Properties

Label 1872.4.a.bg.1.2
Level $1872$
Weight $4$
Character 1872.1
Self dual yes
Analytic conductor $110.452$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1872,4,Mod(1,1872)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1872.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1872, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1872.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,8,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(110.451575531\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{22}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 22 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 234)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.69042\) of defining polynomial
Character \(\chi\) \(=\) 1872.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+13.3808 q^{5} -15.3808 q^{7} +24.9042 q^{11} +13.0000 q^{13} +65.5233 q^{17} +73.1891 q^{19} +28.5700 q^{23} +54.0467 q^{25} +220.570 q^{29} -138.997 q^{31} -205.808 q^{35} -354.187 q^{37} +297.666 q^{41} +9.62171 q^{43} -219.666 q^{47} -106.430 q^{49} +189.238 q^{53} +333.238 q^{55} +329.376 q^{59} -838.757 q^{61} +173.951 q^{65} +386.997 q^{67} +664.521 q^{71} +248.280 q^{73} -383.047 q^{77} +1264.56 q^{79} -157.562 q^{83} +876.757 q^{85} -774.049 q^{89} -199.951 q^{91} +979.332 q^{95} +1054.94 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{5} - 12 q^{7} - 44 q^{11} + 26 q^{13} + 56 q^{17} - 60 q^{19} - 168 q^{23} - 42 q^{25} + 216 q^{29} + 116 q^{31} - 224 q^{35} - 108 q^{37} + 464 q^{41} + 432 q^{43} - 308 q^{47} - 438 q^{49}+ \cdots + 684 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 13.3808 1.19682 0.598409 0.801191i \(-0.295800\pi\)
0.598409 + 0.801191i \(0.295800\pi\)
\(6\) 0 0
\(7\) −15.3808 −0.830487 −0.415243 0.909710i \(-0.636304\pi\)
−0.415243 + 0.909710i \(0.636304\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 24.9042 0.682626 0.341313 0.939950i \(-0.389128\pi\)
0.341313 + 0.939950i \(0.389128\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 65.5233 0.934808 0.467404 0.884044i \(-0.345189\pi\)
0.467404 + 0.884044i \(0.345189\pi\)
\(18\) 0 0
\(19\) 73.1891 0.883723 0.441862 0.897083i \(-0.354318\pi\)
0.441862 + 0.897083i \(0.354318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 28.5700 0.259011 0.129505 0.991579i \(-0.458661\pi\)
0.129505 + 0.991579i \(0.458661\pi\)
\(24\) 0 0
\(25\) 54.0467 0.432373
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 220.570 1.41237 0.706186 0.708026i \(-0.250414\pi\)
0.706186 + 0.708026i \(0.250414\pi\)
\(30\) 0 0
\(31\) −138.997 −0.805312 −0.402656 0.915351i \(-0.631913\pi\)
−0.402656 + 0.915351i \(0.631913\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −205.808 −0.993942
\(36\) 0 0
\(37\) −354.187 −1.57373 −0.786864 0.617127i \(-0.788297\pi\)
−0.786864 + 0.617127i \(0.788297\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 297.666 1.13384 0.566922 0.823772i \(-0.308134\pi\)
0.566922 + 0.823772i \(0.308134\pi\)
\(42\) 0 0
\(43\) 9.62171 0.0341232 0.0170616 0.999854i \(-0.494569\pi\)
0.0170616 + 0.999854i \(0.494569\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −219.666 −0.681735 −0.340868 0.940111i \(-0.610721\pi\)
−0.340868 + 0.940111i \(0.610721\pi\)
\(48\) 0 0
\(49\) −106.430 −0.310292
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 189.238 0.490451 0.245225 0.969466i \(-0.421138\pi\)
0.245225 + 0.969466i \(0.421138\pi\)
\(54\) 0 0
\(55\) 333.238 0.816979
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 329.376 0.726798 0.363399 0.931634i \(-0.381616\pi\)
0.363399 + 0.931634i \(0.381616\pi\)
\(60\) 0 0
\(61\) −838.757 −1.76052 −0.880260 0.474491i \(-0.842632\pi\)
−0.880260 + 0.474491i \(0.842632\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 173.951 0.331938
\(66\) 0 0
\(67\) 386.997 0.705661 0.352830 0.935687i \(-0.385219\pi\)
0.352830 + 0.935687i \(0.385219\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 664.521 1.11076 0.555381 0.831596i \(-0.312572\pi\)
