Properties

Label 1872.4.a.bj.1.1
Level $1872$
Weight $4$
Character 1872.1
Self dual yes
Analytic conductor $110.452$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1872,4,Mod(1,1872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1872, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1872.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1872.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(110.451575531\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.36248.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 54x - 90 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-5.70213\) of defining polynomial
Character \(\chi\) \(=\) 1872.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-18.8819 q^{5} +17.9266 q^{7} +44.5723 q^{11} +13.0000 q^{13} -34.0000 q^{17} +152.835 q^{19} +107.234 q^{23} +231.525 q^{25} -149.674 q^{29} -0.162885 q^{31} -338.489 q^{35} -256.342 q^{37} -414.723 q^{41} -471.076 q^{43} +632.710 q^{47} -21.6354 q^{49} +236.489 q^{53} -841.608 q^{55} -108.018 q^{59} +888.292 q^{61} -245.464 q^{65} -637.149 q^{67} -362.597 q^{71} +723.177 q^{73} +799.031 q^{77} +964.684 q^{79} -431.868 q^{83} +641.984 q^{85} -117.359 q^{89} +233.046 q^{91} -2885.81 q^{95} -1153.38 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 16 q^{5} + 22 q^{7} - 20 q^{11} + 39 q^{13} - 102 q^{17} + 38 q^{19} + 32 q^{23} + 161 q^{25} - 350 q^{29} - 50 q^{31} + 232 q^{35} + 542 q^{37} - 500 q^{41} - 420 q^{43} + 324 q^{47} + 1119 q^{49}+ \cdots + 402 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −18.8819 −1.68885 −0.844423 0.535676i \(-0.820057\pi\)
−0.844423 + 0.535676i \(0.820057\pi\)
\(6\) 0 0
\(7\) 17.9266 0.967948 0.483974 0.875082i \(-0.339193\pi\)
0.483974 + 0.875082i \(0.339193\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 44.5723 1.22173 0.610866 0.791734i \(-0.290821\pi\)
0.610866 + 0.791734i \(0.290821\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −34.0000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) 152.835 1.84541 0.922704 0.385510i \(-0.125974\pi\)
0.922704 + 0.385510i \(0.125974\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 107.234 0.972168 0.486084 0.873912i \(-0.338425\pi\)
0.486084 + 0.873912i \(0.338425\pi\)
\(24\) 0 0
\(25\) 231.525 1.85220
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −149.674 −0.958407 −0.479204 0.877704i \(-0.659074\pi\)
−0.479204 + 0.877704i \(0.659074\pi\)
\(30\) 0 0
\(31\) −0.162885 −0.000943710 0 −0.000471855 1.00000i \(-0.500150\pi\)
−0.000471855 1.00000i \(0.500150\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −338.489 −1.63472
\(36\) 0 0
\(37\) −256.342 −1.13898 −0.569491 0.821997i \(-0.692860\pi\)
−0.569491 + 0.821997i \(0.692860\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −414.723 −1.57973 −0.789865 0.613281i \(-0.789849\pi\)
−0.789865 + 0.613281i \(0.789849\pi\)
\(42\) 0 0
\(43\) −471.076 −1.67066 −0.835330 0.549749i \(-0.814723\pi\)
−0.835330 + 0.549749i \(0.814723\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 632.710 1.96362 0.981812 0.189857i \(-0.0608026\pi\)
0.981812 + 0.189857i \(0.0608026\pi\)
\(48\) 0 0
\(49\) −21.6354 −0.0630771
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 236.489 0.612910 0.306455 0.951885i \(-0.400857\pi\)
0.306455 + 0.951885i \(0.400857\pi\)
\(54\) 0 0
\(55\) −841.608 −2.06332
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −108.018 −0.238351 −0.119176 0.992873i \(-0.538025\pi\)
−0.119176 + 0.992873i \(0.538025\pi\)
\(60\) 0 0
\(61\) 888.292 1.86449 0.932247 0.361822i \(-0.117845\pi\)
0.932247 + 0.361822i \(0.117845\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −245.464 −0.468402
\(66\) 0 0
\(67\) −637.149 −1.16179 −0.580897 0.813977i \(-0.697298\pi\)
−0.580897 + 0.813977i \(0.697298\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −362.597 −0.606090 −0.303045 0.952976i \(-0.598003\pi\)
−0.303045 + 0.952976i \(0.598003\pi\)
\(72\) 0 0
\(73\) 723.177 1.15947 0.579736 0.814804i \(-0.303156\pi\)
