Properties

Label 1872.4.a.be.1.2
Level $1872$
Weight $4$
Character 1872.1
Self dual yes
Analytic conductor $110.452$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1872,4,Mod(1,1872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1872, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1872.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1872.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(110.451575531\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 1872.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.46410 q^{5} -12.3923 q^{7} -6.78461 q^{11} -13.0000 q^{13} -72.0666 q^{17} +99.2436 q^{19} +120.708 q^{23} -95.1436 q^{25} +185.138 q^{29} +85.4641 q^{31} -67.7128 q^{35} -340.928 q^{37} +427.587 q^{41} -64.9179 q^{43} -39.2820 q^{47} -189.431 q^{49} +21.4462 q^{53} -37.0718 q^{55} +62.4205 q^{59} -423.149 q^{61} -71.0333 q^{65} -451.643 q^{67} +335.779 q^{71} -1016.60 q^{73} +84.0770 q^{77} +398.390 q^{79} -865.672 q^{83} -393.779 q^{85} -641.577 q^{89} +161.100 q^{91} +542.277 q^{95} +1381.71 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{5} - 4 q^{7} + 28 q^{11} - 26 q^{13} + 36 q^{17} - 44 q^{19} - 8 q^{23} - 218 q^{25} + 204 q^{29} + 164 q^{31} - 80 q^{35} - 668 q^{37} + 100 q^{41} + 272 q^{43} + 60 q^{47} - 462 q^{49} + 708 q^{53}+ \cdots - 188 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.46410 0.488724 0.244362 0.969684i \(-0.421421\pi\)
0.244362 + 0.969684i \(0.421421\pi\)
\(6\) 0 0
\(7\) −12.3923 −0.669122 −0.334561 0.942374i \(-0.608588\pi\)
−0.334561 + 0.942374i \(0.608588\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −6.78461 −0.185967 −0.0929835 0.995668i \(-0.529640\pi\)
−0.0929835 + 0.995668i \(0.529640\pi\)
\(12\) 0 0
\(13\) −13.0000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −72.0666 −1.02816 −0.514080 0.857742i \(-0.671867\pi\)
−0.514080 + 0.857742i \(0.671867\pi\)
\(18\) 0 0
\(19\) 99.2436 1.19832 0.599159 0.800630i \(-0.295502\pi\)
0.599159 + 0.800630i \(0.295502\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 120.708 1.09432 0.547158 0.837029i \(-0.315710\pi\)
0.547158 + 0.837029i \(0.315710\pi\)
\(24\) 0 0
\(25\) −95.1436 −0.761149
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 185.138 1.18549 0.592747 0.805388i \(-0.298043\pi\)
0.592747 + 0.805388i \(0.298043\pi\)
\(30\) 0 0
\(31\) 85.4641 0.495155 0.247578 0.968868i \(-0.420366\pi\)
0.247578 + 0.968868i \(0.420366\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −67.7128 −0.327016
\(36\) 0 0
\(37\) −340.928 −1.51482 −0.757409 0.652941i \(-0.773535\pi\)
−0.757409 + 0.652941i \(0.773535\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 427.587 1.62873 0.814364 0.580354i \(-0.197086\pi\)
0.814364 + 0.580354i \(0.197086\pi\)
\(42\) 0 0
\(43\) −64.9179 −0.230230 −0.115115 0.993352i \(-0.536724\pi\)
−0.115115 + 0.993352i \(0.536724\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −39.2820 −0.121912 −0.0609561 0.998140i \(-0.519415\pi\)
−0.0609561 + 0.998140i \(0.519415\pi\)
\(48\) 0 0
\(49\) −189.431 −0.552276
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 21.4462 0.0555824 0.0277912 0.999614i \(-0.491153\pi\)
0.0277912 + 0.999614i \(0.491153\pi\)
\(54\) 0 0
\(55\) −37.0718 −0.0908865
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 62.4205 0.137736 0.0688682 0.997626i \(-0.478061\pi\)
0.0688682 + 0.997626i \(0.478061\pi\)
\(60\) 0 0
\(61\) −423.149 −0.888175 −0.444087 0.895984i \(-0.646472\pi\)
−0.444087 + 0.895984i \(0.646472\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −71.0333 −0.135548
\(66\) 0 0
\(67\) −451.643 −0.823538 −0.411769 0.911288i \(-0.635089\pi\)
−0.411769 + 0.911288i \(0.635089\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 335.779 0.561263 0.280632 0.959816i \(-0.409456\pi\)
0.280632 + 0.959816i \(0.409456\pi\)
\(72\) 0 0
\(73\) −1016.60 −1.62992 −0.814959 0.579519i \(-0.803241\pi\)
−0.814959 + 0.579519i \(0.803241\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 84.0770 0.124435