0.555381 + 0.831596i \(0.312572\pi\)
\(72\) 0 0
\(73\) 248.280 0.398068 0.199034 0.979993i \(-0.436220\pi\)
0.199034 + 0.979993i \(0.436220\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −383.047 −0.566912
\(78\) 0 0
\(79\) 1264.56 1.80094 0.900469 0.434920i \(-0.143223\pi\)
0.900469 + 0.434920i \(0.143223\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −157.562 −0.208370 −0.104185 0.994558i \(-0.533223\pi\)
−0.104185 + 0.994558i \(0.533223\pi\)
\(84\) 0 0
\(85\) 876.757 1.11880
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −774.049 −0.921899 −0.460950 0.887426i \(-0.652491\pi\)
−0.460950 + 0.887426i \(0.652491\pi\)
\(90\) 0 0
\(91\) −199.951 −0.230336
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 979.332 1.05766
\(96\) 0 0
\(97\) 1054.94 1.10426 0.552130 0.833758i \(-0.313815\pi\)
0.552130 + 0.833758i \(0.313815\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −987.223 −0.972598 −0.486299 0.873793i \(-0.661653\pi\)
−0.486299 + 0.873793i \(0.661653\pi\)
\(102\) 0 0
\(103\) −1111.51 −1.06330 −0.531651 0.846963i \(-0.678428\pi\)
−0.531651 + 0.846963i \(0.678428\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1390.85 1.25662 0.628311 0.777962i \(-0.283747\pi\)
0.628311 + 0.777962i \(0.283747\pi\)
\(108\) 0 0
\(109\) 739.523 0.649849 0.324924 0.945740i \(-0.394661\pi\)
0.324924 + 0.945740i \(0.394661\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 545.985 0.454530 0.227265 0.973833i \(-0.427022\pi\)
0.227265 + 0.973833i \(0.427022\pi\)
\(114\) 0 0
\(115\) 382.290 0.309989
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1007.80 −0.776346
\(120\) 0 0
\(121\) −710.783 −0.534022
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −949.415 −0.679346
\(126\) 0 0
\(127\) 1461.79 1.02136 0.510680 0.859771i \(-0.329394\pi\)
0.510680 + 0.859771i \(0.329394\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1283.61 −0.856101 −0.428050 0.903755i \(-0.640799\pi\)
−0.428050 + 0.903755i \(0.640799\pi\)
\(132\) 0 0
\(133\) −1125.71 −0.733921
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1705.65 1.06367 0.531836 0.846847i \(-0.321502\pi\)
0.531836 + 0.846847i \(0.321502\pi\)
\(138\) 0 0
\(139\) 2210.09 1.34862 0.674308 0.738450i \(-0.264442\pi\)
0.674308 + 0.738450i \(0.264442\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 323.754 0.189326
\(144\) 0 0
\(145\) 2951.41 1.69035
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1794.71 −0.986766 −0.493383 0.869812i \(-0.664240\pi\)
−0.493383 + 0.869812i \(0.664240\pi\)
\(150\) 0 0
\(151\) 2141.10 1.15391 0.576955 0.816776i \(-0.304241\pi\)
0.576955 + 0.816776i \(0.304241\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1859.90 −0.963812
\(156\) 0 0
\(157\) 1303.13 0.662427 0.331214 0.943556i \(-0.392542\pi\)
0.331214 + 0.943556i \(0.392542\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −439.430 −0.215105
\(162\) 0 0
\(163\) −1341.00 −0.644389 −0.322195 0.946673i \(-0.604421\pi\)
−0.322195 + 0.946673i \(0.604421\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2816.70 1.30517 0.652583 0.757718i \(-0.273686\pi\)
0.652583 + 0.757718i \(0.273686\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2006.66 0.881872 0.440936 0.897539i \(-0.354647\pi\)
0.440936 + 0.897539i \(0.354647\pi\)
\(174\) 0 0
\(175\) −831.282 −0.359080
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3160.83 −1.31984 −0.659921 0.751335i \(-0.729410\pi\)
−0.659921 + 0.751335i \(0.729410\pi\)
\(180\) 0 0
\(181\) 930.010 0.381918 0.190959 0.981598i \(-0.438840\pi\)
0.190959 + 0.981598i \(0.438840\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4739.31 −1.88347
\(186\) 0 0
\(187\) 1631.80 0.638124
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2196.49 −0.832108 −0.416054 0.909340i \(-0.636587\pi\)
−0.416054 + 0.909340i \(0.636587\pi\)
\(192\) 0 0
\(193\) 1097.25 0.409233 0.204617 0.978842i \(-0.434405\pi\)
0.204617 + 0.978842i \(0.434405\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2531.28 0.915462 0.457731 0.889091i \(-0.348662\pi\)
