Properties

Label 1872.4.a.bd.1.1
Level $1872$
Weight $4$
Character 1872.1
Self dual yes
Analytic conductor $110.452$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1872,4,Mod(1,1872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1872, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1872.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1872.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(110.451575531\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{55}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 55 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-7.41620\) of defining polynomial
Character \(\chi\) \(=\) 1872.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-12.8324 q^{5} -24.8324 q^{7} +19.6648 q^{11} -13.0000 q^{13} +63.6648 q^{17} +0.832397 q^{19} +119.330 q^{23} +39.6704 q^{25} +6.00000 q^{29} -185.503 q^{31} +318.659 q^{35} +143.665 q^{37} +117.156 q^{41} -67.6760 q^{43} +476.659 q^{47} +273.648 q^{49} -59.3184 q^{53} -252.346 q^{55} +78.0000 q^{59} +609.955 q^{61} +166.821 q^{65} +654.452 q^{67} -390.994 q^{71} -84.3127 q^{73} -488.324 q^{77} -1176.65 q^{79} -430.648 q^{83} -816.972 q^{85} +1341.41 q^{89} +322.821 q^{91} -10.6816 q^{95} +802.949 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{5} - 20 q^{7} - 20 q^{11} - 26 q^{13} + 68 q^{17} - 28 q^{19} + 120 q^{23} + 198 q^{25} + 12 q^{29} - 460 q^{31} + 400 q^{35} + 228 q^{37} - 92 q^{41} - 432 q^{43} + 716 q^{47} - 46 q^{49} + 356 q^{53}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −12.8324 −1.14776 −0.573882 0.818938i \(-0.694563\pi\)
−0.573882 + 0.818938i \(0.694563\pi\)
\(6\) 0 0
\(7\) −24.8324 −1.34082 −0.670412 0.741989i \(-0.733882\pi\)
−0.670412 + 0.741989i \(0.733882\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 19.6648 0.539014 0.269507 0.962998i \(-0.413139\pi\)
0.269507 + 0.962998i \(0.413139\pi\)
\(12\) 0 0
\(13\) −13.0000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 63.6648 0.908293 0.454146 0.890927i \(-0.349944\pi\)
0.454146 + 0.890927i \(0.349944\pi\)
\(18\) 0 0
\(19\) 0.832397 0.0100508 0.00502539 0.999987i \(-0.498400\pi\)
0.00502539 + 0.999987i \(0.498400\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 119.330 1.08182 0.540912 0.841079i \(-0.318079\pi\)
0.540912 + 0.841079i \(0.318079\pi\)
\(24\) 0 0
\(25\) 39.6704 0.317363
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.00000 0.0384197 0.0192099 0.999815i \(-0.493885\pi\)
0.0192099 + 0.999815i \(0.493885\pi\)
\(30\) 0 0
\(31\) −185.503 −1.07475 −0.537376 0.843343i \(-0.680584\pi\)
−0.537376 + 0.843343i \(0.680584\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 318.659 1.53895
\(36\) 0 0
\(37\) 143.665 0.638334 0.319167 0.947699i \(-0.396597\pi\)
0.319167 + 0.947699i \(0.396597\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 117.156 0.446262 0.223131 0.974788i \(-0.428372\pi\)
0.223131 + 0.974788i \(0.428372\pi\)
\(42\) 0 0
\(43\) −67.6760 −0.240012 −0.120006 0.992773i \(-0.538291\pi\)
−0.120006 + 0.992773i \(0.538291\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 476.659 1.47932 0.739658 0.672983i \(-0.234987\pi\)
0.739658 + 0.672983i \(0.234987\pi\)
\(48\) 0 0
\(49\) 273.648 0.797807
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −59.3184 −0.153736 −0.0768679 0.997041i \(-0.524492\pi\)
−0.0768679 + 0.997041i \(0.524492\pi\)
\(54\) 0 0
\(55\) −252.346 −0.618662
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 78.0000 0.172114 0.0860571 0.996290i \(-0.472573\pi\)
0.0860571 + 0.996290i \(0.472573\pi\)
\(60\) 0 0
\(61\) 609.955 1.28027 0.640137 0.768261i \(-0.278877\pi\)
0.640137 + 0.768261i \(0.278877\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 166.821 0.318333
\(66\) 0 0
\(67\) 654.452 1.19334 0.596672 0.802485i \(-0.296489\pi\)
0.596672 + 0.802485i \(0.296489\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −390.994 −0.653556 −0.326778 0.945101i \(-0.605963\pi\)
−0.326778 + 0.945101i \(0.605963\pi\)
\(72\) 0 0