\(78\) 0 0
\(79\) 398.390 0.567371 0.283686 0.958917i \(-0.408443\pi\)
0.283686 + 0.958917i \(0.408443\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −865.672 −1.14482 −0.572408 0.819969i \(-0.693991\pi\)
−0.572408 + 0.819969i \(0.693991\pi\)
\(84\) 0 0
\(85\) −393.779 −0.502487
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −641.577 −0.764124 −0.382062 0.924137i \(-0.624786\pi\)
−0.382062 + 0.924137i \(0.624786\pi\)
\(90\) 0 0
\(91\) 161.100 0.185581
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 542.277 0.585647
\(96\) 0 0
\(97\) 1381.71 1.44630 0.723150 0.690691i \(-0.242693\pi\)
0.723150 + 0.690691i \(0.242693\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −932.662 −0.918845 −0.459422 0.888218i \(-0.651944\pi\)
−0.459422 + 0.888218i \(0.651944\pi\)
\(102\) 0 0
\(103\) −70.3332 −0.0672829 −0.0336414 0.999434i \(-0.510710\pi\)
−0.0336414 + 0.999434i \(0.510710\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −283.672 −0.256295 −0.128148 0.991755i \(-0.540903\pi\)
−0.128148 + 0.991755i \(0.540903\pi\)
\(108\) 0 0
\(109\) −897.559 −0.788721 −0.394360 0.918956i \(-0.629034\pi\)
−0.394360 + 0.918956i \(0.629034\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 640.656 0.533344 0.266672 0.963787i \(-0.414076\pi\)
0.266672 + 0.963787i \(0.414076\pi\)
\(114\) 0 0
\(115\) 659.559 0.534819
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 893.072 0.687964
\(120\) 0 0
\(121\) −1284.97 −0.965416
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1202.89 −0.860716
\(126\) 0 0
\(127\) −999.369 −0.698265 −0.349133 0.937073i \(-0.613524\pi\)
−0.349133 + 0.937073i \(0.613524\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2638.88 1.76000 0.880001 0.474973i \(-0.157542\pi\)
0.880001 + 0.474973i \(0.157542\pi\)
\(132\) 0 0
\(133\) −1229.86 −0.801820
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1850.07 −1.15374 −0.576870 0.816836i \(-0.695726\pi\)
−0.576870 + 0.816836i \(0.695726\pi\)
\(138\) 0 0
\(139\) 476.687 0.290878 0.145439 0.989367i \(-0.453541\pi\)
0.145439 + 0.989367i \(0.453541\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 88.1999 0.0515780
\(144\) 0 0
\(145\) 1011.62 0.579380
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 955.889 0.525567 0.262784 0.964855i \(-0.415359\pi\)
0.262784 + 0.964855i \(0.415359\pi\)
\(150\) 0 0
\(151\) −1558.42 −0.839882 −0.419941 0.907551i \(-0.637949\pi\)
−0.419941 + 0.907551i \(0.637949\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 466.985 0.241994
\(156\) 0 0
\(157\) −3292.06 −1.67347 −0.836736 0.547607i \(-0.815539\pi\)
−0.836736 + 0.547607i \(0.815539\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1495.85 −0.732231
\(162\) 0 0
\(163\) 255.279 0.122669 0.0613344 0.998117i \(-0.480464\pi\)
0.0613344 + 0.998117i \(0.480464\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3433.68 −1.59106 −0.795528 0.605917i \(-0.792806\pi\)
−0.795528 + 0.605917i \(0.792806\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −347.543 −0.152735 −0.0763677 0.997080i \(-0.524332\pi\)
−0.0763677 + 0.997080i \(0.524332\pi\)
\(174\) 0 0
\(175\) 1179.05 0.509301
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2267.54 0.946837 0.473418 0.880838i \(-0.343020\pi\)
0.473418 + 0.880838i \(0.343020\pi\)
\(180\) 0 0
\(181\) 670.605 0.275390 0.137695 0.990475i \(-0.456031\pi\)
0.137695 + 0.990475i \(0.456031\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1862.87 −0.740328
\(186\) 0 0
\(187\) 488.944 0.191204
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1446.88 0.548129 0.274065 0.961711i \(-0.411632\pi\)
0.274065 + 0.961711i \(0.411632\pi\)
\(192\) 0 0
\(193\) −1815.79 −0.677222 −0.338611 0.940927i \(-0.609957\pi\)
−0.338611 + 0.940927i \(0.609957\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1933.30 −0.699196 −0.349598 0.936900i \(-0.613682\pi\)
−0.349598 + 0.936900i \(0.613682\pi\)
\(198\) 0 0
\(199\) 257.595 0.0917611 0.0458805 0.998947i \(-0.485391\pi\)