0.457731 + 0.889091i \(0.348662\pi\)
\(198\) 0 0
\(199\) −4170.92 −1.48577 −0.742886 0.669418i \(-0.766543\pi\)
−0.742886 + 0.669418i \(0.766543\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3392.55 −1.17296
\(204\) 0 0
\(205\) 3983.02 1.35700
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1822.71 0.603252
\(210\) 0 0
\(211\) 3104.37 1.01286 0.506431 0.862281i \(-0.330965\pi\)
0.506431 + 0.862281i \(0.330965\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 128.746 0.0408392
\(216\) 0 0
\(217\) 2137.90 0.668801
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 851.803 0.259269
\(222\) 0 0
\(223\) 1410.68 0.423615 0.211808 0.977311i \(-0.432065\pi\)
0.211808 + 0.977311i \(0.432065\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3946.18 −1.15382 −0.576910 0.816808i \(-0.695742\pi\)
−0.576910 + 0.816808i \(0.695742\pi\)
\(228\) 0 0
\(229\) −4161.02 −1.20073 −0.600366 0.799725i \(-0.704978\pi\)
−0.600366 + 0.799725i \(0.704978\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1592.88 0.447866 0.223933 0.974605i \(-0.428110\pi\)
0.223933 + 0.974605i \(0.428110\pi\)
\(234\) 0 0
\(235\) −2939.31 −0.815913
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4989.85 1.35049 0.675244 0.737595i \(-0.264039\pi\)
0.675244 + 0.737595i \(0.264039\pi\)
\(240\) 0 0
\(241\) 5053.80 1.35081 0.675403 0.737449i \(-0.263970\pi\)
0.675403 + 0.737449i \(0.263970\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1424.12 −0.371363
\(246\) 0 0
\(247\) 951.459 0.245101
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4154.20 −1.04466 −0.522332 0.852742i \(-0.674938\pi\)
−0.522332 + 0.852742i \(0.674938\pi\)
\(252\) 0 0
\(253\) 711.511 0.176808
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1640.88 −0.398268 −0.199134 0.979972i \(-0.563813\pi\)
−0.199134 + 0.979972i \(0.563813\pi\)
\(258\) 0 0
\(259\) 5447.68 1.30696
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 7542.74 1.76846 0.884231 0.467050i \(-0.154683\pi\)
0.884231 + 0.467050i \(0.154683\pi\)
\(264\) 0 0
\(265\) 2532.17 0.586980
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5816.13 1.31827 0.659137 0.752023i \(-0.270922\pi\)
0.659137 + 0.752023i \(0.270922\pi\)
\(270\) 0 0
\(271\) −6943.50 −1.55641 −0.778205 0.628010i \(-0.783870\pi\)
−0.778205 + 0.628010i \(0.783870\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1345.99 0.295149
\(276\) 0 0
\(277\) 6379.49 1.38378 0.691889 0.722004i \(-0.256779\pi\)
0.691889 + 0.722004i \(0.256779\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 8135.74 1.72718 0.863590 0.504195i \(-0.168211\pi\)
0.863590 + 0.504195i \(0.168211\pi\)
\(282\) 0 0
\(283\) −2845.95 −0.597789 −0.298895 0.954286i \(-0.596618\pi\)
−0.298895 + 0.954286i \(0.596618\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4578.35 −0.941642
\(288\) 0 0
\(289\) −619.694 −0.126133
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3824.64 −0.762587 −0.381294 0.924454i \(-0.624521\pi\)
−0.381294 + 0.924454i \(0.624521\pi\)
\(294\) 0 0
\(295\) 4407.32 0.869845
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 371.410 0.0718367
\(300\) 0 0
\(301\) −147.990 −0.0283388
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −11223.3 −2.10702
\(306\) 0 0
\(307\) 8984.03 1.67018 0.835091 0.550112i \(-0.185415\pi\)
0.835091 + 0.550112i \(0.185415\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6923.35 1.26234 0.631169 0.775645i \(-0.282575\pi\)
0.631169 + 0.775645i \(0.282575\pi\)
\(312\) 0 0
\(313\) 3080.48 0.556290 0.278145 0.960539i \(-0.410280\pi\)
0.278145 + 0.960539i \(0.410280\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3568.73 −0.632303 −0.316151 0.948709i \(-0.602391\pi\)
−0.316151 + 0.948709i \(0.602391\pi\)
\(318\) 0 0
\(319\) 5493.11 0.964123
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4795.60 0.826112
\(324\) 0 0
\(325\) 702.606 0.119919
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3378.64 0.566172
