# Properties

 Label 1872.2.t.c Level $1872$ Weight $2$ Character orbit 1872.t Analytic conductor $14.948$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1872,2,Mod(289,1872)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1872, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1872.289");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1872 = 2^{4} \cdot 3^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1872.t (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$14.9479952584$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{13}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 78) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - 3 q^{5} + 2 \zeta_{6} q^{7}+O(q^{10})$$ q - 3 * q^5 + 2*z * q^7 $$q - 3 q^{5} + 2 \zeta_{6} q^{7} + (6 \zeta_{6} - 6) q^{11} + ( - \zeta_{6} - 3) q^{13} - 3 \zeta_{6} q^{17} + 2 \zeta_{6} q^{19} + ( - 6 \zeta_{6} + 6) q^{23} + 4 q^{25} + ( - 3 \zeta_{6} + 3) q^{29} + 4 q^{31} - 6 \zeta_{6} q^{35} + ( - 7 \zeta_{6} + 7) q^{37} + (3 \zeta_{6} - 3) q^{41} - 10 \zeta_{6} q^{43} + 6 q^{47} + ( - 3 \zeta_{6} + 3) q^{49} - 3 q^{53} + ( - 18 \zeta_{6} + 18) q^{55} + 7 \zeta_{6} q^{61} + (3 \zeta_{6} + 9) q^{65} + (10 \zeta_{6} - 10) q^{67} - 6 \zeta_{6} q^{71} - 13 q^{73} - 12 q^{77} + 4 q^{79} - 6 q^{83} + 9 \zeta_{6} q^{85} + ( - 18 \zeta_{6} + 18) q^{89} + ( - 8 \zeta_{6} + 2) q^{91} - 6 \zeta_{6} q^{95} - 14 \zeta_{6} q^{97} +O(q^{100})$$ q - 3 * q^5 + 2*z * q^7 + (6*z - 6) * q^11 + (-z - 3) * q^13 - 3*z * q^17 + 2*z * q^19 + (-6*z + 6) * q^23 + 4 * q^25 + (-3*z + 3) * q^29 + 4 * q^31 - 6*z * q^35 + (-7*z + 7) * q^37 + (3*z - 3) * q^41 - 10*z * q^43 + 6 * q^47 + (-3*z + 3) * q^49 - 3 * q^53 + (-18*z + 18) * q^55 + 7*z * q^61 + (3*z + 9) * q^65 + (10*z - 10) * q^67 - 6*z * q^71 - 13 * q^73 - 12 * q^77 + 4 * q^79 - 6 * q^83 + 9*z * q^85 + (-18*z + 18) * q^89 + (-8*z + 2) * q^91 - 6*z * q^95 - 14*z * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 6 q^{5} + 2 q^{7}+O(q^{10})$$ 2 * q - 6 * q^5 + 2 * q^7 $$2 q - 6 q^{5} + 2 q^{7} - 6 q^{11} - 7 q^{13} - 3 q^{17} + 2 q^{19} + 6 q^{23} + 8 q^{25} + 3 q^{29} + 8 q^{31} - 6 q^{35} + 7 q^{37} - 3 q^{41} - 10 q^{43} + 12 q^{47} + 3 q^{49} - 6 q^{53} + 18 q^{55} + 7 q^{61} + 21 q^{65} - 10 q^{67} - 6 q^{71} - 26 q^{73} - 24 q^{77} + 8 q^{79} - 12 q^{83} + 9 q^{85} + 18 q^{89} - 4 q^{91} - 6 q^{95} - 14 q^{97}+O(q^{100})$$ 2 * q - 6 * q^5 + 2 * q^7 - 6 * q^11 - 7 * q^13 - 3 * q^17 + 2 * q^19 + 6 * q^23 + 8 * q^25 + 3 * q^29 + 8 * q^31 - 6 * q^35 + 7 * q^37 - 3 * q^41 - 10 * q^43 + 12 * q^47 + 3 * q^49 - 6 * q^53 + 18 * q^55 + 7 * q^61 + 21 * q^65 - 10 * q^67 - 6 * q^71 - 26 * q^73 - 24 * q^77 + 8 * q^79 - 12 * q^83 + 9 * q^85 + 18 * q^89 - 4 * q^91 - 6 * q^95 - 14 * q^97

