52 q^{11} + 39 q^{13} + 116 q^{17} - 124 q^{19} + 232 q^{23} + 191 q^{25} + 30 q^{29} - 240 q^{31} - 340 q^{35} - 264 q^{37} + 374 q^{41} - 248 q^{43} - 412 q^{47} - 443 q^{49}+ \cdots + 2174 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 26x + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} + \nu - 18 ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{2} + 3\nu + 16 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{2} + 3\beta _1 + 35 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.78415
0.305203
5.47894
0 0 0 −7.51634 0 −12.0519 0 0 0
1.2 0 0 0 −6.19042 0 −3.19918 0 0 0
1.3 0 0 0 21.7068 0 −20.7489 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1872.4.a.bm 3
3.b odd 2 1 208.4.a.l 3
4.b odd 2 1 936.4.a.m 3
12.b even 2 1 104.4.a.e 3
24.f even 2 1 832.4.a.bc 3
24.h odd 2 1 832.4.a.bb 3
156.h even 2 1 1352.4.a.h 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.4.a.e 3 12.b even 2 1
208.4.a.l 3 3.b odd 2 1
832.4.a.bb 3 24.h odd 2 1
832.4.a.bc 3 24.f even 2 1
936.4.a.m 3 4.b odd 2 1
1352.4.a.h 3 156.h even 2 1
1872.4.a.bm 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1872))\):

\( T_{5}^{3} - 8T_{5}^{2} - 251T_{5} - 1010 \) Copy content Toggle raw display
\( T_{7}^{3} + 36T_{7}^{2} + 355T_{7} + 800 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 8 T^{2} + \cdots - 1010 \) Copy content Toggle raw display
$7$ \( T^{3} + 36 T^{2} + \cdots + 800 \) Copy content Toggle raw display
$11$ \( T^{3} - 52 T^{2} + \cdots + 59184 \) Copy content Toggle raw display
$13$ \( (T - 13)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} - 116 T^{2} + \cdots + 1048898 \) Copy content Toggle raw display
$19$ \( T^{3} + 124 T^{2} + \cdots + 34864 \) Copy content Toggle raw display
$23$ \( T^{3} - 232 T^{2} + \cdots + 65536 \) Copy content Toggle raw display
$29$ \( T^{3} - 30 T^{2} + \cdots - 1387112 \) Copy content Toggle raw display
$31$ \( T^{3} + 240 T^{2} + \cdots - 311936 \) Copy content Toggle raw display
$37$ \( T^{3} + 264 T^{2} + \cdots + 99730 \) Copy content Toggle raw display
$41$ \( T^{3} - 374 T^{2} + \cdots + 29246464 \) Copy content Toggle raw display
$43$ \( T^{3} + 248 T^{2} + \cdots - 52832740 \) Copy content Toggle raw display
$47$ \( T^{3} + 412 T^{2} + \cdots - 2411208 \) Copy content Toggle raw display
$53$ \( T^{3} - 386 T^{2} + \cdots + 4448256 \) Copy content Toggle raw display
$59$ \( T^{3} + 940 T^{2} + \cdots - 37508496 \) Copy content Toggle raw display
$61$ \( T^{3} - 1206 T^{2} + \cdots - 46097792 \) Copy content Toggle raw display
$67$ \( T^{3} - 564 T^{2} + \cdots - 2603408 \) Copy content Toggle raw display
$71$ \( T^{3} - 1260 T^{2} + \cdots + 198899280 \) Copy content Toggle raw display
$73$ \( T^{3} - 142 T^{2} + \cdots - 146317608 \) Copy content Toggle raw display
$79$ \( T^{3} + 1040 T^{2} + \cdots - 373329920 \) Copy content Toggle raw display
$83$ \( T^{3} - 756 T^{2} + \cdots + 64918848 \) Copy content Toggle raw display
$89$ \( T^{3} - 18 T^{2} + \cdots - 121968344 \) Copy content Toggle raw display
$97$ \( T^{3} - 2174 T^{2} + \cdots + 7072888 \) Copy content Toggle raw display
show more
show less