\(330\) 0 0
\(331\) −2275.82 −0.377917 −0.188958 0.981985i \(-0.560511\pi\)
−0.188958 + 0.981985i \(0.560511\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5178.35 0.844547
\(336\) 0 0
\(337\) −4060.64 −0.656372 −0.328186 0.944613i \(-0.606437\pi\)
−0.328186 + 0.944613i \(0.606437\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3461.61 −0.549727
\(342\) 0 0
\(343\) 6912.61 1.08818
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8960.49 1.38624 0.693119 0.720824i \(-0.256236\pi\)
0.693119 + 0.720824i \(0.256236\pi\)
\(348\) 0 0
\(349\) −4116.66 −0.631404 −0.315702 0.948858i \(-0.602240\pi\)
−0.315702 + 0.948858i \(0.602240\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6883.40 −1.03787 −0.518933 0.854815i \(-0.673671\pi\)
−0.518933 + 0.854815i \(0.673671\pi\)
\(354\) 0 0
\(355\) 8891.84 1.32938
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10499.8 −1.54362 −0.771810 0.635854i \(-0.780648\pi\)
−0.771810 + 0.635854i \(0.780648\pi\)
\(360\) 0 0
\(361\) −1502.35 −0.219033
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3322.19 0.476415
\(366\) 0 0
\(367\) 3612.78 0.513857 0.256928 0.966430i \(-0.417290\pi\)
0.256928 + 0.966430i \(0.417290\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2910.64 −0.407313
\(372\) 0 0
\(373\) 12332.9 1.71199 0.855995 0.516984i \(-0.172945\pi\)
0.855995 + 0.516984i \(0.172945\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2867.41 0.391722
\(378\) 0 0
\(379\) 6916.28 0.937375 0.468688 0.883364i \(-0.344727\pi\)
0.468688 + 0.883364i \(0.344727\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 11616.4 1.54980 0.774899 0.632085i \(-0.217801\pi\)
0.774899 + 0.632085i \(0.217801\pi\)
\(384\) 0 0
\(385\) −5125.48 −0.678490
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 14598.1 1.90271 0.951353 0.308103i \(-0.0996943\pi\)
0.951353 + 0.308103i \(0.0996943\pi\)
\(390\) 0 0
\(391\) 1872.00 0.242126
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 16920.9 2.15539
\(396\) 0 0
\(397\) 2163.91 0.273560 0.136780 0.990601i \(-0.456325\pi\)
0.136780 + 0.990601i \(0.456325\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5859.76 0.729731 0.364866 0.931060i \(-0.381115\pi\)
0.364866 + 0.931060i \(0.381115\pi\)
\(402\) 0 0
\(403\) −1806.97 −0.223353
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −8820.72 −1.07427
\(408\) 0 0
\(409\) 10750.4 1.29969 0.649847 0.760065i \(-0.274833\pi\)
0.649847 + 0.760065i \(0.274833\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −5066.07 −0.603596
\(414\) 0 0
\(415\) −2108.32 −0.249381
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 13174.7 1.53610 0.768048 0.640393i \(-0.221228\pi\)
0.768048 + 0.640393i \(0.221228\pi\)
\(420\) 0 0
\(421\) 879.574 0.101824 0.0509119 0.998703i \(-0.483787\pi\)
0.0509119 + 0.998703i \(0.483787\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3541.32 0.404186
\(426\) 0 0
\(427\) 12900.8 1.46209
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −13181.9 −1.47321 −0.736603 0.676325i \(-0.763571\pi\)
−0.736603 + 0.676325i \(0.763571\pi\)
\(432\) 0 0
\(433\) 1731.91 0.192217 0.0961087 0.995371i \(-0.469360\pi\)
0.0961087 + 0.995371i \(0.469360\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2091.01 0.228894
\(438\) 0 0
\(439\) −6766.37 −0.735629 −0.367815 0.929899i \(-0.619894\pi\)
−0.367815 + 0.929899i \(0.619894\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −11292.9 −1.21116 −0.605579 0.795785i \(-0.707058\pi\)
−0.605579 + 0.795785i \(0.707058\pi\)
\(444\) 0 0
\(445\) −10357.4 −1.10335
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −7882.86 −0.828542 −0.414271 0.910154i \(-0.635963\pi\)
−0.414271 + 0.910154i \(0.635963\pi\)
\(450\) 0 0
\(451\) 7413.12 0.773991
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2675.51 −0.275670
\(456\) 0 0
\(457\) 3515.84 0.359877 0.179939 0.983678i \(-0.442410\pi\)
0.179939 + 0.983678i \(0.442410\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −8362.30 −0.844840 −0.422420 0.906400i \(-0.638819\pi\)