\(73\) −84.3127 −0.135179 −0.0675894 0.997713i \(-0.521531\pi\)
−0.0675894 + 0.997713i \(0.521531\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −488.324 −0.722723
\(78\) 0 0
\(79\) −1176.65 −1.67574 −0.837869 0.545872i \(-0.816198\pi\)
−0.837869 + 0.545872i \(0.816198\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −430.648 −0.569515 −0.284758 0.958600i \(-0.591913\pi\)
−0.284758 + 0.958600i \(0.591913\pi\)
\(84\) 0 0
\(85\) −816.972 −1.04251
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1341.41 1.59763 0.798817 0.601574i \(-0.205459\pi\)
0.798817 + 0.601574i \(0.205459\pi\)
\(90\) 0 0
\(91\) 322.821 0.371878
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −10.6816 −0.0115359
\(96\) 0 0
\(97\) 802.949 0.840486 0.420243 0.907412i \(-0.361945\pi\)
0.420243 + 0.907412i \(0.361945\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 502.369 0.494926 0.247463 0.968897i \(-0.420403\pi\)
0.247463 + 0.968897i \(0.420403\pi\)
\(102\) 0 0
\(103\) −1928.93 −1.84527 −0.922635 0.385674i \(-0.873969\pi\)
−0.922635 + 0.385674i \(0.873969\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1759.96 −1.59011 −0.795053 0.606540i \(-0.792557\pi\)
−0.795053 + 0.606540i \(0.792557\pi\)
\(108\) 0 0
\(109\) −53.3071 −0.0468431 −0.0234215 0.999726i \(-0.507456\pi\)
−0.0234215 + 0.999726i \(0.507456\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −254.648 −0.211993 −0.105997 0.994366i \(-0.533803\pi\)
−0.105997 + 0.994366i \(0.533803\pi\)
\(114\) 0 0
\(115\) −1531.28 −1.24168
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1580.95 −1.21786
\(120\) 0 0
\(121\) −944.296 −0.709463
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1094.98 0.783506
\(126\) 0 0
\(127\) −805.597 −0.562876 −0.281438 0.959579i \(-0.590811\pi\)
−0.281438 + 0.959579i \(0.590811\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 365.966 0.244081 0.122041 0.992525i \(-0.461056\pi\)
0.122041 + 0.992525i \(0.461056\pi\)
\(132\) 0 0
\(133\) −20.6704 −0.0134763
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2319.79 1.44667 0.723333 0.690499i \(-0.242609\pi\)
0.723333 + 0.690499i \(0.242609\pi\)
\(138\) 0 0
\(139\) −1816.67 −1.10855 −0.554273 0.832335i \(-0.687004\pi\)
−0.554273 + 0.832335i \(0.687004\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −255.642 −0.149496
\(144\) 0 0
\(145\) −76.9944 −0.0440968
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1752.37 −0.963490 −0.481745 0.876311i \(-0.659997\pi\)
−0.481745 + 0.876311i \(0.659997\pi\)
\(150\) 0 0
\(151\) 590.128 0.318039 0.159020 0.987275i \(-0.449167\pi\)
0.159020 + 0.987275i \(0.449167\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2380.45 1.23356
\(156\) 0 0
\(157\) −2338.56 −1.18877 −0.594386 0.804180i \(-0.702605\pi\)
−0.594386 + 0.804180i \(0.702605\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2963.24 −1.45053
\(162\) 0 0
\(163\) −12.8549 −0.00617712 −0.00308856 0.999995i \(-0.500983\pi\)
−0.00308856 + 0.999995i \(0.500983\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3236.50 −1.49969 −0.749844 0.661614i \(-0.769872\pi\)
−0.749844 + 0.661614i \(0.769872\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3704.85 −1.62818 −0.814088 0.580742i \(-0.802763\pi\)
−0.814088 + 0.580742i \(0.802763\pi\)
\(174\) 0 0
\(175\) −985.111 −0.425528
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2487.37 −1.03863 −0.519316 0.854582i \(-0.673813\pi\)
−0.519316 + 0.854582i \(0.673813\pi\)
\(180\) 0 0
\(181\) −4362.47 −1.79149 −0.895745 0.444568i \(-0.853357\pi\)
−0.895745 + 0.444568i \(0.853357\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1843.56 −0.732657
\(186\) 0 0
\(187\) 1251.96 0.489583
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2816.51 −1.06699 −0.533497 0.845802i \(-0.679122\pi\)
−0.533497 + 0.845802i \(0.679122\pi\)
\(192\) 0 0
\(193\) 4253.33 1.58633 0.793164 0.609008i \(-0.208432\pi\)
0.793164 + 0.609008i \(0.208432\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4164.98 1.50631 0.753153 0.657845i \(-0.228532\pi\)