0.0458805 + 0.998947i \(0.485391\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2294.29 −0.793240
\(204\) 0 0
\(205\) 2336.38 0.795999
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −673.329 −0.222847
\(210\) 0 0
\(211\) −1990.83 −0.649547 −0.324774 0.945792i \(-0.605288\pi\)
−0.324774 + 0.945792i \(0.605288\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −354.718 −0.112519
\(216\) 0 0
\(217\) −1059.10 −0.331319
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 936.866 0.285160
\(222\) 0 0
\(223\) 3481.70 1.04552 0.522762 0.852479i \(-0.324902\pi\)
0.522762 + 0.852479i \(0.324902\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3265.64 −0.954836 −0.477418 0.878676i \(-0.658427\pi\)
−0.477418 + 0.878676i \(0.658427\pi\)
\(228\) 0 0
\(229\) −771.939 −0.222756 −0.111378 0.993778i \(-0.535526\pi\)
−0.111378 + 0.993778i \(0.535526\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5.41053 −0.00152127 −0.000760635 1.00000i \(-0.500242\pi\)
−0.000760635 1.00000i \(0.500242\pi\)
\(234\) 0 0
\(235\) −214.641 −0.0595814
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1328.61 −0.359584 −0.179792 0.983705i \(-0.557543\pi\)
−0.179792 + 0.983705i \(0.557543\pi\)
\(240\) 0 0
\(241\) 3454.13 0.923236 0.461618 0.887079i \(-0.347269\pi\)
0.461618 + 0.887079i \(0.347269\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1035.07 −0.269911
\(246\) 0 0
\(247\) −1290.17 −0.332353
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7667.13 −1.92807 −0.964033 0.265781i \(-0.914370\pi\)
−0.964033 + 0.265781i \(0.914370\pi\)
\(252\) 0 0
\(253\) −818.954 −0.203507
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6033.77 −1.46450 −0.732249 0.681037i \(-0.761529\pi\)
−0.732249 + 0.681037i \(0.761529\pi\)
\(258\) 0 0
\(259\) 4224.89 1.01360
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 120.625 0.0282816 0.0141408 0.999900i \(-0.495499\pi\)
0.0141408 + 0.999900i \(0.495499\pi\)
\(264\) 0 0
\(265\) 117.184 0.0271645
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1207.01 0.273578 0.136789 0.990600i \(-0.456322\pi\)
0.136789 + 0.990600i \(0.456322\pi\)
\(270\) 0 0
\(271\) 4969.39 1.11391 0.556954 0.830543i \(-0.311970\pi\)
0.556954 + 0.830543i \(0.311970\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 645.512 0.141549
\(276\) 0 0
\(277\) −8498.78 −1.84347 −0.921737 0.387817i \(-0.873229\pi\)
−0.921737 + 0.387817i \(0.873229\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1782.60 0.378438 0.189219 0.981935i \(-0.439404\pi\)
0.189219 + 0.981935i \(0.439404\pi\)
\(282\) 0 0
\(283\) 2119.57 0.445214 0.222607 0.974908i \(-0.428543\pi\)
0.222607 + 0.974908i \(0.428543\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5298.79 −1.08982
\(288\) 0 0
\(289\) 280.601 0.0571140
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3426.59 0.683220 0.341610 0.939842i \(-0.389028\pi\)
0.341610 + 0.939842i \(0.389028\pi\)
\(294\) 0 0
\(295\) 341.072 0.0673151
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1569.20 −0.303509
\(300\) 0 0
\(301\) 804.482 0.154052
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2312.13 −0.434072
\(306\) 0 0
\(307\) −6328.81 −1.17656 −0.588280 0.808657i \(-0.700195\pi\)
−0.588280 + 0.808657i \(0.700195\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −6256.63 −1.14077 −0.570387 0.821376i \(-0.693207\pi\)
−0.570387 + 0.821376i \(0.693207\pi\)
\(312\) 0 0
\(313\) 5273.42 0.952305 0.476153 0.879363i \(-0.342031\pi\)
0.476153 + 0.879363i \(0.342031\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1697.23 −0.300713 −0.150357 0.988632i \(-0.548042\pi\)
−0.150357 + 0.988632i \(0.548042\pi\)
\(318\) 0 0
\(319\) −1256.09 −0.220463
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −7152.15 −1.23206
\(324\) 0 0
\(325\) 1236.87 0.211105
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 486.795 0.0815741
\(330\) 0 0
\(331\) −1118.14 −0.185675 −0.0928373 0.995681i \(-0.529594\pi\)