−0.422420 + 0.906400i \(0.638819\pi\)
\(462\) 0 0
\(463\) −13064.9 −1.31140 −0.655702 0.755020i \(-0.727627\pi\)
−0.655702 + 0.755020i \(0.727627\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −16677.7 −1.65258 −0.826289 0.563247i \(-0.809552\pi\)
−0.826289 + 0.563247i \(0.809552\pi\)
\(468\) 0 0
\(469\) −5952.34 −0.586042
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 239.620 0.0232934
\(474\) 0 0
\(475\) 3955.63 0.382098
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −14040.4 −1.33929 −0.669645 0.742681i \(-0.733554\pi\)
−0.669645 + 0.742681i \(0.733554\pi\)
\(480\) 0 0
\(481\) −4604.43 −0.436473
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 14116.0 1.32160
\(486\) 0 0
\(487\) −10312.0 −0.959507 −0.479754 0.877403i \(-0.659274\pi\)
−0.479754 + 0.877403i \(0.659274\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −14474.0 −1.33035 −0.665176 0.746687i \(-0.731643\pi\)
−0.665176 + 0.746687i \(0.731643\pi\)
\(492\) 0 0
\(493\) 14452.5 1.32030
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −10220.9 −0.922473
\(498\) 0 0
\(499\) 5941.71 0.533041 0.266521 0.963829i \(-0.414126\pi\)
0.266521 + 0.963829i \(0.414126\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 5381.76 0.477059 0.238530 0.971135i \(-0.423335\pi\)
0.238530 + 0.971135i \(0.423335\pi\)
\(504\) 0 0
\(505\) −13209.9 −1.16402
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −9526.86 −0.829608 −0.414804 0.909911i \(-0.636150\pi\)
−0.414804 + 0.909911i \(0.636150\pi\)
\(510\) 0 0
\(511\) −3818.75 −0.330590
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −14872.9 −1.27258
\(516\) 0 0
\(517\) −5470.59 −0.465370
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 17924.5 1.50727 0.753633 0.657295i \(-0.228300\pi\)
0.753633 + 0.657295i \(0.228300\pi\)
\(522\) 0 0
\(523\) −10371.1 −0.867107 −0.433554 0.901128i \(-0.642741\pi\)
−0.433554 + 0.901128i \(0.642741\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9107.58 −0.752813
\(528\) 0 0
\(529\) −11350.8 −0.932913
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3869.66 0.314472
\(534\) 0 0
\(535\) 18610.7 1.50395
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2650.55 −0.211813
\(540\) 0 0
\(541\) 20580.1 1.63550 0.817752 0.575570i \(-0.195220\pi\)
0.817752 + 0.575570i \(0.195220\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 9895.44 0.777750
\(546\) 0 0
\(547\) 4710.30 0.368186 0.184093 0.982909i \(-0.441065\pi\)
0.184093 + 0.982909i \(0.441065\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 16143.3 1.24815
\(552\) 0 0
\(553\) −19450.0 −1.49566
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −21727.0 −1.65279 −0.826395 0.563092i \(-0.809612\pi\)
−0.826395 + 0.563092i \(0.809612\pi\)
\(558\) 0 0
\(559\) 125.082 0.00946407
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8662.30 0.648441 0.324221 0.945982i \(-0.394898\pi\)
0.324221 + 0.945982i \(0.394898\pi\)
\(564\) 0 0
\(565\) 7305.73 0.543990
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6007.63 −0.442624 −0.221312 0.975203i \(-0.571034\pi\)
−0.221312 + 0.975203i \(0.571034\pi\)
\(570\) 0 0
\(571\) −23283.4 −1.70644 −0.853222 0.521549i \(-0.825354\pi\)
−0.853222 + 0.521549i \(0.825354\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1544.11 0.111989
\(576\) 0 0
\(577\) 12763.1 0.920859 0.460429 0.887696i \(-0.347695\pi\)
0.460429 + 0.887696i \(0.347695\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2423.44 0.173049
\(582\) 0 0
\(583\) 4712.82 0.334794
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7683.28 0.540243 0.270122 0.962826i \(-0.412936\pi\)
0.270122 + 0.962826i \(0.412936\pi\)
\(588\) 0 0
\(589\) −10173.1 −0.711673
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −16500.6 −1.14266 −0.571332 0.820719i \(-0.693573\pi\)
−0.571332 + 0.820719i \(0.693573\pi\)
\(594\) 0 0
\(595\) −13485.2 −0.929145
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −3695.77 −0.252095 −0.126047 0.992024i \(-0.540229\pi\)