0.753153 + 0.657845i \(0.228532\pi\)
\(198\) 0 0
\(199\) −2252.44 −0.802367 −0.401183 0.915998i \(-0.631401\pi\)
−0.401183 + 0.915998i \(0.631401\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −148.994 −0.0515141
\(204\) 0 0
\(205\) −1503.40 −0.512204
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 16.3689 0.00541752
\(210\) 0 0
\(211\) 4507.73 1.47073 0.735367 0.677669i \(-0.237010\pi\)
0.735367 + 0.677669i \(0.237010\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 868.446 0.275477
\(216\) 0 0
\(217\) 4606.48 1.44105
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −827.642 −0.251915
\(222\) 0 0
\(223\) 863.280 0.259235 0.129618 0.991564i \(-0.458625\pi\)
0.129618 + 0.991564i \(0.458625\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4662.68 −1.36332 −0.681658 0.731671i \(-0.738741\pi\)
−0.681658 + 0.731671i \(0.738741\pi\)
\(228\) 0 0
\(229\) −3661.26 −1.05652 −0.528260 0.849083i \(-0.677155\pi\)
−0.528260 + 0.849083i \(0.677155\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −783.845 −0.220392 −0.110196 0.993910i \(-0.535148\pi\)
−0.110196 + 0.993910i \(0.535148\pi\)
\(234\) 0 0
\(235\) −6116.68 −1.69791
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2279.44 0.616924 0.308462 0.951237i \(-0.400186\pi\)
0.308462 + 0.951237i \(0.400186\pi\)
\(240\) 0 0
\(241\) 4352.87 1.16346 0.581728 0.813383i \(-0.302377\pi\)
0.581728 + 0.813383i \(0.302377\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3511.56 −0.915695
\(246\) 0 0
\(247\) −10.8212 −0.00278759
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 3851.24 0.968478 0.484239 0.874936i \(-0.339096\pi\)
0.484239 + 0.874936i \(0.339096\pi\)
\(252\) 0 0
\(253\) 2346.59 0.583118
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3090.99 −0.750237 −0.375119 0.926977i \(-0.622398\pi\)
−0.375119 + 0.926977i \(0.622398\pi\)
\(258\) 0 0
\(259\) −3567.54 −0.855893
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −8.67041 −0.00203285 −0.00101643 0.999999i \(-0.500324\pi\)
−0.00101643 + 0.999999i \(0.500324\pi\)
\(264\) 0 0
\(265\) 761.197 0.176453
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7485.51 1.69665 0.848326 0.529474i \(-0.177611\pi\)
0.848326 + 0.529474i \(0.177611\pi\)
\(270\) 0 0
\(271\) −6357.84 −1.42513 −0.712566 0.701605i \(-0.752467\pi\)
−0.712566 + 0.701605i \(0.752467\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 780.110 0.171063
\(276\) 0 0
\(277\) 7232.46 1.56880 0.784398 0.620258i \(-0.212972\pi\)
0.784398 + 0.620258i \(0.212972\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2886.87 −0.612868 −0.306434 0.951892i \(-0.599136\pi\)
−0.306434 + 0.951892i \(0.599136\pi\)
\(282\) 0 0
\(283\) 6413.26 1.34710 0.673549 0.739143i \(-0.264769\pi\)
0.673549 + 0.739143i \(0.264769\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2909.27 −0.598359
\(288\) 0 0
\(289\) −859.794 −0.175004
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1223.82 0.244016 0.122008 0.992529i \(-0.461067\pi\)
0.122008 + 0.992529i \(0.461067\pi\)
\(294\) 0 0
\(295\) −1000.93 −0.197547
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1551.28 −0.300044
\(300\) 0 0
\(301\) 1680.56 0.321813
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −7827.19 −1.46945
\(306\) 0 0
\(307\) 3853.21 0.716333 0.358167 0.933658i \(-0.383402\pi\)
0.358167 + 0.933658i \(0.383402\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −7694.88 −1.40301 −0.701506 0.712664i \(-0.747489\pi\)
−0.701506 + 0.712664i \(0.747489\pi\)
\(312\) 0 0
\(313\) 2743.30 0.495400 0.247700 0.968837i \(-0.420325\pi\)
0.247700 + 0.968837i \(0.420325\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4706.66 −0.833920 −0.416960 0.908925i \(-0.636904\pi\)
−0.416960 + 0.908925i \(0.636904\pi\)
\(318\) 0 0
\(319\) 117.989 0.0207088
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 52.9944 0.00912906
\(324\) 0 0
\(325\) −515.715 −0.0880207
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −11836.6 −1.98350