−0.0928373 + 0.995681i \(0.529594\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2467.83 −0.402483
\(336\) 0 0
\(337\) 3523.47 0.569541 0.284771 0.958596i \(-0.408083\pi\)
0.284771 + 0.958596i \(0.408083\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −579.841 −0.0920825
\(342\) 0 0
\(343\) 6598.04 1.03866
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −799.968 −0.123760 −0.0618798 0.998084i \(-0.519710\pi\)
−0.0618798 + 0.998084i \(0.519710\pi\)
\(348\) 0 0
\(349\) −4341.88 −0.665947 −0.332974 0.942936i \(-0.608052\pi\)
−0.332974 + 0.942936i \(0.608052\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9306.07 −1.40315 −0.701576 0.712595i \(-0.747520\pi\)
−0.701576 + 0.712595i \(0.747520\pi\)
\(354\) 0 0
\(355\) 1834.73 0.274303
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1263.82 −0.185798 −0.0928992 0.995676i \(-0.529613\pi\)
−0.0928992 + 0.995676i \(0.529613\pi\)
\(360\) 0 0
\(361\) 2990.28 0.435965
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −5554.80 −0.796580
\(366\) 0 0
\(367\) −12720.9 −1.80934 −0.904670 0.426113i \(-0.859883\pi\)
−0.904670 + 0.426113i \(0.859883\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −265.768 −0.0371914
\(372\) 0 0
\(373\) 3519.00 0.488491 0.244245 0.969713i \(-0.421460\pi\)
0.244245 + 0.969713i \(0.421460\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2406.80 −0.328797
\(378\) 0 0
\(379\) −13881.2 −1.88135 −0.940673 0.339314i \(-0.889805\pi\)
−0.940673 + 0.339314i \(0.889805\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −9275.31 −1.23746 −0.618729 0.785605i \(-0.712352\pi\)
−0.618729 + 0.785605i \(0.712352\pi\)
\(384\) 0 0
\(385\) 459.405 0.0608141
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1016.09 −0.132436 −0.0662181 0.997805i \(-0.521093\pi\)
−0.0662181 + 0.997805i \(0.521093\pi\)
\(390\) 0 0
\(391\) −8699.00 −1.12513
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2176.84 0.277288
\(396\) 0 0
\(397\) −8300.95 −1.04940 −0.524701 0.851287i \(-0.675823\pi\)
−0.524701 + 0.851287i \(0.675823\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9367.49 −1.16656 −0.583280 0.812271i \(-0.698231\pi\)
−0.583280 + 0.812271i \(0.698231\pi\)
\(402\) 0 0
\(403\) −1111.03 −0.137331
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2313.06 0.281706
\(408\) 0 0
\(409\) 984.560 0.119030 0.0595151 0.998227i \(-0.481045\pi\)
0.0595151 + 0.998227i \(0.481045\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −773.534 −0.0921625
\(414\) 0 0
\(415\) −4730.12 −0.559500
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 13998.0 1.63210 0.816049 0.577983i \(-0.196160\pi\)
0.816049 + 0.577983i \(0.196160\pi\)
\(420\) 0 0
\(421\) 12495.1 1.44649 0.723247 0.690590i \(-0.242649\pi\)
0.723247 + 0.690590i \(0.242649\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6856.68 0.782583
\(426\) 0 0
\(427\) 5243.79 0.594297
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −3688.03 −0.412172 −0.206086 0.978534i \(-0.566073\pi\)
−0.206086 + 0.978534i \(0.566073\pi\)
\(432\) 0 0
\(433\) 7132.01 0.791553 0.395776 0.918347i \(-0.370476\pi\)
0.395776 + 0.918347i \(0.370476\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 11979.5 1.31134
\(438\) 0 0
\(439\) −16089.0 −1.74917 −0.874583 0.484875i \(-0.838865\pi\)
−0.874583 + 0.484875i \(0.838865\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8126.71 0.871584 0.435792 0.900047i \(-0.356468\pi\)
0.435792 + 0.900047i \(0.356468\pi\)
\(444\) 0 0
\(445\) −3505.64 −0.373446
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −5032.96 −0.528998 −0.264499 0.964386i \(-0.585207\pi\)
−0.264499 + 0.964386i \(0.585207\pi\)
\(450\) 0 0
\(451\) −2901.01 −0.302890
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 880.267 0.0906979
\(456\) 0 0
\(457\) 13560.8 1.38807 0.694035 0.719941i \(-0.255831\pi\)
0.694035 + 0.719941i \(0.255831\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12346.8 1.24739 0.623694 0.781669i \(-0.285631\pi\)
0.623694 + 0.781669i \(0.285631\pi\)
\(462\) 0 0