−0.126047 + 0.992024i \(0.540229\pi\)
\(600\) 0 0
\(601\) −3407.15 −0.231249 −0.115624 0.993293i \(-0.536887\pi\)
−0.115624 + 0.993293i \(0.536887\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −9510.87 −0.639127
\(606\) 0 0
\(607\) −23171.4 −1.54942 −0.774709 0.632318i \(-0.782104\pi\)
−0.774709 + 0.632318i \(0.782104\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2855.66 −0.189079
\(612\) 0 0
\(613\) −8605.59 −0.567009 −0.283504 0.958971i \(-0.591497\pi\)
−0.283504 + 0.958971i \(0.591497\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13752.5 0.897332 0.448666 0.893699i \(-0.351899\pi\)
0.448666 + 0.893699i \(0.351899\pi\)
\(618\) 0 0
\(619\) 23090.4 1.49932 0.749662 0.661821i \(-0.230216\pi\)
0.749662 + 0.661821i \(0.230216\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 11905.5 0.765625
\(624\) 0 0
\(625\) −19459.8 −1.24543
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −23207.5 −1.47113
\(630\) 0 0
\(631\) −13189.8 −0.832134 −0.416067 0.909334i \(-0.636592\pi\)
−0.416067 + 0.909334i \(0.636592\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 19559.9 1.22238
\(636\) 0 0
\(637\) −1383.59 −0.0860594
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6885.41 0.424271 0.212135 0.977240i \(-0.431958\pi\)
0.212135 + 0.977240i \(0.431958\pi\)
\(642\) 0 0
\(643\) 9846.82 0.603920 0.301960 0.953321i \(-0.402359\pi\)
0.301960 + 0.953321i \(0.402359\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −25559.8 −1.55310 −0.776552 0.630054i \(-0.783033\pi\)
−0.776552 + 0.630054i \(0.783033\pi\)
\(648\) 0 0
\(649\) 8202.83 0.496131
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −9671.17 −0.579574 −0.289787 0.957091i \(-0.593585\pi\)
−0.289787 + 0.957091i \(0.593585\pi\)
\(654\) 0 0
\(655\) −17175.7 −1.02460
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 13462.2 0.795769 0.397884 0.917436i \(-0.369745\pi\)
0.397884 + 0.917436i \(0.369745\pi\)
\(660\) 0 0
\(661\) −14414.7 −0.848210 −0.424105 0.905613i \(-0.639411\pi\)
−0.424105 + 0.905613i \(0.639411\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −15062.9 −0.878369
\(666\) 0 0
\(667\) 6301.68 0.365820
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −20888.5 −1.20178
\(672\) 0 0
\(673\) 16234.3 0.929847 0.464924 0.885351i \(-0.346082\pi\)
0.464924 + 0.885351i \(0.346082\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 29789.5 1.69115 0.845573 0.533861i \(-0.179259\pi\)
0.845573 + 0.533861i \(0.179259\pi\)
\(678\) 0 0
\(679\) −16225.9 −0.917074
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 17283.7 0.968289 0.484144 0.874988i \(-0.339131\pi\)
0.484144 + 0.874988i \(0.339131\pi\)
\(684\) 0 0
\(685\) 22823.0 1.27302
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2460.10 0.136027
\(690\) 0 0
\(691\) 1931.87 0.106355 0.0531777 0.998585i \(-0.483065\pi\)
0.0531777 + 0.998585i \(0.483065\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 29572.9 1.61405
\(696\) 0 0
\(697\) 19504.1 1.05993
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 23864.4 1.28580 0.642900 0.765950i \(-0.277731\pi\)
0.642900 + 0.765950i \(0.277731\pi\)
\(702\) 0 0
\(703\) −25922.6 −1.39074
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 15184.3 0.807730
\(708\) 0 0
\(709\) 5925.38 0.313868 0.156934 0.987609i \(-0.449839\pi\)
0.156934 + 0.987609i \(0.449839\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3971.15 −0.208585
\(714\) 0 0
\(715\) 4332.10 0.226589
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −2805.02 −0.145493 −0.0727465 0.997350i \(-0.523176\pi\)
−0.0727465 + 0.997350i \(0.523176\pi\)
\(720\) 0 0
\(721\) 17095.9 0.883059
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 11921.1 0.610672
\(726\) 0 0
\(727\) −23073.3 −1.17709 −0.588543 0.808466i \(-0.700298\pi\)
−0.588543 + 0.808466i \(0.700298\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 630.446 0.0318986
\(732\) 0 0
\(733\) −10658.0 −0.537056 −0.268528 0.963272i \(-0.586537\pi\)
