Properties

Label 1872.2.by.j.433.1
Level $1872$
Weight $2$
Character 1872.433
Analytic conductor $14.948$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1872,2,Mod(433,1872)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1872.433"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1872, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1872.by (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,3,0,0,0,12,0,6,0,0,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.9479952584\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-43})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} - 11x + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 156)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 433.1
Root \(3.08945 - 1.20635i\) of defining polynomial
Character \(\chi\) \(=\) 1872.433
Dual form 1872.2.by.j.1297.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.41269i q^{5} +(3.58945 - 2.07237i) q^{7} +(3.00000 + 1.73205i) q^{11} +(1.50000 - 3.27872i) q^{13} +(-3.08945 - 5.35109i) q^{17} +(3.00000 - 1.73205i) q^{19} +(1.00000 - 1.73205i) q^{23} -0.821092 q^{25} +(-4.08945 + 7.08314i) q^{29} +7.60885i q^{31} +(-5.00000 - 8.66025i) q^{35} +(0.910546 + 0.525704i) q^{37} +(-5.08945 - 2.93840i) q^{41} +(-0.410546 - 0.711086i) q^{43} +10.3923i q^{47} +(5.08945 - 8.81519i) q^{49} +10.1789 q^{53} +(4.17891 - 7.23808i) q^{55} +(1.17891 - 0.680643i) q^{59} +(-2.50000 - 4.33013i) q^{61} +(-7.91055 - 3.61904i) q^{65} +(-3.58945 - 2.07237i) q^{67} +(-3.00000 + 1.73205i) q^{71} +11.3828i q^{73} +14.3578 q^{77} -13.1789 q^{79} -11.7536i q^{83} +(-12.9105 + 7.45391i) q^{85} +(-6.00000 - 3.46410i) q^{89} +(-1.41055 - 14.8774i) q^{91} +(-4.17891 - 7.23808i) q^{95} +(-1.76836 + 1.02096i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{7} + 12 q^{11} + 6 q^{13} - q^{17} + 12 q^{19} + 4 q^{23} - 26 q^{25} - 5 q^{29} - 20 q^{35} + 15 q^{37} - 9 q^{41} - 13 q^{43} + 9 q^{49} + 18 q^{53} - 6 q^{55} - 18 q^{59} - 10 q^{61} - 43 q^{65}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1872\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.41269i 1.07899i −0.841989 0.539495i \(-0.818615\pi\)
0.841989 0.539495i \(-0.181385\pi\)
\(6\) 0 0
\(7\) 3.58945 2.07237i 1.35669 0.783283i 0.367511 0.930019i \(-0.380210\pi\)
0.989176 + 0.146736i \(0.0468769\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.00000 + 1.73205i 0.904534 + 0.522233i 0.878668 0.477432i \(-0.158432\pi\)
0.0258656 + 0.999665i \(0.491766\pi\)
\(12\) 0 0
\(13\) 1.50000 3.27872i 0.416025 0.909353i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.08945 5.35109i −0.749303 1.29783i −0.948157 0.317801i \(-0.897055\pi\)
0.198855 0.980029i \(-0.436278\pi\)
\(18\) 0 0
\(19\) 3.00000 1.73205i 0.688247 0.397360i −0.114708 0.993399i \(-0.536593\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.00000 1.73205i 0.208514 0.361158i −0.742732 0.669588i \(-0.766471\pi\)
0.951247 + 0.308431i \(0.0998038\pi\)
\(24\) 0 0
\(25\) −0.821092 −0.164218
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.08945 + 7.08314i −0.759393 + 1.31531i 0.183768 + 0.982970i \(0.441170\pi\)
−0.943161 + 0.332337i \(0.892163\pi\)
\(30\) 0 0
\(31\) 7.60885i 1.36659i 0.730143 + 0.683295i \(0.239454\pi\)
−0.730143 + 0.683295i \(0.760546\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.00000 8.66025i −0.845154 1.46385i
\(36\) 0 0
\(37\) 0.910546 + 0.525704i 0.149693 + 0.0864252i 0.572976 0.819572i \(-0.305789\pi\)
−0.423283 + 0.905998i \(0.639122\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.08945 2.93840i −0.794839 0.458901i 0.0468242 0.998903i \(-0.485090\pi\)