\(463\) 11593.0 1.16366 0.581829 0.813311i \(-0.302337\pi\)
0.581829 + 0.813311i \(0.302337\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8356.87 0.828073 0.414036 0.910260i \(-0.364119\pi\)
0.414036 + 0.910260i \(0.364119\pi\)
\(468\) 0 0
\(469\) 5596.90 0.551047
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 440.443 0.0428152
\(474\) 0 0
\(475\) −9442.39 −0.912098
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9082.15 −0.866334 −0.433167 0.901314i \(-0.642604\pi\)
−0.433167 + 0.901314i \(0.642604\pi\)
\(480\) 0 0
\(481\) 4432.07 0.420135
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7549.79 0.706842
\(486\) 0 0
\(487\) −12068.8 −1.12297 −0.561487 0.827486i \(-0.689770\pi\)
−0.561487 + 0.827486i \(0.689770\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 8466.25 0.778159 0.389080 0.921204i \(-0.372793\pi\)
0.389080 + 0.921204i \(0.372793\pi\)
\(492\) 0 0
\(493\) −13342.3 −1.21888
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4161.08 −0.375553
\(498\) 0 0
\(499\) −2026.69 −0.181818 −0.0909089 0.995859i \(-0.528977\pi\)
−0.0909089 + 0.995859i \(0.528977\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −3781.23 −0.335182 −0.167591 0.985857i \(-0.553599\pi\)
−0.167591 + 0.985857i \(0.553599\pi\)
\(504\) 0 0
\(505\) −5096.16 −0.449061
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1661.22 0.144660 0.0723302 0.997381i \(-0.476956\pi\)
0.0723302 + 0.997381i \(0.476956\pi\)
\(510\) 0 0
\(511\) 12598.0 1.09061
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −384.308 −0.0328828
\(516\) 0 0
\(517\) 266.513 0.0226716
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3172.82 0.266802 0.133401 0.991062i \(-0.457410\pi\)
0.133401 + 0.991062i \(0.457410\pi\)
\(522\) 0 0
\(523\) −5582.08 −0.466706 −0.233353 0.972392i \(-0.574970\pi\)
−0.233353 + 0.972392i \(0.574970\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6159.11 −0.509099
\(528\) 0 0
\(529\) 2403.34 0.197529
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −5558.63 −0.451728
\(534\) 0 0
\(535\) −1550.01 −0.125258
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1285.21 0.102705
\(540\) 0 0
\(541\) −14569.5 −1.15784 −0.578920 0.815385i \(-0.696526\pi\)
−0.578920 + 0.815385i \(0.696526\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −4904.35 −0.385467
\(546\) 0 0
\(547\) 13175.0 1.02984 0.514920 0.857238i \(-0.327822\pi\)
0.514920 + 0.857238i \(0.327822\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 18373.8 1.42060
\(552\) 0 0
\(553\) −4936.96 −0.379640
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 22466.6 1.70905 0.854524 0.519412i \(-0.173849\pi\)
0.854524 + 0.519412i \(0.173849\pi\)
\(558\) 0 0
\(559\) 843.933 0.0638543
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −15302.0 −1.14547 −0.572736 0.819740i \(-0.694118\pi\)
−0.572736 + 0.819740i \(0.694118\pi\)
\(564\) 0 0
\(565\) 3500.61 0.260658
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −23986.5 −1.76725 −0.883625 0.468196i \(-0.844904\pi\)
−0.883625 + 0.468196i \(0.844904\pi\)
\(570\) 0 0
\(571\) −16827.0 −1.23326 −0.616628 0.787254i \(-0.711502\pi\)
−0.616628 + 0.787254i \(0.711502\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −11484.6 −0.832938
\(576\) 0 0
\(577\) −15544.9 −1.12157 −0.560783 0.827963i \(-0.689500\pi\)
−0.560783 + 0.827963i \(0.689500\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 10727.7 0.766022
\(582\) 0 0
\(583\) −145.504 −0.0103365
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12905.7 0.907455 0.453727 0.891141i \(-0.350094\pi\)
0.453727 + 0.891141i \(0.350094\pi\)
\(588\) 0 0
\(589\) 8481.76 0.593353
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 23367.5 1.61819 0.809097 0.587675i \(-0.199957\pi\)
0.809097 + 0.587675i \(0.199957\pi\)
\(594\) 0 0
\(595\) 4879.84 0.336225
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 18586.6 1.26783 0.633913 0.773404i \(-0.281448\pi\)
0.633913 + 0.773404i \(0.281448\pi\)
\(600\) 0 0