−0.268528 + 0.963272i \(0.586537\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9637.85 0.481702
\(738\) 0 0
\(739\) −21525.4 −1.07148 −0.535742 0.844382i \(-0.679968\pi\)
−0.535742 + 0.844382i \(0.679968\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3723.86 −0.183870 −0.0919349 0.995765i \(-0.529305\pi\)
−0.0919349 + 0.995765i \(0.529305\pi\)
\(744\) 0 0
\(745\) −24014.7 −1.18098
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −21392.4 −1.04361
\(750\) 0 0
\(751\) −37456.8 −1.82000 −0.910000 0.414609i \(-0.863918\pi\)
−0.910000 + 0.414609i \(0.863918\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 28649.7 1.38102
\(756\) 0 0
\(757\) −25551.8 −1.22681 −0.613405 0.789769i \(-0.710201\pi\)
−0.613405 + 0.789769i \(0.710201\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1290.30 −0.0614629 −0.0307314 0.999528i \(-0.509784\pi\)
−0.0307314 + 0.999528i \(0.509784\pi\)
\(762\) 0 0
\(763\) −11374.5 −0.539691
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4281.88 0.201577
\(768\) 0 0
\(769\) −31146.6 −1.46056 −0.730282 0.683145i \(-0.760612\pi\)
−0.730282 + 0.683145i \(0.760612\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −12497.6 −0.581513 −0.290756 0.956797i \(-0.593907\pi\)
−0.290756 + 0.956797i \(0.593907\pi\)
\(774\) 0 0
\(775\) −7512.35 −0.348195
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 21785.9 1.00200
\(780\) 0 0
\(781\) 16549.3 0.758235
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 17437.0 0.792805
\(786\) 0 0
\(787\) 28306.9 1.28212 0.641061 0.767490i \(-0.278494\pi\)
0.641061 + 0.767490i \(0.278494\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −8397.70 −0.377481
\(792\) 0 0
\(793\) −10903.8 −0.488281
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −19084.9 −0.848206 −0.424103 0.905614i \(-0.639411\pi\)
−0.424103 + 0.905614i \(0.639411\pi\)
\(798\) 0 0
\(799\) −14393.2 −0.637292
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 6183.20 0.271732
\(804\) 0 0
\(805\) −5879.94 −0.257442
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −13587.0 −0.590475 −0.295237 0.955424i \(-0.595399\pi\)
−0.295237 + 0.955424i \(0.595399\pi\)
\(810\) 0 0
\(811\) 30426.8 1.31742 0.658711 0.752396i \(-0.271102\pi\)
0.658711 + 0.752396i \(0.271102\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −17943.7 −0.771216
\(816\) 0 0
\(817\) 704.204 0.0301554
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 32312.9 1.37360 0.686801 0.726846i \(-0.259014\pi\)
0.686801 + 0.726846i \(0.259014\pi\)
\(822\) 0 0
\(823\) 19812.6 0.839153 0.419576 0.907720i \(-0.362179\pi\)
0.419576 + 0.907720i \(0.362179\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −36387.7 −1.53002 −0.765009 0.644019i \(-0.777266\pi\)
−0.765009 + 0.644019i \(0.777266\pi\)
\(828\) 0 0
\(829\) −12723.8 −0.533071 −0.266535 0.963825i \(-0.585879\pi\)
−0.266535 + 0.963825i \(0.585879\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −6973.65 −0.290063
\(834\) 0 0
\(835\) 37689.8 1.56205
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −19567.0 −0.805156 −0.402578 0.915386i \(-0.631886\pi\)
−0.402578 + 0.915386i \(0.631886\pi\)
\(840\) 0 0
\(841\) 24262.1 0.994797
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2261.36 0.0920629
\(846\) 0 0
\(847\) 10932.4 0.443498
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −10119.1 −0.407613
\(852\) 0 0
\(853\) −40260.3 −1.61605 −0.808023 0.589150i \(-0.799463\pi\)
−0.808023 + 0.589150i \(0.799463\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 20796.2 0.828919 0.414460 0.910068i \(-0.363971\pi\)
0.414460 + 0.910068i \(0.363971\pi\)
\(858\) 0 0
\(859\) −8423.66 −0.334589 −0.167294 0.985907i \(-0.553503\pi\)
−0.167294 + 0.985907i \(0.553503\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 12566.4 0.495672 0.247836 0.968802i \(-0.420281\pi\)
0.247836 + 0.968802i \(0.420281\pi\)
\(864\) 0 0
\(865\) 26850.8 1.05544
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 31492.8 1.22937
\(870\) 0 0