−0.841663 + 0.540003i \(0.818423\pi\)
\(42\) 0 0
\(43\) −0.410546 0.711086i −0.0626077 0.108440i 0.833023 0.553239i \(-0.186608\pi\)
−0.895630 + 0.444799i \(0.853275\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.3923i 1.51587i 0.652328 + 0.757937i \(0.273792\pi\)
−0.652328 + 0.757937i \(0.726208\pi\)
\(48\) 0 0
\(49\) 5.08945 8.81519i 0.727065 1.25931i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.1789 1.39818 0.699090 0.715033i \(-0.253589\pi\)
0.699090 + 0.715033i \(0.253589\pi\)
\(54\) 0 0
\(55\) 4.17891 7.23808i 0.563484 0.975983i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.17891 0.680643i 0.153481 0.0886122i −0.421293 0.906925i \(-0.638423\pi\)
0.574773 + 0.818313i \(0.305090\pi\)
\(60\) 0 0
\(61\) −2.50000 4.33013i −0.320092 0.554416i 0.660415 0.750901i \(-0.270381\pi\)
−0.980507 + 0.196485i \(0.937047\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −7.91055 3.61904i −0.981182 0.448887i
\(66\) 0 0
\(67\) −3.58945 2.07237i −0.438522 0.253181i 0.264449 0.964400i \(-0.414810\pi\)
−0.702970 + 0.711219i \(0.748143\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.00000 + 1.73205i −0.356034 + 0.205557i −0.667340 0.744753i \(-0.732567\pi\)
0.311305 + 0.950310i \(0.399234\pi\)
\(72\) 0 0
\(73\) 11.3828i 1.33226i 0.745836 + 0.666130i \(0.232050\pi\)
−0.745836 + 0.666130i \(0.767950\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 14.3578 1.63623
\(78\) 0 0
\(79\) −13.1789 −1.48274 −0.741372 0.671095i \(-0.765824\pi\)
−0.741372 + 0.671095i \(0.765824\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 11.7536i 1.29012i −0.764130 0.645062i \(-0.776831\pi\)
0.764130 0.645062i \(-0.223169\pi\)
\(84\) 0 0
\(85\) −12.9105 + 7.45391i −1.40035 + 0.808490i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.00000 3.46410i −0.635999 0.367194i 0.147073 0.989126i \(-0.453015\pi\)
−0.783072 + 0.621932i \(0.786348\pi\)
\(90\) 0 0
\(91\) −1.41055 14.8774i −0.147865 1.55957i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.17891 7.23808i −0.428747 0.742612i
\(96\) 0 0
\(97\) −1.76836 + 1.02096i −0.179550 + 0.103663i −0.587081 0.809528i \(-0.699723\pi\)
0.407531 + 0.913191i \(0.366390\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.08945 10.5472i 0.605923 1.04949i −0.385981 0.922507i \(-0.626137\pi\)
0.991905 0.126983i \(-0.0405295\pi\)
\(102\) 0 0
\(103\) −3.17891 −0.313227 −0.156614 0.987660i \(-0.550058\pi\)
−0.156614 + 0.987660i \(0.550058\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.00000 8.66025i 0.483368 0.837218i −0.516449 0.856318i \(-0.672747\pi\)
0.999818 + 0.0190994i \(0.00607989\pi\)
\(108\) 0 0
\(109\) 7.60885i 0.728795i −0.931243 0.364398i \(-0.881275\pi\)
0.931243 0.364398i \(-0.118725\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.08945 + 10.5472i 0.572848 + 0.992201i 0.996272 + 0.0862697i \(0.0274947\pi\)
−0.423424 + 0.905932i \(0.639172\pi\)
\(114\) 0 0
\(115\) −4.17891 2.41269i −0.389685 0.224985i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −22.1789 12.8050i −2.03314 1.17383i
\(120\) 0 0
\(121\) 0.500000 + 0.866025i 0.0454545 + 0.0787296i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.0824i 0.901800i
\(126\) 0 0
\(127\) −1.41055 + 2.44314i −0.125166 + 0.216793i −0.921798 0.387671i \(-0.873280\pi\)
0.796632 + 0.604465i \(0.206613\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.35782 0.555485 0.277743 0.960656i \(-0.410414\pi\)
0.277743 + 0.960656i \(0.410414\pi\)
\(132\) 0 0