0.579736 + 0.814804i \(0.303156\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 799.031 1.18257
\(78\) 0 0
\(79\) 964.684 1.37387 0.686933 0.726721i \(-0.258957\pi\)
0.686933 + 0.726721i \(0.258957\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −431.868 −0.571128 −0.285564 0.958360i \(-0.592181\pi\)
−0.285564 + 0.958360i \(0.592181\pi\)
\(84\) 0 0
\(85\) 641.984 0.819211
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −117.359 −0.139775 −0.0698877 0.997555i \(-0.522264\pi\)
−0.0698877 + 0.997555i \(0.522264\pi\)
\(90\) 0 0
\(91\) 233.046 0.268460
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2885.81 −3.11661
\(96\) 0 0
\(97\) −1153.38 −1.20730 −0.603652 0.797248i \(-0.706288\pi\)
−0.603652 + 0.797248i \(0.706288\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 848.183 0.835618 0.417809 0.908535i \(-0.362798\pi\)
0.417809 + 0.908535i \(0.362798\pi\)
\(102\) 0 0
\(103\) 710.562 0.679745 0.339873 0.940471i \(-0.389616\pi\)
0.339873 + 0.940471i \(0.389616\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 533.245 0.481782 0.240891 0.970552i \(-0.422560\pi\)
0.240891 + 0.970552i \(0.422560\pi\)
\(108\) 0 0
\(109\) −667.057 −0.586170 −0.293085 0.956086i \(-0.594682\pi\)
−0.293085 + 0.956086i \(0.594682\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −302.916 −0.252176 −0.126088 0.992019i \(-0.540242\pi\)
−0.126088 + 0.992019i \(0.540242\pi\)
\(114\) 0 0
\(115\) −2024.78 −1.64184
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −609.506 −0.469524
\(120\) 0 0
\(121\) 655.688 0.492628
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −2011.40 −1.43924
\(126\) 0 0
\(127\) 459.472 0.321035 0.160518 0.987033i \(-0.448684\pi\)
0.160518 + 0.987033i \(0.448684\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 496.848 0.331373 0.165686 0.986179i \(-0.447016\pi\)
0.165686 + 0.986179i \(0.447016\pi\)
\(132\) 0 0
\(133\) 2739.82 1.78626
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2684.75 1.67426 0.837129 0.547006i \(-0.184232\pi\)
0.837129 + 0.547006i \(0.184232\pi\)
\(138\) 0 0
\(139\) 1728.99 1.05504 0.527522 0.849541i \(-0.323121\pi\)
0.527522 + 0.849541i \(0.323121\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 579.440 0.338847
\(144\) 0 0
\(145\) 2826.13 1.61860
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1132.89 0.622887 0.311444 0.950265i \(-0.399188\pi\)
0.311444 + 0.950265i \(0.399188\pi\)
\(150\) 0 0
\(151\) 1258.52 0.678259 0.339130 0.940740i \(-0.389867\pi\)
0.339130 + 0.940740i \(0.389867\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.07558 0.00159378
\(156\) 0 0
\(157\) 2469.89 1.25553 0.627766 0.778402i \(-0.283970\pi\)
0.627766 + 0.778402i \(0.283970\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1922.35 0.941007
\(162\) 0 0
\(163\) 733.892 0.352656 0.176328 0.984331i \(-0.443578\pi\)
0.176328 + 0.984331i \(0.443578\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2610.39 1.20957 0.604784 0.796389i \(-0.293259\pi\)
0.604784 + 0.796389i \(0.293259\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1164.04 −0.511564 −0.255782 0.966734i \(-0.582333\pi\)
−0.255782 + 0.966734i \(0.582333\pi\)
\(174\) 0 0
\(175\) 4150.47 1.79284
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 911.229 0.380494 0.190247 0.981736i \(-0.439071\pi\)
0.190247 + 0.981736i \(0.439071\pi\)
\(180\) 0 0
\(181\) −4817.82 −1.97848 −0.989242 0.146291i \(-0.953266\pi\)
−0.989242 + 0.146291i \(0.953266\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4840.22 1.92357
\(186\) 0 0
\(187\) −1515.46 −0.592627
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 674.312 0.255453 0.127726 0.991809i \(-0.459232\pi\)
0.127726 + 0.991809i \(0.459232\pi\)
\(192\) 0 0
\(193\) −963.634 −0.359398 −0.179699 0.983722i \(-0.557512\pi\)
−0.179699 + 0.983722i \(0.557512\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3995.21 −1.44491 −0.722454 0.691418i \(-0.756986\pi\)
−0.722454 + 0.691418i \(0.756986\pi\)
\(198\) 0 0