\(871\) 5030.97 0.195715
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 14602.8 0.564188
\(876\) 0 0
\(877\) −34769.2 −1.33874 −0.669369 0.742930i \(-0.733436\pi\)
−0.669369 + 0.742930i \(0.733436\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −41031.4 −1.56911 −0.784553 0.620062i \(-0.787107\pi\)
−0.784553 + 0.620062i \(0.787107\pi\)
\(882\) 0 0
\(883\) 7638.17 0.291104 0.145552 0.989351i \(-0.453504\pi\)
0.145552 + 0.989351i \(0.453504\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −39173.3 −1.48287 −0.741437 0.671022i \(-0.765856\pi\)
−0.741437 + 0.671022i \(0.765856\pi\)
\(888\) 0 0
\(889\) −22483.5 −0.848226
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −16077.2 −0.602465
\(894\) 0 0
\(895\) −42294.6 −1.57961
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −30658.7 −1.13740
\(900\) 0 0
\(901\) 12399.5 0.458477
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12444.3 0.457086
\(906\) 0 0
\(907\) 6296.82 0.230521 0.115260 0.993335i \(-0.463230\pi\)
0.115260 + 0.993335i \(0.463230\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1278.72 0.0465050 0.0232525 0.999730i \(-0.492598\pi\)
0.0232525 + 0.999730i \(0.492598\pi\)
\(912\) 0 0
\(913\) −3923.96 −0.142239
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 19742.9 0.710981
\(918\) 0 0
\(919\) −17427.0 −0.625533 −0.312766 0.949830i \(-0.601256\pi\)
−0.312766 + 0.949830i \(0.601256\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 8638.77 0.308070
\(924\) 0 0
\(925\) −19142.6 −0.680438
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 12008.2 0.424087 0.212044 0.977260i \(-0.431988\pi\)
0.212044 + 0.977260i \(0.431988\pi\)
\(930\) 0 0
\(931\) −7789.52 −0.274212
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 21834.9 0.763719
\(936\) 0 0
\(937\) −5606.10 −0.195457 −0.0977286 0.995213i \(-0.531158\pi\)
−0.0977286 + 0.995213i \(0.531158\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 55487.3 1.92225 0.961124 0.276118i \(-0.0890481\pi\)
0.961124 + 0.276118i \(0.0890481\pi\)
\(942\) 0 0
\(943\) 8504.31 0.293678
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 14663.7 0.503175 0.251587 0.967835i \(-0.419047\pi\)
0.251587 + 0.967835i \(0.419047\pi\)
\(948\) 0 0
\(949\) 3227.64 0.110404
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 22363.5 0.760151 0.380076 0.924955i \(-0.375898\pi\)
0.380076 + 0.924955i \(0.375898\pi\)
\(954\) 0 0
\(955\) −29390.9 −0.995881
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −26234.2 −0.883366
\(960\) 0 0
\(961\) −10470.7 −0.351472
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 14682.2 0.489778
\(966\) 0 0
\(967\) −10946.8 −0.364037 −0.182019 0.983295i \(-0.558263\pi\)
−0.182019 + 0.983295i \(0.558263\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −166.215 −0.00549341 −0.00274670 0.999996i \(-0.500874\pi\)
−0.00274670 + 0.999996i \(0.500874\pi\)
\(972\) 0 0
\(973\) −33993.1 −1.12001
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2570.82 0.0841840 0.0420920 0.999114i \(-0.486598\pi\)
0.0420920 + 0.999114i \(0.486598\pi\)
\(978\) 0 0
\(979\) −19277.0 −0.629313
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 41497.3 1.34645 0.673224 0.739438i \(-0.264909\pi\)
0.673224 + 0.739438i \(0.264909\pi\)
\(984\) 0 0
\(985\) 33870.6 1.09564
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 274.892 0.00883828
\(990\) 0 0
\(991\) −17238.5 −0.552572 −0.276286 0.961076i \(-0.589104\pi\)
−0.276286 + 0.961076i \(0.589104\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −55810.3 −1.77820
\(996\) 0 0
\(997\) −35192.2 −1.11790 −0.558952 0.829200i \(-0.688796\pi\)
−0.558952 + 0.829200i \(0.688796\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1872.4.a.bg.1.2 2
3.2 odd 2 1872.4.a.w.1.1 2
4.3 odd 2 234.4.a.m.1.2 yes 2
12.11 even 2 234.4.a.l.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.4.a.l.1.1 2 12.11 even 2
234.4.a.m.1.2 yes 2 4.3 odd 2
1872.4.a.w.1.1 2 3.2 odd 2
1872.4.a.bg.1.2 2 1.1 even 1 trivial