\(133\) 7.17891 12.4342i 0.622490 1.07818i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.0895 6.40250i 0.947436 0.547002i 0.0551525 0.998478i \(-0.482436\pi\)
0.892284 + 0.451476i \(0.149102\pi\)
\(138\) 0 0
\(139\) 8.58945 + 14.8774i 0.728548 + 1.26188i 0.957497 + 0.288444i \(0.0931378\pi\)
−0.228949 + 0.973438i \(0.573529\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 10.1789 7.23808i 0.851203 0.605279i
\(144\) 0 0
\(145\) 17.0895 + 9.86660i 1.41920 + 0.819377i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.08945 + 2.93840i −0.416944 + 0.240723i −0.693769 0.720197i \(-0.744051\pi\)
0.276825 + 0.960920i \(0.410718\pi\)
\(150\) 0 0
\(151\) 20.0431i 1.63108i 0.578699 + 0.815541i \(0.303561\pi\)
−0.578699 + 0.815541i \(0.696439\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 18.3578 1.47454
\(156\) 0 0
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.28949i 0.653303i
\(162\) 0 0
\(163\) 6.58945 3.80442i 0.516126 0.297985i −0.219222 0.975675i \(-0.570352\pi\)
0.735348 + 0.677690i \(0.237019\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.00000 + 3.46410i 0.464294 + 0.268060i 0.713848 0.700301i \(-0.246951\pi\)
−0.249554 + 0.968361i \(0.580284\pi\)
\(168\) 0 0
\(169\) −8.50000 9.83616i −0.653846 0.756628i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.00000 + 15.5885i 0.684257 + 1.18517i 0.973670 + 0.227964i \(0.0732068\pi\)
−0.289412 + 0.957205i \(0.593460\pi\)
\(174\) 0 0
\(175\) −2.94727 + 1.70161i −0.222793 + 0.128629i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.17891 7.23808i 0.312346 0.541000i −0.666524 0.745484i \(-0.732218\pi\)
0.978870 + 0.204484i \(0.0655518\pi\)
\(180\) 0 0
\(181\) −20.5367 −1.52648 −0.763241 0.646113i \(-0.776393\pi\)
−0.763241 + 0.646113i \(0.776393\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.26836 2.19687i 0.0932519 0.161517i
\(186\) 0 0
\(187\) 21.4044i 1.56524i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.17891 + 2.04193i 0.0853028 + 0.147749i 0.905520 0.424303i \(-0.139481\pi\)
−0.820217 + 0.572052i \(0.806148\pi\)
\(192\) 0 0
\(193\) −11.6789 6.74282i −0.840666 0.485359i 0.0168244 0.999858i \(-0.494644\pi\)
−0.857491 + 0.514500i \(0.827978\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.35782 + 4.82539i 0.595470 + 0.343795i 0.767257 0.641339i \(-0.221621\pi\)
−0.171788 + 0.985134i \(0.554954\pi\)
\(198\) 0 0
\(199\) −10.7684 18.6514i −0.763349 1.32216i −0.941115 0.338086i \(-0.890220\pi\)
0.177766 0.984073i \(-0.443113\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 33.8995i 2.37928i
\(204\) 0 0
\(205\) −7.08945 + 12.2793i −0.495149 + 0.857623i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) −7.76836 + 13.4552i −0.534796 + 0.926294i 0.464377 + 0.885638i \(0.346278\pi\)
−0.999173 + 0.0406565i \(0.987055\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.71563 + 0.990521i −0.117005 + 0.0675530i
\(216\) 0 0
\(217\) 15.7684 + 27.3116i 1.07043 + 1.85403i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −22.1789 + 2.10282i −1.49191 + 0.141451i
\(222\) 0 0
\(223\) 13.1789 + 7.60885i 0.882525 + 0.509526i 0.871490 0.490413i \(-0.163154\pi\)
0.0110349 + 0.999939i \(0.496487\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.82109 4.51551i 0.519104 0.299705i −0.217464 0.976068i \(-0.569778\pi\)
0.736568 + 0.676363i \(0.236445\pi\)
\(228\) 0 0
\(229\) 9.65078i 0.637741i −0.947798 0.318871i \(-0.896696\pi\)
0.947798 0.318871i \(-0.103304\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −22.7156 −1.48815 −0.744075 0.668096i \(-0.767110\pi\)