\(601\) 10855.6 0.736790 0.368395 0.929669i \(-0.379907\pi\)
0.368395 + 0.929669i \(0.379907\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −7021.20 −0.471822
\(606\) 0 0
\(607\) −27366.9 −1.82997 −0.914983 0.403493i \(-0.867796\pi\)
−0.914983 + 0.403493i \(0.867796\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 510.666 0.0338124
\(612\) 0 0
\(613\) 17849.1 1.17605 0.588025 0.808843i \(-0.299906\pi\)
0.588025 + 0.808843i \(0.299906\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6364.18 0.415255 0.207628 0.978208i \(-0.433426\pi\)
0.207628 + 0.978208i \(0.433426\pi\)
\(618\) 0 0
\(619\) 10366.6 0.673133 0.336567 0.941660i \(-0.390734\pi\)
0.336567 + 0.941660i \(0.390734\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 7950.61 0.511292
\(624\) 0 0
\(625\) 5320.25 0.340496
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 24569.6 1.55748
\(630\) 0 0
\(631\) 19163.5 1.20902 0.604508 0.796599i \(-0.293370\pi\)
0.604508 + 0.796599i \(0.293370\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −5460.66 −0.341259
\(636\) 0 0
\(637\) 2462.60 0.153174
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 19112.1 1.17766 0.588832 0.808255i \(-0.299588\pi\)
0.588832 + 0.808255i \(0.299588\pi\)
\(642\) 0 0
\(643\) 21612.9 1.32555 0.662775 0.748818i \(-0.269378\pi\)
0.662775 + 0.748818i \(0.269378\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −20487.9 −1.24492 −0.622460 0.782652i \(-0.713867\pi\)
−0.622460 + 0.782652i \(0.713867\pi\)
\(648\) 0 0
\(649\) −423.499 −0.0256144
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 27263.9 1.63387 0.816937 0.576727i \(-0.195670\pi\)
0.816937 + 0.576727i \(0.195670\pi\)
\(654\) 0 0
\(655\) 14419.1 0.860155
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 25701.3 1.51924 0.759620 0.650367i \(-0.225385\pi\)
0.759620 + 0.650367i \(0.225385\pi\)
\(660\) 0 0
\(661\) −14294.0 −0.841107 −0.420553 0.907268i \(-0.638164\pi\)
−0.420553 + 0.907268i \(0.638164\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −6720.06 −0.391869
\(666\) 0 0
\(667\) 22347.6 1.29731
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2870.90 0.165171
\(672\) 0 0
\(673\) −15167.5 −0.868742 −0.434371 0.900734i \(-0.643029\pi\)
−0.434371 + 0.900734i \(0.643029\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −26749.8 −1.51858 −0.759291 0.650751i \(-0.774454\pi\)
−0.759291 + 0.650751i \(0.774454\pi\)
\(678\) 0 0
\(679\) −17122.5 −0.967751
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 4152.73 0.232650 0.116325 0.993211i \(-0.462889\pi\)
0.116325 + 0.993211i \(0.462889\pi\)
\(684\) 0 0
\(685\) −10109.0 −0.563861
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −278.801 −0.0154158
\(690\) 0 0
\(691\) 22309.0 1.22818 0.614091 0.789235i \(-0.289523\pi\)
0.614091 + 0.789235i \(0.289523\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2604.67 0.142159
\(696\) 0 0
\(697\) −30814.8 −1.67459
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −12201.2 −0.657392 −0.328696 0.944436i \(-0.606609\pi\)
−0.328696 + 0.944436i \(0.606609\pi\)
\(702\) 0 0
\(703\) −33834.9 −1.81523
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 11557.8 0.614819
\(708\) 0 0
\(709\) 348.094 0.0184386 0.00921929 0.999958i \(-0.497065\pi\)
0.00921929 + 0.999958i \(0.497065\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 10316.2 0.541856
\(714\) 0 0
\(715\) 481.933 0.0252074
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −32069.3 −1.66340 −0.831698 0.555228i \(-0.812631\pi\)
−0.831698 + 0.555228i \(0.812631\pi\)
\(720\) 0 0
\(721\) 871.591 0.0450204
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −17614.7 −0.902338
\(726\) 0 0
\(727\) 33679.4 1.71816 0.859079 0.511844i \(-0.171037\pi\)
0.859079 + 0.511844i \(0.171037\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4678.41 0.236713
\(732\) 0 0
\(733\) 3811.99 0.192086 0.0960429 0.995377i \(-0.469381\pi\)
0.0960429 + 0.995377i \(0.469381\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3064.22 0.153151