\(330\) 0 0
\(331\) 9270.83 1.53949 0.769745 0.638352i \(-0.220384\pi\)
0.769745 + 0.638352i \(0.220384\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −8398.19 −1.36968
\(336\) 0 0
\(337\) −6888.86 −1.11353 −0.556766 0.830670i \(-0.687958\pi\)
−0.556766 + 0.830670i \(0.687958\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3647.87 −0.579306
\(342\) 0 0
\(343\) 1722.18 0.271105
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2864.49 −0.443152 −0.221576 0.975143i \(-0.571120\pi\)
−0.221576 + 0.975143i \(0.571120\pi\)
\(348\) 0 0
\(349\) 7865.20 1.20635 0.603173 0.797610i \(-0.293903\pi\)
0.603173 + 0.797610i \(0.293903\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6071.98 −0.915521 −0.457761 0.889075i \(-0.651348\pi\)
−0.457761 + 0.889075i \(0.651348\pi\)
\(354\) 0 0
\(355\) 5017.40 0.750129
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4951.16 0.727889 0.363945 0.931421i \(-0.381430\pi\)
0.363945 + 0.931421i \(0.381430\pi\)
\(360\) 0 0
\(361\) −6858.31 −0.999899
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1081.93 0.155154
\(366\) 0 0
\(367\) −2475.62 −0.352115 −0.176058 0.984380i \(-0.556334\pi\)
−0.176058 + 0.984380i \(0.556334\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1473.02 0.206133
\(372\) 0 0
\(373\) −7342.00 −1.01918 −0.509590 0.860417i \(-0.670203\pi\)
−0.509590 + 0.860417i \(0.670203\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −78.0000 −0.0106557
\(378\) 0 0
\(379\) 6188.34 0.838717 0.419359 0.907821i \(-0.362255\pi\)
0.419359 + 0.907821i \(0.362255\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3583.67 −0.478113 −0.239056 0.971006i \(-0.576838\pi\)
−0.239056 + 0.971006i \(0.576838\pi\)
\(384\) 0 0
\(385\) 6266.37 0.829516
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2377.34 0.309861 0.154931 0.987925i \(-0.450485\pi\)
0.154931 + 0.987925i \(0.450485\pi\)
\(390\) 0 0
\(391\) 7597.09 0.982613
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 15099.2 1.92335
\(396\) 0 0
\(397\) −8775.17 −1.10935 −0.554677 0.832066i \(-0.687158\pi\)
−0.554677 + 0.832066i \(0.687158\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −11512.5 −1.43368 −0.716842 0.697236i \(-0.754413\pi\)
−0.716842 + 0.697236i \(0.754413\pi\)
\(402\) 0 0
\(403\) 2411.54 0.298082
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2825.14 0.344071
\(408\) 0 0
\(409\) −13259.2 −1.60300 −0.801499 0.597996i \(-0.795964\pi\)
−0.801499 + 0.597996i \(0.795964\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1936.93 −0.230775
\(414\) 0 0
\(415\) 5526.25 0.653669
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −2101.74 −0.245052 −0.122526 0.992465i \(-0.539099\pi\)
−0.122526 + 0.992465i \(0.539099\pi\)
\(420\) 0 0
\(421\) −15777.9 −1.82653 −0.913264 0.407369i \(-0.866446\pi\)
−0.913264 + 0.407369i \(0.866446\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2525.61 0.288259
\(426\) 0 0
\(427\) −15146.6 −1.71662
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4091.03 −0.457211 −0.228606 0.973519i \(-0.573417\pi\)
−0.228606 + 0.973519i \(0.573417\pi\)
\(432\) 0 0
\(433\) −419.071 −0.0465110 −0.0232555 0.999730i \(-0.507403\pi\)
−0.0232555 + 0.999730i \(0.507403\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 99.3296 0.0108732
\(438\) 0 0
\(439\) 15041.1 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −11829.0 −1.26865 −0.634326 0.773066i \(-0.718722\pi\)
−0.634326 + 0.773066i \(0.718722\pi\)
\(444\) 0 0
\(445\) −17213.5 −1.83371
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9655.47 1.01485 0.507427 0.861695i \(-0.330597\pi\)
0.507427 + 0.861695i \(0.330597\pi\)
\(450\) 0 0
\(451\) 2303.86 0.240542
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4142.57 −0.426828
\(456\) 0 0
\(457\) −2304.65 −0.235901 −0.117951 0.993019i \(-0.537632\pi\)
−0.117951 + 0.993019i \(0.537632\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 16181.3 1.63479 0.817393 0.576080i \(-0.195418\pi\)
0.817393 + 0.576080i \(0.195418\pi\)
\(462\) 0 0