−0.744075 + 0.668096i \(0.767110\pi\)
\(234\) 0 0
\(235\) 25.0735 1.63561
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.10282i 0.136020i 0.997685 + 0.0680099i \(0.0216650\pi\)
−0.997685 + 0.0680099i \(0.978335\pi\)
\(240\) 0 0
\(241\) 5.08945 2.93840i 0.327841 0.189279i −0.327041 0.945010i \(-0.606052\pi\)
0.654882 + 0.755731i \(0.272718\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −21.2684 12.2793i −1.35879 0.784495i
\(246\) 0 0
\(247\) −1.17891 12.4342i −0.0750121 0.791171i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.3578 + 17.9403i 0.653780 + 1.13238i 0.982198 + 0.187847i \(0.0601510\pi\)
−0.328419 + 0.944532i \(0.606516\pi\)
\(252\) 0 0
\(253\) 6.00000 3.46410i 0.377217 0.217786i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.0895 19.2075i 0.691741 1.19813i −0.279526 0.960138i \(-0.590177\pi\)
0.971267 0.237993i \(-0.0764894\pi\)
\(258\) 0 0
\(259\) 4.35782 0.270782
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −16.1789 + 28.0227i −0.997634 + 1.72795i −0.439282 + 0.898349i \(0.644767\pi\)
−0.558352 + 0.829604i \(0.688566\pi\)
\(264\) 0 0
\(265\) 24.5586i 1.50862i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −6.17891 10.7022i −0.376735 0.652524i 0.613850 0.789422i \(-0.289620\pi\)
−0.990585 + 0.136899i \(0.956286\pi\)
\(270\) 0 0
\(271\) 12.5895 + 7.26852i 0.764755 + 0.441531i 0.831000 0.556272i \(-0.187769\pi\)
−0.0662455 + 0.997803i \(0.521102\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.46327 1.42217i −0.148541 0.0857602i
\(276\) 0 0
\(277\) 0.0894542 + 0.154939i 0.00537478 + 0.00930939i 0.868700 0.495338i \(-0.164956\pi\)
−0.863326 + 0.504647i \(0.831622\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 11.4437i 0.682675i 0.939941 + 0.341337i \(0.110880\pi\)
−0.939941 + 0.341337i \(0.889120\pi\)
\(282\) 0 0
\(283\) −13.5895 + 23.5376i −0.807809 + 1.39917i 0.106569 + 0.994305i \(0.466014\pi\)
−0.914378 + 0.404861i \(0.867320\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −24.3578 −1.43780
\(288\) 0 0
\(289\) −10.5895 + 18.3415i −0.622909 + 1.07891i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −28.4473 + 16.4240i −1.66191 + 0.959503i −0.690104 + 0.723710i \(0.742435\pi\)
−0.971803 + 0.235792i \(0.924232\pi\)
\(294\) 0 0
\(295\) −1.64218 2.84434i −0.0956116 0.165604i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.17891 5.87680i −0.241673 0.339864i
\(300\) 0 0
\(301\) −2.94727 1.70161i −0.169878 0.0980790i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −10.4473 + 6.03173i −0.598209 + 0.345376i
\(306\) 0 0
\(307\) 11.0729i 0.631967i 0.948765 + 0.315983i \(0.102334\pi\)
−0.948765 + 0.315983i \(0.897666\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 11.6422 0.660168 0.330084 0.943952i \(-0.392923\pi\)
0.330084 + 0.943952i \(0.392923\pi\)
\(312\) 0 0
\(313\) 27.8945 1.57669 0.788346 0.615232i \(-0.210938\pi\)
0.788346 + 0.615232i \(0.210938\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.77398i 0.211968i 0.994368 + 0.105984i \(0.0337992\pi\)
−0.994368 + 0.105984i \(0.966201\pi\)
\(318\) 0 0
\(319\) −24.5367 + 14.1663i −1.37379 + 0.793160i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −18.5367 10.7022i −1.03141 0.595485i
\(324\) 0 0
\(325\) −1.23164 + 2.69213i −0.0683190 + 0.149332i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 21.5367 + 37.3027i 1.18736 + 2.05656i
\(330\) 0 0
\(331\) 17.4105 10.0520i 0.956970 0.552507i 0.0617309 0.998093i \(-0.480338\pi\)
0.895239 + 0.445586i \(0.147005\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.00000 + 8.66025i −0.273179 + 0.473160i