\(199\) 1619.07 0.576749 0.288374 0.957518i \(-0.406885\pi\)
0.288374 + 0.957518i \(0.406885\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2683.16 −0.927688
\(204\) 0 0
\(205\) 7830.76 2.66792
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6812.20 2.25459
\(210\) 0 0
\(211\) −543.991 −0.177488 −0.0887438 0.996054i \(-0.528285\pi\)
−0.0887438 + 0.996054i \(0.528285\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8894.79 2.82149
\(216\) 0 0
\(217\) −2.91998 −0.000913462 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −442.000 −0.134535
\(222\) 0 0
\(223\) −2447.45 −0.734949 −0.367474 0.930034i \(-0.619777\pi\)
−0.367474 + 0.930034i \(0.619777\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 467.798 0.136779 0.0683896 0.997659i \(-0.478214\pi\)
0.0683896 + 0.997659i \(0.478214\pi\)
\(228\) 0 0
\(229\) −361.180 −0.104225 −0.0521123 0.998641i \(-0.516595\pi\)
−0.0521123 + 0.998641i \(0.516595\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3068.38 0.862732 0.431366 0.902177i \(-0.358032\pi\)
0.431366 + 0.902177i \(0.358032\pi\)
\(234\) 0 0
\(235\) −11946.8 −3.31626
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 334.108 0.0904253 0.0452127 0.998977i \(-0.485603\pi\)
0.0452127 + 0.998977i \(0.485603\pi\)
\(240\) 0 0
\(241\) 514.961 0.137641 0.0688207 0.997629i \(-0.478076\pi\)
0.0688207 + 0.997629i \(0.478076\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 408.518 0.106528
\(246\) 0 0
\(247\) 1986.85 0.511824
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7028.13 −1.76738 −0.883688 0.468076i \(-0.844947\pi\)
−0.883688 + 0.468076i \(0.844947\pi\)
\(252\) 0 0
\(253\) 4779.67 1.18773
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3572.23 0.867040 0.433520 0.901144i \(-0.357271\pi\)
0.433520 + 0.901144i \(0.357271\pi\)
\(258\) 0 0
\(259\) −4595.35 −1.10248
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4276.74 1.00272 0.501359 0.865239i \(-0.332834\pi\)
0.501359 + 0.865239i \(0.332834\pi\)
\(264\) 0 0
\(265\) −4465.35 −1.03511
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2128.08 −0.482347 −0.241173 0.970482i \(-0.577532\pi\)
−0.241173 + 0.970482i \(0.577532\pi\)
\(270\) 0 0
\(271\) 4386.94 0.983350 0.491675 0.870779i \(-0.336385\pi\)
0.491675 + 0.870779i \(0.336385\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 10319.6 2.26290
\(276\) 0 0
\(277\) 3411.86 0.740067 0.370034 0.929018i \(-0.379346\pi\)
0.370034 + 0.929018i \(0.379346\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4466.83 0.948286 0.474143 0.880448i \(-0.342758\pi\)
0.474143 + 0.880448i \(0.342758\pi\)
\(282\) 0 0
\(283\) 1879.30 0.394746 0.197373 0.980329i \(-0.436759\pi\)
0.197373 + 0.980329i \(0.436759\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −7434.60 −1.52910
\(288\) 0 0
\(289\) −3757.00 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 207.996 0.0414718 0.0207359 0.999785i \(-0.493399\pi\)
0.0207359 + 0.999785i \(0.493399\pi\)
\(294\) 0 0
\(295\) 2039.58 0.402539
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1394.04 0.269631
\(300\) 0 0
\(301\) −8444.80 −1.61711
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −16772.6 −3.14885
\(306\) 0 0
\(307\) 1743.07 0.324046 0.162023 0.986787i \(-0.448198\pi\)
0.162023 + 0.986787i \(0.448198\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 10027.9 1.82840 0.914198 0.405267i \(-0.132822\pi\)
0.914198 + 0.405267i \(0.132822\pi\)
\(312\) 0 0
\(313\) −2092.80 −0.377929 −0.188965 0.981984i \(-0.560513\pi\)
−0.188965 + 0.981984i \(0.560513\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10481.8 1.85715 0.928573 0.371151i \(-0.121037\pi\)
0.928573 + 0.371151i \(0.121037\pi\)
\(318\) 0 0
\(319\) −6671.32 −1.17092
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5196.39 −0.895154
\(324\) 0 0
\(325\) 3009.83 0.513709
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 11342.4 1.90068
\(330\) 0 0
\(331\) −3954.25 −0.656631 −0.328316 0.944568i \(-0.606481\pi\)