\(463\) −13304.0 −1.33540 −0.667699 0.744431i \(-0.732721\pi\)
−0.667699 + 0.744431i \(0.732721\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 6280.78 0.622355 0.311178 0.950352i \(-0.399277\pi\)
0.311178 + 0.950352i \(0.399277\pi\)
\(468\) 0 0
\(469\) −16251.6 −1.60006
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1330.84 −0.129370
\(474\) 0 0
\(475\) 33.0215 0.00318975
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −12938.7 −1.23420 −0.617102 0.786883i \(-0.711693\pi\)
−0.617102 + 0.786883i \(0.711693\pi\)
\(480\) 0 0
\(481\) −1867.64 −0.177042
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −10303.8 −0.964680
\(486\) 0 0
\(487\) −17162.2 −1.59690 −0.798452 0.602059i \(-0.794347\pi\)
−0.798452 + 0.602059i \(0.794347\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1295.35 −0.119060 −0.0595300 0.998227i \(-0.518960\pi\)
−0.0595300 + 0.998227i \(0.518960\pi\)
\(492\) 0 0
\(493\) 381.989 0.0348964
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9709.33 0.876304
\(498\) 0 0
\(499\) −50.9972 −0.00457504 −0.00228752 0.999997i \(-0.500728\pi\)
−0.00228752 + 0.999997i \(0.500728\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18949.3 1.67973 0.839866 0.542794i \(-0.182633\pi\)
0.839866 + 0.542794i \(0.182633\pi\)
\(504\) 0 0
\(505\) −6446.60 −0.568059
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 19440.3 1.69288 0.846439 0.532486i \(-0.178742\pi\)
0.846439 + 0.532486i \(0.178742\pi\)
\(510\) 0 0
\(511\) 2093.69 0.181251
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 24752.8 2.11794
\(516\) 0 0
\(517\) 9373.40 0.797373
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −2480.08 −0.208549 −0.104275 0.994549i \(-0.533252\pi\)
−0.104275 + 0.994549i \(0.533252\pi\)
\(522\) 0 0
\(523\) −14540.2 −1.21568 −0.607840 0.794060i \(-0.707964\pi\)
−0.607840 + 0.794060i \(0.707964\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −11810.0 −0.976189
\(528\) 0 0
\(529\) 2072.55 0.170342
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1523.03 −0.123771
\(534\) 0 0
\(535\) 22584.4 1.82507
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5381.23 0.430030
\(540\) 0 0
\(541\) 14166.6 1.12582 0.562909 0.826519i \(-0.309682\pi\)
0.562909 + 0.826519i \(0.309682\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 684.058 0.0537648
\(546\) 0 0
\(547\) 3102.57 0.242516 0.121258 0.992621i \(-0.461307\pi\)
0.121258 + 0.992621i \(0.461307\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.99438 0.000386148 0
\(552\) 0 0
\(553\) 29219.0 2.24687
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −6829.69 −0.519539 −0.259770 0.965671i \(-0.583647\pi\)
−0.259770 + 0.965671i \(0.583647\pi\)
\(558\) 0 0
\(559\) 879.788 0.0665672
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 15516.1 1.16150 0.580752 0.814080i \(-0.302758\pi\)
0.580752 + 0.814080i \(0.302758\pi\)
\(564\) 0 0
\(565\) 3267.74 0.243319
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9960.00 0.733822 0.366911 0.930256i \(-0.380415\pi\)
0.366911 + 0.930256i \(0.380415\pi\)
\(570\) 0 0
\(571\) −22117.9 −1.62102 −0.810512 0.585722i \(-0.800811\pi\)
−0.810512 + 0.585722i \(0.800811\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4733.85 0.343331
\(576\) 0 0
\(577\) 8171.54 0.589576 0.294788 0.955563i \(-0.404751\pi\)
0.294788 + 0.955563i \(0.404751\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 10694.0 0.763619
\(582\) 0 0
\(583\) −1166.48 −0.0828659
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −6436.54 −0.452580 −0.226290 0.974060i \(-0.572660\pi\)
−0.226290 + 0.974060i \(0.572660\pi\)
\(588\) 0 0
\(589\) −154.412 −0.0108021
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −16421.7 −1.13720 −0.568599 0.822615i \(-0.692514\pi\)
−0.568599 + 0.822615i \(0.692514\pi\)
\(594\) 0 0
\(595\) 20287.4 1.39782
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −914.614 −0.0623875 −0.0311938 0.999513i \(-0.509931\pi\)
−0.0311938 + 0.999513i \(0.509931\pi\)
\(600\) 0 0