\(336\) 0 0
\(337\) −25.3578 −1.38133 −0.690664 0.723176i \(-0.742682\pi\)
−0.690664 + 0.723176i \(0.742682\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −13.1789 + 22.8265i −0.713678 + 1.23613i
\(342\) 0 0
\(343\) 13.1758i 0.711424i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10.1789 17.6304i −0.546432 0.946449i −0.998515 0.0544728i \(-0.982652\pi\)
0.452083 0.891976i \(-0.350681\pi\)
\(348\) 0 0
\(349\) 8.94727 + 5.16571i 0.478936 + 0.276514i 0.719973 0.694002i \(-0.244154\pi\)
−0.241037 + 0.970516i \(0.577487\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −16.4473 9.49584i −0.875400 0.505412i −0.00626098 0.999980i \(-0.501993\pi\)
−0.869139 + 0.494568i \(0.835326\pi\)
\(354\) 0 0
\(355\) 4.17891 + 7.23808i 0.221793 + 0.384157i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 18.6818i 0.985987i 0.870033 + 0.492994i \(0.164097\pi\)
−0.870033 + 0.492994i \(0.835903\pi\)
\(360\) 0 0
\(361\) −3.50000 + 6.06218i −0.184211 + 0.319062i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 27.4633 1.43749
\(366\) 0 0
\(367\) 6.41055 11.1034i 0.334628 0.579592i −0.648785 0.760971i \(-0.724723\pi\)
0.983413 + 0.181379i \(0.0580561\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 36.5367 21.0945i 1.89689 1.09517i
\(372\) 0 0
\(373\) 5.67891 + 9.83616i 0.294043 + 0.509297i 0.974762 0.223248i \(-0.0716659\pi\)
−0.680719 + 0.732545i \(0.738333\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 17.0895 + 24.0329i 0.880152 + 1.23776i
\(378\) 0 0
\(379\) 5.41055 + 3.12378i 0.277921 + 0.160458i 0.632482 0.774575i \(-0.282036\pi\)
−0.354561 + 0.935033i \(0.615370\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −16.7156 + 9.65078i −0.854129 + 0.493132i −0.862042 0.506837i \(-0.830815\pi\)
0.00791288 + 0.999969i \(0.497481\pi\)
\(384\) 0 0
\(385\) 34.6410i 1.76547i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.53673 0.331425 0.165713 0.986174i \(-0.447008\pi\)
0.165713 + 0.986174i \(0.447008\pi\)
\(390\) 0 0
\(391\) −12.3578 −0.624962
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 31.7967i 1.59986i
\(396\) 0 0
\(397\) 18.5895 10.7326i 0.932978 0.538655i 0.0452258 0.998977i \(-0.485599\pi\)
0.887752 + 0.460322i \(0.152266\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.26836 5.35109i −0.462840 0.267221i 0.250398 0.968143i \(-0.419439\pi\)
−0.713238 + 0.700922i \(0.752772\pi\)
\(402\) 0 0
\(403\) 24.9473 + 11.4133i 1.24271 + 0.568535i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.82109 + 3.15422i 0.0902682 + 0.156349i
\(408\) 0 0
\(409\) −0.857817 + 0.495261i −0.0424163 + 0.0244891i −0.521058 0.853521i \(-0.674463\pi\)
0.478642 + 0.878010i \(0.341129\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.82109 4.88627i 0.138817 0.240438i
\(414\) 0 0
\(415\) −28.3578 −1.39203
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.35782 11.0121i 0.310600 0.537974i −0.667893 0.744258i \(-0.732803\pi\)
0.978492 + 0.206283i \(0.0661368\pi\)
\(420\) 0 0
\(421\) 32.1674i 1.56774i 0.620922 + 0.783872i \(0.286758\pi\)
−0.620922 + 0.783872i \(0.713242\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.53673 + 4.39374i 0.123049 + 0.213128i
\(426\) 0 0
\(427\) −17.9473 10.3619i −0.868529 0.501446i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −16.1789 9.34090i −0.779311 0.449935i 0.0568753 0.998381i \(-0.481886\pi\)
−0.836186 + 0.548446i \(0.815220\pi\)
\(432\) 0 0
\(433\) 1.32109 + 2.28820i 0.0634876 + 0.109964i 0.896022 0.444009i \(-0.146444\pi\)