−0.328316 + 0.944568i \(0.606481\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 12030.6 1.96209
\(336\) 0 0
\(337\) −7823.04 −1.26454 −0.632268 0.774750i \(-0.717876\pi\)
−0.632268 + 0.774750i \(0.717876\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −7.26016 −0.00115296
\(342\) 0 0
\(343\) −6536.69 −1.02900
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4248.15 0.657213 0.328606 0.944467i \(-0.393421\pi\)
0.328606 + 0.944467i \(0.393421\pi\)
\(348\) 0 0
\(349\) −3202.79 −0.491236 −0.245618 0.969367i \(-0.578991\pi\)
−0.245618 + 0.969367i \(0.578991\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2667.60 0.402216 0.201108 0.979569i \(-0.435546\pi\)
0.201108 + 0.979569i \(0.435546\pi\)
\(354\) 0 0
\(355\) 6846.52 1.02359
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9062.64 1.33233 0.666167 0.745803i \(-0.267934\pi\)
0.666167 + 0.745803i \(0.267934\pi\)
\(360\) 0 0
\(361\) 16499.5 2.40553
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −13654.9 −1.95817
\(366\) 0 0
\(367\) 4141.93 0.589120 0.294560 0.955633i \(-0.404827\pi\)
0.294560 + 0.955633i \(0.404827\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4239.45 0.593265
\(372\) 0 0
\(373\) −5350.96 −0.742794 −0.371397 0.928474i \(-0.621121\pi\)
−0.371397 + 0.928474i \(0.621121\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1945.76 −0.265814
\(378\) 0 0
\(379\) 9360.54 1.26865 0.634325 0.773066i \(-0.281278\pi\)
0.634325 + 0.773066i \(0.281278\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7241.39 0.966104 0.483052 0.875592i \(-0.339528\pi\)
0.483052 + 0.875592i \(0.339528\pi\)
\(384\) 0 0
\(385\) −15087.2 −1.99718
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −6258.22 −0.815692 −0.407846 0.913051i \(-0.633720\pi\)
−0.407846 + 0.913051i \(0.633720\pi\)
\(390\) 0 0
\(391\) −3645.96 −0.471571
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −18215.0 −2.32025
\(396\) 0 0
\(397\) −10114.6 −1.27868 −0.639342 0.768923i \(-0.720793\pi\)
−0.639342 + 0.768923i \(0.720793\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12414.5 1.54601 0.773006 0.634398i \(-0.218752\pi\)
0.773006 + 0.634398i \(0.218752\pi\)
\(402\) 0 0
\(403\) −2.11751 −0.000261738 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −11425.7 −1.39153
\(408\) 0 0
\(409\) −14052.1 −1.69885 −0.849425 0.527709i \(-0.823051\pi\)
−0.849425 + 0.527709i \(0.823051\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1936.40 −0.230711
\(414\) 0 0
\(415\) 8154.48 0.964548
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1003.68 0.117024 0.0585119 0.998287i \(-0.481364\pi\)
0.0585119 + 0.998287i \(0.481364\pi\)
\(420\) 0 0
\(421\) 8376.14 0.969663 0.484832 0.874608i \(-0.338881\pi\)
0.484832 + 0.874608i \(0.338881\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −7871.86 −0.898450
\(426\) 0 0
\(427\) 15924.1 1.80473
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12296.3 −1.37423 −0.687116 0.726548i \(-0.741123\pi\)
−0.687116 + 0.726548i \(0.741123\pi\)
\(432\) 0 0
\(433\) 1010.07 0.112104 0.0560518 0.998428i \(-0.482149\pi\)
0.0560518 + 0.998428i \(0.482149\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 16389.1 1.79405
\(438\) 0 0
\(439\) −1845.70 −0.200662 −0.100331 0.994954i \(-0.531990\pi\)
−0.100331 + 0.994954i \(0.531990\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7313.67 0.784386 0.392193 0.919883i \(-0.371717\pi\)
0.392193 + 0.919883i \(0.371717\pi\)
\(444\) 0 0
\(445\) 2215.95 0.236059
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −8443.62 −0.887481 −0.443740 0.896155i \(-0.646349\pi\)
−0.443740 + 0.896155i \(0.646349\pi\)
\(450\) 0 0
\(451\) −18485.2 −1.93001
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4400.35 −0.453388
\(456\) 0 0
\(457\) 14302.7 1.46401 0.732004 0.681301i \(-0.238585\pi\)
0.732004 + 0.681301i \(0.238585\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3862.08 0.390184 0.195092 0.980785i \(-0.437499\pi\)
0.195092 + 0.980785i \(0.437499\pi\)
\(462\) 0 0