\(601\) −28107.4 −1.90770 −0.953848 0.300289i \(-0.902917\pi\)
−0.953848 + 0.300289i \(0.902917\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 12117.6 0.814297
\(606\) 0 0
\(607\) −9581.92 −0.640722 −0.320361 0.947296i \(-0.603804\pi\)
−0.320361 + 0.947296i \(0.603804\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6196.57 −0.410289
\(612\) 0 0
\(613\) −1118.28 −0.0736814 −0.0368407 0.999321i \(-0.511729\pi\)
−0.0368407 + 0.999321i \(0.511729\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −8230.82 −0.537051 −0.268525 0.963273i \(-0.586536\pi\)
−0.268525 + 0.963273i \(0.586536\pi\)
\(618\) 0 0
\(619\) −5312.60 −0.344962 −0.172481 0.985013i \(-0.555178\pi\)
−0.172481 + 0.985013i \(0.555178\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −33310.5 −2.14215
\(624\) 0 0
\(625\) −19010.1 −1.21664
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 9146.39 0.579794
\(630\) 0 0
\(631\) 6797.18 0.428830 0.214415 0.976743i \(-0.431216\pi\)
0.214415 + 0.976743i \(0.431216\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 10337.7 0.646049
\(636\) 0 0
\(637\) −3557.42 −0.221272
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7436.63 −0.458236 −0.229118 0.973399i \(-0.573584\pi\)
−0.229118 + 0.973399i \(0.573584\pi\)
\(642\) 0 0
\(643\) −3976.51 −0.243886 −0.121943 0.992537i \(-0.538912\pi\)
−0.121943 + 0.992537i \(0.538912\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 29726.1 1.80626 0.903132 0.429362i \(-0.141262\pi\)
0.903132 + 0.429362i \(0.141262\pi\)
\(648\) 0 0
\(649\) 1533.85 0.0927720
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 18774.1 1.12510 0.562548 0.826765i \(-0.309821\pi\)
0.562548 + 0.826765i \(0.309821\pi\)
\(654\) 0 0
\(655\) −4696.22 −0.280148
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 7601.47 0.449334 0.224667 0.974436i \(-0.427871\pi\)
0.224667 + 0.974436i \(0.427871\pi\)
\(660\) 0 0
\(661\) 14701.5 0.865089 0.432544 0.901613i \(-0.357616\pi\)
0.432544 + 0.901613i \(0.357616\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 265.251 0.0154677
\(666\) 0 0
\(667\) 715.978 0.0415634
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 11994.6 0.690086
\(672\) 0 0
\(673\) 2577.04 0.147604 0.0738020 0.997273i \(-0.476487\pi\)
0.0738020 + 0.997273i \(0.476487\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −10227.0 −0.580583 −0.290291 0.956938i \(-0.593752\pi\)
−0.290291 + 0.956938i \(0.593752\pi\)
\(678\) 0 0
\(679\) −19939.2 −1.12694
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 11239.2 0.629656 0.314828 0.949149i \(-0.398053\pi\)
0.314828 + 0.949149i \(0.398053\pi\)
\(684\) 0 0
\(685\) −29768.5 −1.66043
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 771.139 0.0426387
\(690\) 0 0
\(691\) 4388.42 0.241597 0.120798 0.992677i \(-0.461455\pi\)
0.120798 + 0.992677i \(0.461455\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 23312.2 1.27235
\(696\) 0 0
\(697\) 7458.74 0.405337
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −15247.0 −0.821500 −0.410750 0.911748i \(-0.634733\pi\)
−0.410750 + 0.911748i \(0.634733\pi\)
\(702\) 0 0
\(703\) 119.586 0.00641576
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −12475.0 −0.663609
\(708\) 0 0
\(709\) 22073.9 1.16926 0.584628 0.811301i \(-0.301240\pi\)
0.584628 + 0.811301i \(0.301240\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −22136.0 −1.16269
\(714\) 0 0
\(715\) 3280.50 0.171586
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 20988.2 1.08863 0.544317 0.838879i \(-0.316789\pi\)
0.544317 + 0.838879i \(0.316789\pi\)
\(720\) 0 0
\(721\) 47899.9 2.47418
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 238.022 0.0121930
\(726\) 0 0
\(727\) −11692.8 −0.596509 −0.298254 0.954486i \(-0.596404\pi\)
−0.298254 + 0.954486i \(0.596404\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4308.58 −0.218001
\(732\) 0 0
\(733\) 21190.2 1.06777 0.533887 0.845556i \(-0.320731\pi\)
0.533887 + 0.845556i \(0.320731\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12869.7 0.643230