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1872\mathbb{Z}\right)^\times$$.

 $$n$$ $$145$$ $$209$$ $$469$$ $$703$$ $$\chi(n)$$ $$-\zeta_{6}$$ $$1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
289.1
 0.5 − 0.866025i 0.5 + 0.866025i
0 0 0 −3.00000 0 1.00000 1.73205i 0 0 0
1153.1 0 0 0 −3.00000 0 1.00000 + 1.73205i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1872.2.t.c 2
3.b odd 2 1 624.2.q.g 2
4.b odd 2 1 234.2.h.a 2
12.b even 2 1 78.2.e.a 2
13.c even 3 1 inner 1872.2.t.c 2
39.h odd 6 1 8112.2.a.c 1
39.i odd 6 1 624.2.q.g 2
39.i odd 6 1 8112.2.a.m 1
52.i odd 6 1 3042.2.a.h 1
52.j odd 6 1 234.2.h.a 2
52.j odd 6 1 3042.2.a.i 1
52.l even 12 2 3042.2.b.h 2
60.h even 2 1 1950.2.i.m 2
60.l odd 4 2 1950.2.z.g 4
156.h even 2 1 1014.2.e.a 2
156.l odd 4 2 1014.2.i.b 4
156.p even 6 1 78.2.e.a 2
156.p even 6 1 1014.2.a.c 1
156.r even 6 1 1014.2.a.f 1
156.r even 6 1 1014.2.e.a 2
156.v odd 12 2 1014.2.b.c 2
156.v odd 12 2 1014.2.i.b 4
780.br even 6 1 1950.2.i.m 2
780.cj odd 12 2 1950.2.z.g 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.2.e.a 2 12.b even 2 1
78.2.e.a 2 156.p even 6 1
234.2.h.a 2 4.b odd 2 1
234.2.h.a 2 52.j odd 6 1
624.2.q.g 2 3.b odd 2 1
624.2.q.g 2 39.i odd 6 1
1014.2.a.c 1 156.p even 6 1
1014.2.a.f 1 156.r even 6 1
1014.2.b.c 2 156.v odd 12 2
1014.2.e.a 2 156.h even 2 1
1014.2.e.a 2 156.r even 6 1
1014.2.i.b 4 156.l odd 4 2
1014.2.i.b 4 156.v odd 12 2
1872.2.t.c 2 1.a even 1 1 trivial
1872.2.t.c 2 13.c even 3 1 inner
1950.2.i.m 2 60.h even 2 1
1950.2.i.m 2 780.br even 6 1
1950.2.z.g 4 60.l odd 4 2
1950.2.z.g 4 780.cj odd 12 2
3042.2.a.h 1 52.i odd 6 1
3042.2.a.i 1 52.j odd 6 1
3042.2.b.h 2 52.l even 12 2
8112.2.a.c 1 39.h odd 6 1
8112.2.a.m 1 39.i odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1872, [\chi])$$:

 $$T_{5} + 3$$ T5 + 3 $$T_{7}^{2} - 2T_{7} + 4$$ T7^2 - 2*T7 + 4 $$T_{11}^{2} + 6T_{11} + 36$$ T11^2 + 6*T11 + 36

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$(T + 3)^{2}$$
$7$ $$T^{2} - 2T + 4$$
$11$ $$T^{2} + 6T + 36$$
$13$ $$T^{2} + 7T + 13$$
$17$ $$T^{2} + 3T + 9$$
$19$ $$T^{2} - 2T + 4$$
$23$ $$T^{2} - 6T + 36$$
$29$ $$T^{2} - 3T + 9$$
$31$ $$(T - 4)^{2}$$
$37$ $$T^{2} - 7T + 49$$
$41$ $$T^{2} + 3T + 9$$
$43$ $$T^{2} + 10T + 100$$
$47$ $$(T - 6)^{2}$$
$53$ $$(T + 3)^{2}$$
$59$ $$T^{2}$$
$61$ $$T^{2} - 7T + 49$$
$67$ $$T^{2} + 10T + 100$$
$71$ $$T^{2} + 6T + 36$$
$73$ $$(T + 13)^{2}$$
$79$ $$(T - 4)^{2}$$
$83$ $$(T + 6)^{2}$$
$89$ $$T^{2} - 18T + 324$$
$97$ $$T^{2} + 14T + 196$$