\(463\) 14364.6 1.44186 0.720929 0.693009i \(-0.243715\pi\)
0.720929 + 0.693009i \(0.243715\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14181.4 1.40522 0.702610 0.711575i \(-0.252018\pi\)
0.702610 + 0.711575i \(0.252018\pi\)
\(468\) 0 0
\(469\) −11421.9 −1.12455
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −20996.9 −2.04110
\(474\) 0 0
\(475\) 35385.2 3.41807
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1182.57 0.112804 0.0564019 0.998408i \(-0.482037\pi\)
0.0564019 + 0.998408i \(0.482037\pi\)
\(480\) 0 0
\(481\) −3332.45 −0.315897
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 21778.1 2.03895
\(486\) 0 0
\(487\) 16039.2 1.49242 0.746209 0.665712i \(-0.231872\pi\)
0.746209 + 0.665712i \(0.231872\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −11867.2 −1.09075 −0.545376 0.838191i \(-0.683613\pi\)
−0.545376 + 0.838191i \(0.683613\pi\)
\(492\) 0 0
\(493\) 5088.92 0.464896
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6500.15 −0.586663
\(498\) 0 0
\(499\) 6945.54 0.623097 0.311548 0.950230i \(-0.399152\pi\)
0.311548 + 0.950230i \(0.399152\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 5631.84 0.499227 0.249614 0.968346i \(-0.419696\pi\)
0.249614 + 0.968346i \(0.419696\pi\)
\(504\) 0 0
\(505\) −16015.3 −1.41123
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −10395.3 −0.905229 −0.452614 0.891706i \(-0.649509\pi\)
−0.452614 + 0.891706i \(0.649509\pi\)
\(510\) 0 0
\(511\) 12964.1 1.12231
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −13416.7 −1.14799
\(516\) 0 0
\(517\) 28201.3 2.39902
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7846.89 −0.659844 −0.329922 0.944008i \(-0.607022\pi\)
−0.329922 + 0.944008i \(0.607022\pi\)
\(522\) 0 0
\(523\) −13670.9 −1.14299 −0.571497 0.820604i \(-0.693637\pi\)
−0.571497 + 0.820604i \(0.693637\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.53809 0.000457767 0
\(528\) 0 0
\(529\) −667.849 −0.0548902
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −5391.40 −0.438138
\(534\) 0 0
\(535\) −10068.7 −0.813657
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −964.341 −0.0770633
\(540\) 0 0
\(541\) 6194.38 0.492269 0.246134 0.969236i \(-0.420840\pi\)
0.246134 + 0.969236i \(0.420840\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 12595.3 0.989951
\(546\) 0 0
\(547\) 1856.88 0.145145 0.0725726 0.997363i \(-0.476879\pi\)
0.0725726 + 0.997363i \(0.476879\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −22875.5 −1.76865
\(552\) 0 0
\(553\) 17293.5 1.32983
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −15017.2 −1.14237 −0.571183 0.820822i \(-0.693516\pi\)
−0.571183 + 0.820822i \(0.693516\pi\)
\(558\) 0 0
\(559\) −6123.98 −0.463358
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 13842.2 1.03620 0.518098 0.855321i \(-0.326640\pi\)
0.518098 + 0.855321i \(0.326640\pi\)
\(564\) 0 0
\(565\) 5719.62 0.425887
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 17621.0 1.29826 0.649131 0.760677i \(-0.275133\pi\)
0.649131 + 0.760677i \(0.275133\pi\)
\(570\) 0 0
\(571\) −16472.6 −1.20728 −0.603639 0.797258i \(-0.706283\pi\)
−0.603639 + 0.797258i \(0.706283\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 24827.4 1.80065
\(576\) 0 0
\(577\) −19638.6 −1.41693 −0.708463 0.705748i \(-0.750611\pi\)
−0.708463 + 0.705748i \(0.750611\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −7741.94 −0.552822
\(582\) 0 0
\(583\) 10540.8 0.748811
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −15965.5 −1.12260 −0.561300 0.827612i \(-0.689699\pi\)
−0.561300 + 0.827612i \(0.689699\pi\)
\(588\) 0 0
\(589\) −24.8945 −0.00174153
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 16128.6 1.11690 0.558452 0.829537i \(-0.311396\pi\)
0.558452 + 0.829537i \(0.311396\pi\)
\(594\) 0 0
\(595\) 11508.6 0.792953
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 18322.6 1.24982 0.624910 0.780697i \(-0.285136\pi\)
0.624910 + 0.780697i \(0.285136\pi\)
\(600\) 0 0
\(601\) 10528.6 0.714594 0.357297 0.933991i \(-0.383698\pi\)