\(738\) 0 0
\(739\) −6905.92 −0.343759 −0.171880 0.985118i \(-0.554984\pi\)
−0.171880 + 0.985118i \(0.554984\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −2539.96 −0.125413 −0.0627067 0.998032i \(-0.519973\pi\)
−0.0627067 + 0.998032i \(0.519973\pi\)
\(744\) 0 0
\(745\) 22487.2 1.10586
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 43703.9 2.13205
\(750\) 0 0
\(751\) −3805.24 −0.184894 −0.0924468 0.995718i \(-0.529469\pi\)
−0.0924468 + 0.995718i \(0.529469\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −7572.76 −0.365034
\(756\) 0 0
\(757\) −20266.6 −0.973052 −0.486526 0.873666i \(-0.661736\pi\)
−0.486526 + 0.873666i \(0.661736\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −28056.2 −1.33645 −0.668224 0.743960i \(-0.732945\pi\)
−0.668224 + 0.743960i \(0.732945\pi\)
\(762\) 0 0
\(763\) 1323.74 0.0628083
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1014.00 −0.0477359
\(768\) 0 0
\(769\) 16703.0 0.783260 0.391630 0.920123i \(-0.371911\pi\)
0.391630 + 0.920123i \(0.371911\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −25155.9 −1.17050 −0.585250 0.810853i \(-0.699003\pi\)
−0.585250 + 0.810853i \(0.699003\pi\)
\(774\) 0 0
\(775\) −7358.97 −0.341087
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 97.5206 0.00448529
\(780\) 0 0
\(781\) −7688.82 −0.352276
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 30009.3 1.36443
\(786\) 0 0
\(787\) 8287.15 0.375356 0.187678 0.982231i \(-0.439904\pi\)
0.187678 + 0.982231i \(0.439904\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 6323.52 0.284246
\(792\) 0 0
\(793\) −7929.42 −0.355084
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −28506.5 −1.26694 −0.633470 0.773767i \(-0.718370\pi\)
−0.633470 + 0.773767i \(0.718370\pi\)
\(798\) 0 0
\(799\) 30346.4 1.34365
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1657.99 −0.0728634
\(804\) 0 0
\(805\) 38025.5 1.66487
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 31026.7 1.34838 0.674191 0.738557i \(-0.264492\pi\)
0.674191 + 0.738557i \(0.264492\pi\)
\(810\) 0 0
\(811\) −11304.9 −0.489480 −0.244740 0.969589i \(-0.578703\pi\)
−0.244740 + 0.969589i \(0.578703\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 164.959 0.00708988
\(816\) 0 0
\(817\) −56.3333 −0.00241231
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 32811.2 1.39479 0.697393 0.716688i \(-0.254343\pi\)
0.697393 + 0.716688i \(0.254343\pi\)
\(822\) 0 0
\(823\) −39056.0 −1.65420 −0.827099 0.562056i \(-0.810010\pi\)
−0.827099 + 0.562056i \(0.810010\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8221.77 0.345706 0.172853 0.984948i \(-0.444701\pi\)
0.172853 + 0.984948i \(0.444701\pi\)
\(828\) 0 0
\(829\) 17201.9 0.720686 0.360343 0.932820i \(-0.382660\pi\)
0.360343 + 0.932820i \(0.382660\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 17421.7 0.724643
\(834\) 0 0
\(835\) 41532.1 1.72129
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −37656.5 −1.54952 −0.774759 0.632257i \(-0.782129\pi\)
−0.774759 + 0.632257i \(0.782129\pi\)
\(840\) 0 0
\(841\) −24353.0 −0.998524
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2168.68 −0.0882896
\(846\) 0 0
\(847\) 23449.1 0.951265
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 17143.5 0.690564
\(852\) 0 0
\(853\) 19882.5 0.798082 0.399041 0.916933i \(-0.369343\pi\)
0.399041 + 0.916933i \(0.369343\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 45416.6 1.81027 0.905135 0.425125i \(-0.139770\pi\)
0.905135 + 0.425125i \(0.139770\pi\)
\(858\) 0 0
\(859\) 18572.2 0.737689 0.368845 0.929491i \(-0.379753\pi\)
0.368845 + 0.929491i \(0.379753\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −43854.1 −1.72979 −0.864896 0.501952i \(-0.832616\pi\)
−0.864896 + 0.501952i \(0.832616\pi\)
\(864\) 0 0
\(865\) 47542.1 1.86876
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −23138.5 −0.903246
\(870\) 0 0
\(871\) −8507.88 −0.330974
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −27191.1 −1.05054