\(738\) 0 0
\(739\) 30425.3 1.51449 0.757247 0.653129i \(-0.226544\pi\)
0.757247 + 0.653129i \(0.226544\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 3628.76 0.179174 0.0895871 0.995979i \(-0.471445\pi\)
0.0895871 + 0.995979i \(0.471445\pi\)
\(744\) 0 0
\(745\) 5223.08 0.256857
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3515.34 0.171493
\(750\) 0 0
\(751\) −30912.3 −1.50200 −0.751002 0.660300i \(-0.770429\pi\)
−0.751002 + 0.660300i \(0.770429\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −8515.35 −0.410471
\(756\) 0 0
\(757\) −1575.52 −0.0756448 −0.0378224 0.999284i \(-0.512042\pi\)
−0.0378224 + 0.999284i \(0.512042\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 14688.6 0.699686 0.349843 0.936808i \(-0.386235\pi\)
0.349843 + 0.936808i \(0.386235\pi\)
\(762\) 0 0
\(763\) 11122.8 0.527750
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −811.466 −0.0382012
\(768\) 0 0
\(769\) −15519.7 −0.727769 −0.363885 0.931444i \(-0.618550\pi\)
−0.363885 + 0.931444i \(0.618550\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −9956.57 −0.463277 −0.231638 0.972802i \(-0.574409\pi\)
−0.231638 + 0.972802i \(0.574409\pi\)
\(774\) 0 0
\(775\) −8131.36 −0.376887
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 42435.3 1.95173
\(780\) 0 0
\(781\) −2278.13 −0.104376
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −17988.2 −0.817866
\(786\) 0 0
\(787\) 24811.8 1.12382 0.561910 0.827199i \(-0.310067\pi\)
0.561910 + 0.827199i \(0.310067\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −7939.21 −0.356872
\(792\) 0 0
\(793\) 5500.93 0.246335
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −12326.4 −0.547836 −0.273918 0.961753i \(-0.588320\pi\)
−0.273918 + 0.961753i \(0.588320\pi\)
\(798\) 0 0
\(799\) 2830.92 0.125345
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 6897.23 0.303111
\(804\) 0 0
\(805\) −8173.46 −0.357859
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −16164.0 −0.702468 −0.351234 0.936288i \(-0.614238\pi\)
−0.351234 + 0.936288i \(0.614238\pi\)
\(810\) 0 0
\(811\) 17158.8 0.742944 0.371472 0.928444i \(-0.378853\pi\)
0.371472 + 0.928444i \(0.378853\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1394.87 0.0599512
\(816\) 0 0
\(817\) −6442.68 −0.275889
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −28545.0 −1.21343 −0.606716 0.794919i \(-0.707513\pi\)
−0.606716 + 0.794919i \(0.707513\pi\)
\(822\) 0 0
\(823\) 6976.67 0.295494 0.147747 0.989025i \(-0.452798\pi\)
0.147747 + 0.989025i \(0.452798\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 21024.3 0.884022 0.442011 0.897010i \(-0.354265\pi\)
0.442011 + 0.897010i \(0.354265\pi\)
\(828\) 0 0
\(829\) 29235.9 1.22485 0.612427 0.790527i \(-0.290193\pi\)
0.612427 + 0.790527i \(0.290193\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 13651.6 0.567829
\(834\) 0 0
\(835\) −18762.0 −0.777587
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 17066.4 0.702261 0.351131 0.936326i \(-0.385797\pi\)
0.351131 + 0.936326i \(0.385797\pi\)
\(840\) 0 0
\(841\) 9887.24 0.405398
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 923.433 0.0375942
\(846\) 0 0
\(847\) 15923.7 0.645981
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −41152.6 −1.65769
\(852\) 0 0
\(853\) −37910.5 −1.52172 −0.760862 0.648913i \(-0.775224\pi\)
−0.760862 + 0.648913i \(0.775224\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 25489.3 1.01598 0.507991 0.861362i \(-0.330388\pi\)
0.507991 + 0.861362i \(0.330388\pi\)
\(858\) 0 0
\(859\) 10266.7 0.407796 0.203898 0.978992i \(-0.434639\pi\)
0.203898 + 0.978992i \(0.434639\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −15681.1 −0.618529 −0.309265 0.950976i \(-0.600083\pi\)
−0.309265 + 0.950976i \(0.600083\pi\)
\(864\) 0 0
\(865\) −1899.01 −0.0746454
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2702.92 −0.105512
\(870\) 0 0
\(871\) 5871.36 0.228408
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 14906.5 0.575924