0.357297 + 0.933991i \(0.383698\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −12380.6 −0.831974
\(606\) 0 0
\(607\) −16560.5 −1.10737 −0.553683 0.832728i \(-0.686778\pi\)
−0.553683 + 0.832728i \(0.686778\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8225.24 0.544611
\(612\) 0 0
\(613\) 23354.0 1.53876 0.769379 0.638793i \(-0.220566\pi\)
0.769379 + 0.638793i \(0.220566\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23424.3 1.52840 0.764202 0.644977i \(-0.223133\pi\)
0.764202 + 0.644977i \(0.223133\pi\)
\(618\) 0 0
\(619\) 3275.77 0.212705 0.106352 0.994328i \(-0.466083\pi\)
0.106352 + 0.994328i \(0.466083\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2103.85 −0.135295
\(624\) 0 0
\(625\) 9038.33 0.578453
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8715.63 0.552488
\(630\) 0 0
\(631\) 24146.4 1.52338 0.761691 0.647941i \(-0.224369\pi\)
0.761691 + 0.647941i \(0.224369\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −8675.69 −0.542180
\(636\) 0 0
\(637\) −281.261 −0.0174944
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 23506.8 1.44846 0.724230 0.689558i \(-0.242195\pi\)
0.724230 + 0.689558i \(0.242195\pi\)
\(642\) 0 0
\(643\) −5273.79 −0.323449 −0.161725 0.986836i \(-0.551706\pi\)
−0.161725 + 0.986836i \(0.551706\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −7106.47 −0.431815 −0.215907 0.976414i \(-0.569271\pi\)
−0.215907 + 0.976414i \(0.569271\pi\)
\(648\) 0 0
\(649\) −4814.60 −0.291201
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 8474.11 0.507837 0.253918 0.967226i \(-0.418281\pi\)
0.253918 + 0.967226i \(0.418281\pi\)
\(654\) 0 0
\(655\) −9381.43 −0.559638
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −18444.7 −1.09030 −0.545148 0.838340i \(-0.683526\pi\)
−0.545148 + 0.838340i \(0.683526\pi\)
\(660\) 0 0
\(661\) 29184.5 1.71732 0.858659 0.512547i \(-0.171298\pi\)
0.858659 + 0.512547i \(0.171298\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −51732.9 −3.01672
\(666\) 0 0
\(667\) −16050.2 −0.931732
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 39593.2 2.27791
\(672\) 0 0
\(673\) −28477.5 −1.63110 −0.815548 0.578689i \(-0.803564\pi\)
−0.815548 + 0.578689i \(0.803564\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −6422.80 −0.364621 −0.182310 0.983241i \(-0.558358\pi\)
−0.182310 + 0.983241i \(0.558358\pi\)
\(678\) 0 0
\(679\) −20676.3 −1.16861
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −54.3801 −0.00304655 −0.00152328 0.999999i \(-0.500485\pi\)
−0.00152328 + 0.999999i \(0.500485\pi\)
\(684\) 0 0
\(685\) −50693.1 −2.82756
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3074.35 0.169991
\(690\) 0 0
\(691\) −14382.3 −0.791794 −0.395897 0.918295i \(-0.629566\pi\)
−0.395897 + 0.918295i \(0.629566\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −32646.6 −1.78181
\(696\) 0 0
\(697\) 14100.6 0.766281
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −32081.3 −1.72852 −0.864262 0.503042i \(-0.832214\pi\)
−0.864262 + 0.503042i \(0.832214\pi\)
\(702\) 0 0
\(703\) −39178.0 −2.10189
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 15205.1 0.808835
\(708\) 0 0
\(709\) 11549.8 0.611793 0.305896 0.952065i \(-0.401044\pi\)
0.305896 + 0.952065i \(0.401044\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −17.4668 −0.000917445 0
\(714\) 0 0
\(715\) −10940.9 −0.572261
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −33235.7 −1.72390 −0.861949 0.506995i \(-0.830756\pi\)
−0.861949 + 0.506995i \(0.830756\pi\)
\(720\) 0 0
\(721\) 12738.0 0.657958
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −34653.4 −1.77516
\(726\) 0 0
\(727\) −13863.5 −0.707249 −0.353625 0.935387i \(-0.615051\pi\)
−0.353625 + 0.935387i \(0.615051\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 16016.6 0.810389
\(732\) 0 0
\(733\) 13448.6 0.677675 0.338838 0.940845i \(-0.389966\pi\)
0.338838 + 0.940845i \(0.389966\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −28399.2 −1.41940