\(876\) 0 0
\(877\) 8076.73 0.310983 0.155491 0.987837i \(-0.450304\pi\)
0.155491 + 0.987837i \(0.450304\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 28647.3 1.09552 0.547759 0.836636i \(-0.315481\pi\)
0.547759 + 0.836636i \(0.315481\pi\)
\(882\) 0 0
\(883\) −25901.8 −0.987164 −0.493582 0.869699i \(-0.664313\pi\)
−0.493582 + 0.869699i \(0.664313\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −9023.06 −0.341561 −0.170780 0.985309i \(-0.554629\pi\)
−0.170780 + 0.985309i \(0.554629\pi\)
\(888\) 0 0
\(889\) 20004.9 0.754717
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 396.770 0.0148683
\(894\) 0 0
\(895\) 31919.0 1.19210
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1113.02 −0.0412916
\(900\) 0 0
\(901\) −3776.49 −0.139637
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 55980.9 2.05621
\(906\) 0 0
\(907\) 9526.00 0.348738 0.174369 0.984680i \(-0.444211\pi\)
0.174369 + 0.984680i \(0.444211\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −8695.33 −0.316234 −0.158117 0.987420i \(-0.550542\pi\)
−0.158117 + 0.987420i \(0.550542\pi\)
\(912\) 0 0
\(913\) −8468.60 −0.306977
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −9087.82 −0.327270
\(918\) 0 0
\(919\) 3367.18 0.120863 0.0604315 0.998172i \(-0.480752\pi\)
0.0604315 + 0.998172i \(0.480752\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 5082.93 0.181264
\(924\) 0 0
\(925\) 5699.24 0.202584
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 25124.3 0.887300 0.443650 0.896200i \(-0.353683\pi\)
0.443650 + 0.896200i \(0.353683\pi\)
\(930\) 0 0
\(931\) 227.784 0.00801859
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −16065.6 −0.561926
\(936\) 0 0
\(937\) 1387.27 0.0483674 0.0241837 0.999708i \(-0.492301\pi\)
0.0241837 + 0.999708i \(0.492301\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −579.261 −0.0200674 −0.0100337 0.999950i \(-0.503194\pi\)
−0.0100337 + 0.999950i \(0.503194\pi\)
\(942\) 0 0
\(943\) 13980.2 0.482777
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −23162.3 −0.794798 −0.397399 0.917646i \(-0.630087\pi\)
−0.397399 + 0.917646i \(0.630087\pi\)
\(948\) 0 0
\(949\) 1096.07 0.0374919
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −4896.52 −0.166436 −0.0832182 0.996531i \(-0.526520\pi\)
−0.0832182 + 0.996531i \(0.526520\pi\)
\(954\) 0 0
\(955\) 36142.6 1.22466
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −57606.0 −1.93972
\(960\) 0 0
\(961\) 4620.29 0.155090
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −54580.4 −1.82073
\(966\) 0 0
\(967\) −48707.2 −1.61977 −0.809885 0.586589i \(-0.800470\pi\)
−0.809885 + 0.586589i \(0.800470\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 55808.4 1.84446 0.922232 0.386636i \(-0.126363\pi\)
0.922232 + 0.386636i \(0.126363\pi\)
\(972\) 0 0
\(973\) 45112.3 1.48637
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −12136.2 −0.397413 −0.198707 0.980059i \(-0.563674\pi\)
−0.198707 + 0.980059i \(0.563674\pi\)
\(978\) 0 0
\(979\) 26378.6 0.861148
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 43305.9 1.40513 0.702566 0.711619i \(-0.252038\pi\)
0.702566 + 0.711619i \(0.252038\pi\)
\(984\) 0 0
\(985\) −53446.6 −1.72888
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −8075.75 −0.259650
\(990\) 0 0
\(991\) 36327.3 1.16446 0.582228 0.813025i \(-0.302181\pi\)
0.582228 + 0.813025i \(0.302181\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 28904.2 0.920928
\(996\) 0 0
\(997\) −57063.1 −1.81264 −0.906322 0.422588i \(-0.861122\pi\)
−0.906322 + 0.422588i \(0.861122\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1872.4.a.bd.1.1 2
3.2 odd 2 624.4.a.n.1.2 2
4.3 odd 2 936.4.a.h.1.1 2
12.11 even 2 312.4.a.b.1.2 2
24.5 odd 2 2496.4.a.x.1.1 2
24.11 even 2 2496.4.a.bi.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.a.b.1.2 2 12.11 even 2
624.4.a.n.1.2 2 3.2 odd 2
936.4.a.h.1.1 2 4.3 odd 2
1872.4.a.bd.1.1 2 1.1 even 1 trivial
2496.4.a.x.1.1 2 24.5 odd 2
2496.4.a.bi.1.1 2 24.11 even 2