\(876\) 0 0
\(877\) 19487.6 0.750341 0.375171 0.926956i \(-0.377584\pi\)
0.375171 + 0.926956i \(0.377584\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 24792.5 0.948104 0.474052 0.880497i \(-0.342791\pi\)
0.474052 + 0.880497i \(0.342791\pi\)
\(882\) 0 0
\(883\) 21275.9 0.810861 0.405430 0.914126i \(-0.367122\pi\)
0.405430 + 0.914126i \(0.367122\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 39291.8 1.48736 0.743682 0.668534i \(-0.233078\pi\)
0.743682 + 0.668534i \(0.233078\pi\)
\(888\) 0 0
\(889\) 12384.5 0.467224
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −3898.49 −0.146090
\(894\) 0 0
\(895\) 12390.1 0.462742
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 15822.7 0.587004
\(900\) 0 0
\(901\) −1545.56 −0.0571476
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3664.25 0.134590
\(906\) 0 0
\(907\) −40944.8 −1.49895 −0.749477 0.662031i \(-0.769695\pi\)
−0.749477 + 0.662031i \(0.769695\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −23017.5 −0.837104 −0.418552 0.908193i \(-0.637462\pi\)
−0.418552 + 0.908193i \(0.637462\pi\)
\(912\) 0 0
\(913\) 5873.24 0.212898
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −32701.8 −1.17765
\(918\) 0 0
\(919\) −29694.7 −1.06587 −0.532936 0.846155i \(-0.678911\pi\)
−0.532936 + 0.846155i \(0.678911\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −4365.13 −0.155666
\(924\) 0 0
\(925\) 32437.1 1.15300
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −24057.2 −0.849613 −0.424807 0.905284i \(-0.639658\pi\)
−0.424807 + 0.905284i \(0.639658\pi\)
\(930\) 0 0
\(931\) −18799.8 −0.661802
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2671.64 0.0934460
\(936\) 0 0
\(937\) 39359.6 1.37228 0.686138 0.727472i \(-0.259305\pi\)
0.686138 + 0.727472i \(0.259305\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −20967.7 −0.726384 −0.363192 0.931714i \(-0.618313\pi\)
−0.363192 + 0.931714i \(0.618313\pi\)
\(942\) 0 0
\(943\) 51613.0 1.78235
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 28580.9 0.980733 0.490366 0.871516i \(-0.336863\pi\)
0.490366 + 0.871516i \(0.336863\pi\)
\(948\) 0 0
\(949\) 13215.8 0.452058
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21949.5 0.746081 0.373041 0.927815i \(-0.378315\pi\)
0.373041 + 0.927815i \(0.378315\pi\)
\(954\) 0 0
\(955\) 7905.91 0.267884
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 22926.7 0.771993
\(960\) 0 0
\(961\) −22486.9 −0.754822
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −9921.69 −0.330974
\(966\) 0 0
\(967\) −12955.2 −0.430829 −0.215415 0.976523i \(-0.569110\pi\)
−0.215415 + 0.976523i \(0.569110\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 36777.4 1.21549 0.607745 0.794132i \(-0.292074\pi\)
0.607745 + 0.794132i \(0.292074\pi\)
\(972\) 0 0
\(973\) −5907.25 −0.194633
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 23701.7 0.776136 0.388068 0.921631i \(-0.373143\pi\)
0.388068 + 0.921631i \(0.373143\pi\)
\(978\) 0 0
\(979\) 4352.85 0.142102
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 9338.35 0.302998 0.151499 0.988457i \(-0.451590\pi\)
0.151499 + 0.988457i \(0.451590\pi\)
\(984\) 0 0
\(985\) −10563.7 −0.341714
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −7836.09 −0.251944
\(990\) 0 0
\(991\) 35647.5 1.14267 0.571333 0.820719i \(-0.306427\pi\)
0.571333 + 0.820719i \(0.306427\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1407.53 0.0448458
\(996\) 0 0
\(997\) 32855.1 1.04366 0.521832 0.853048i \(-0.325249\pi\)
0.521832 + 0.853048i \(0.325249\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1872.4.a.be.1.2 2
3.2 odd 2 624.4.a.o.1.1 2
4.3 odd 2 936.4.a.g.1.2 2
12.11 even 2 312.4.a.a.1.1 2
24.5 odd 2 2496.4.a.z.1.2 2
24.11 even 2 2496.4.a.bg.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.a.a.1.1 2 12.11 even 2
624.4.a.o.1.1 2 3.2 odd 2
936.4.a.g.1.2 2 4.3 odd 2
1872.4.a.be.1.2 2 1.1 even 1 trivial
2496.4.a.z.1.2 2 24.5 odd 2
2496.4.a.bg.1.2 2 24.11 even 2