\(738\) 0 0
\(739\) 36402.4 1.81202 0.906012 0.423252i \(-0.139112\pi\)
0.906012 + 0.423252i \(0.139112\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 23695.5 1.16999 0.584996 0.811036i \(-0.301096\pi\)
0.584996 + 0.811036i \(0.301096\pi\)
\(744\) 0 0
\(745\) −21391.1 −1.05196
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 9559.29 0.466340
\(750\) 0 0
\(751\) 4052.82 0.196923 0.0984617 0.995141i \(-0.468608\pi\)
0.0984617 + 0.995141i \(0.468608\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −23763.3 −1.14548
\(756\) 0 0
\(757\) 15508.4 0.744603 0.372301 0.928112i \(-0.378569\pi\)
0.372301 + 0.928112i \(0.378569\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −29272.1 −1.39436 −0.697182 0.716894i \(-0.745563\pi\)
−0.697182 + 0.716894i \(0.745563\pi\)
\(762\) 0 0
\(763\) −11958.1 −0.567382
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1404.23 −0.0661067
\(768\) 0 0
\(769\) 35088.4 1.64541 0.822706 0.568468i \(-0.192464\pi\)
0.822706 + 0.568468i \(0.192464\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 11475.6 0.533956 0.266978 0.963703i \(-0.413975\pi\)
0.266978 + 0.963703i \(0.413975\pi\)
\(774\) 0 0
\(775\) −37.7120 −0.00174794
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −63384.2 −2.91524
\(780\) 0 0
\(781\) −16161.8 −0.740479
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −46636.1 −2.12040
\(786\) 0 0
\(787\) 17215.7 0.779761 0.389881 0.920865i \(-0.372516\pi\)
0.389881 + 0.920865i \(0.372516\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −5430.27 −0.244094
\(792\) 0 0
\(793\) 11547.8 0.517118
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −43951.6 −1.95338 −0.976692 0.214646i \(-0.931140\pi\)
−0.976692 + 0.214646i \(0.931140\pi\)
\(798\) 0 0
\(799\) −21512.2 −0.952497
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 32233.6 1.41656
\(804\) 0 0
\(805\) −36297.5 −1.58922
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 27914.7 1.21314 0.606569 0.795031i \(-0.292545\pi\)
0.606569 + 0.795031i \(0.292545\pi\)
\(810\) 0 0
\(811\) −38016.3 −1.64603 −0.823017 0.568016i \(-0.807711\pi\)
−0.823017 + 0.568016i \(0.807711\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −13857.3 −0.595581
\(816\) 0 0
\(817\) −71996.8 −3.08305
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 15367.7 0.653273 0.326637 0.945150i \(-0.394085\pi\)
0.326637 + 0.945150i \(0.394085\pi\)
\(822\) 0 0
\(823\) −377.068 −0.0159705 −0.00798527 0.999968i \(-0.502542\pi\)
−0.00798527 + 0.999968i \(0.502542\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −5466.15 −0.229839 −0.114919 0.993375i \(-0.536661\pi\)
−0.114919 + 0.993375i \(0.536661\pi\)
\(828\) 0 0
\(829\) −18760.0 −0.785962 −0.392981 0.919547i \(-0.628556\pi\)
−0.392981 + 0.919547i \(0.628556\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 735.605 0.0305969
\(834\) 0 0
\(835\) −49289.1 −2.04278
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −46530.4 −1.91467 −0.957334 0.288983i \(-0.906683\pi\)
−0.957334 + 0.288983i \(0.906683\pi\)
\(840\) 0 0
\(841\) −1986.62 −0.0814558
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −3191.04 −0.129911
\(846\) 0 0
\(847\) 11754.3 0.476839
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −27488.6 −1.10728
\(852\) 0 0
\(853\) −11378.2 −0.456719 −0.228359 0.973577i \(-0.573336\pi\)
−0.228359 + 0.973577i \(0.573336\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −16515.4 −0.658289 −0.329145 0.944280i \(-0.606760\pi\)
−0.329145 + 0.944280i \(0.606760\pi\)
\(858\) 0 0
\(859\) −1477.37 −0.0586811 −0.0293406 0.999569i \(-0.509341\pi\)
−0.0293406 + 0.999569i \(0.509341\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 14215.0 0.560702 0.280351 0.959898i \(-0.409549\pi\)
0.280351 + 0.959898i \(0.409549\pi\)
\(864\) 0 0
\(865\) 21979.3 0.863953
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 42998.2 1.67850
\(870\) 0 0
\(871\) −8282.94 −0.322223
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −36057.6 −1.39311
\(876\) 0 0
\(877\) 15634.9 0.602001 0.301000 0.953624i \(-0.402679\pi\)
0.301000 + 0.953624i \(0.402679\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 35793.2 1.36879 0.684395 0.729111i \(-0.260066\pi\)
0.684395 + 0.729111i \(0.260066\pi\)
\(882\) 0 0
\(883\) 18937.7 0.721749 0.360875 0.932614i \(-0.382478\pi\)
0.360875 + 0.932614i \(0.382478\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −16591.7 −0.628066 −0.314033 0.949412i \(-0.601680\pi\)
−0.314033 + 0.949412i \(0.601680\pi\)
\(888\) 0 0
\(889\) 8236.78 0.310746
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 96700.3 3.62369
\(894\) 0 0
\(895\) −17205.7 −0.642596
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 24.3797 0.000904459 0
\(900\) 0 0
\(901\) −8040.62 −0.297305
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 90969.4 3.34135
\(906\) 0 0
\(907\) −28947.7 −1.05975 −0.529875 0.848076i \(-0.677761\pi\)
−0.529875 + 0.848076i \(0.677761\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 13179.1 0.479302 0.239651 0.970859i \(-0.422967\pi\)
0.239651 + 0.970859i \(0.422967\pi\)
\(912\) 0 0
\(913\) −19249.3 −0.697766
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 8906.82 0.320751
\(918\) 0 0
\(919\) −29617.7 −1.06311 −0.531555 0.847024i \(-0.678392\pi\)
−0.531555 + 0.847024i \(0.678392\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −4713.76 −0.168099
\(924\) 0 0
\(925\) −59349.7 −2.10963
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 36633.5 1.29376 0.646882 0.762590i \(-0.276073\pi\)
0.646882 + 0.762590i \(0.276073\pi\)
\(930\) 0 0
\(931\) −3306.65 −0.116403
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 28614.7 1.00086
\(936\) 0 0
\(937\) 3252.46 0.113397 0.0566986 0.998391i \(-0.481943\pi\)
0.0566986 + 0.998391i \(0.481943\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 20638.9 0.714995 0.357497 0.933914i \(-0.383630\pi\)
0.357497 + 0.933914i \(0.383630\pi\)
\(942\) 0 0
\(943\) −44472.5 −1.53576
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −21790.8 −0.747737 −0.373869 0.927482i \(-0.621969\pi\)
−0.373869 + 0.927482i \(0.621969\pi\)
\(948\) 0 0
\(949\) 9401.30 0.321580
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −31780.0 −1.08023 −0.540114 0.841592i \(-0.681619\pi\)
−0.540114 + 0.841592i \(0.681619\pi\)
\(954\) 0 0
\(955\) −12732.3 −0.431421
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 48128.5 1.62059
\(960\) 0 0
\(961\) −29791.0 −0.999999
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 18195.2 0.606969
\(966\) 0 0
\(967\) 38528.7 1.28128 0.640640 0.767841i \(-0.278669\pi\)
0.640640 + 0.767841i \(0.278669\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 22579.5 0.746252 0.373126 0.927781i \(-0.378286\pi\)
0.373126 + 0.927781i \(0.378286\pi\)
\(972\) 0 0
\(973\) 30995.0 1.02123
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −30254.4 −0.990712 −0.495356 0.868690i \(-0.664962\pi\)
−0.495356 + 0.868690i \(0.664962\pi\)
\(978\) 0 0
\(979\) −5230.95 −0.170768
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −7071.61 −0.229450 −0.114725 0.993397i \(-0.536599\pi\)
−0.114725 + 0.993397i \(0.536599\pi\)
\(984\) 0 0
\(985\) 75437.1 2.44023
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −50515.4 −1.62416
\(990\) 0 0
\(991\) −2808.28 −0.0900180 −0.0450090 0.998987i \(-0.514332\pi\)
−0.0450090 + 0.998987i \(0.514332\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −30571.1 −0.974040
\(996\) 0 0
\(997\) −15225.5 −0.483648 −0.241824 0.970320i \(-0.577746\pi\)
−0.241824 + 0.970320i \(0.577746\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1872.4.a.bj.1.1 3
3.2 odd 2 624.4.a.u.1.3 3
4.3 odd 2 936.4.a.k.1.1 3
12.11 even 2 312.4.a.g.1.3 3
24.5 odd 2 2496.4.a.bk.1.1 3
24.11 even 2 2496.4.a.bo.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.a.g.1.3 3 12.11 even 2
624.4.a.u.1.3 3 3.2 odd 2
936.4.a.k.1.1 3 4.3 odd 2
1872.4.a.bj.1.1 3 1.1 even 1 trivial
2496.4.a.bk.1.1 3 24.5 odd 2
2496.4.a.bo.1.1 3 24.11 even 2