−0.832535 + 0.553973i \(0.813111\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.92820i 0.331421i
\(438\) 0 0
\(439\) 11.9473 20.6933i 0.570212 0.987636i −0.426332 0.904567i \(-0.640194\pi\)
0.996544 0.0830694i \(-0.0264723\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.00000 0.380091 0.190046 0.981775i \(-0.439136\pi\)
0.190046 + 0.981775i \(0.439136\pi\)
\(444\) 0 0
\(445\) −8.35782 + 14.4762i −0.396199 + 0.686236i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.53673 5.50603i 0.450066 0.259846i −0.257792 0.966200i \(-0.582995\pi\)
0.707858 + 0.706355i \(0.249662\pi\)
\(450\) 0 0
\(451\) −10.1789 17.6304i −0.479306 0.830182i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −35.8945 + 3.40322i −1.68276 + 0.159545i
\(456\) 0 0
\(457\) 6.32109 + 3.64948i 0.295688 + 0.170716i 0.640504 0.767955i \(-0.278725\pi\)
−0.344816 + 0.938670i \(0.612059\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 21.2684 12.2793i 0.990566 0.571904i 0.0851228 0.996370i \(-0.472872\pi\)
0.905444 + 0.424467i \(0.139538\pi\)
\(462\) 0 0
\(463\) 1.42217i 0.0660940i 0.999454 + 0.0330470i \(0.0105211\pi\)
−0.999454 + 0.0330470i \(0.989479\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6.00000 −0.277647 −0.138823 0.990317i \(-0.544332\pi\)
−0.138823 + 0.990317i \(0.544332\pi\)
\(468\) 0 0
\(469\) −17.1789 −0.793248
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.84434i 0.130783i
\(474\) 0 0
\(475\) −2.46327 + 1.42217i −0.113023 + 0.0652537i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −6.00000 3.46410i −0.274147 0.158279i 0.356624 0.934248i \(-0.383928\pi\)
−0.630771 + 0.775969i \(0.717261\pi\)
\(480\) 0 0
\(481\) 3.08945 2.19687i 0.140867 0.100169i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.46327 + 4.26652i 0.111852 + 0.193733i
\(486\) 0 0
\(487\) −21.0000 + 12.1244i −0.951601 + 0.549407i −0.893578 0.448908i \(-0.851813\pi\)
−0.0580230 + 0.998315i \(0.518480\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −9.35782 + 16.2082i −0.422312 + 0.731466i −0.996165 0.0874920i \(-0.972115\pi\)
0.573853 + 0.818958i \(0.305448\pi\)
\(492\) 0 0
\(493\) 50.5367 2.27606
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −7.17891 + 12.4342i −0.322018 + 0.557752i
\(498\) 0 0
\(499\) 1.36129i 0.0609395i 0.999536 + 0.0304698i \(0.00970033\pi\)
−0.999536 + 0.0304698i \(0.990300\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −3.00000 5.19615i −0.133763 0.231685i 0.791361 0.611349i \(-0.209373\pi\)
−0.925124 + 0.379664i \(0.876040\pi\)
\(504\) 0 0
\(505\) −25.4473 14.6920i −1.13239 0.653785i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 12.2684 + 7.08314i 0.543786 + 0.313955i 0.746612 0.665260i \(-0.231679\pi\)
−0.202826 + 0.979215i \(0.565013\pi\)
\(510\) 0 0
\(511\) 23.5895 + 40.8581i 1.04354 + 1.80746i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 7.66973i 0.337969i
\(516\) 0 0
\(517\) −18.0000 + 31.1769i −0.791639 + 1.37116i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 38.8945 1.70400 0.852000 0.523541i \(-0.175389\pi\)
0.852000 + 0.523541i \(0.175389\pi\)
\(522\) 0 0
\(523\) 12.1789 21.0945i 0.532546 0.922398i −0.466731 0.884399i \(-0.654568\pi\)
0.999278 0.0379984i \(-0.0120982\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 40.7156 23.5072i 1.77360 1.02399i
\(528\) 0 0
\(529\) 9.50000 + 16.4545i 0.413043 + 0.715412i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −17.2684 + 12.2793i −0.747976 + 0.531875i
\(534\) 0 0
\(535\) −20.8945 12.0635i −0.903350 0.521549i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 30.5367 17.6304i 1.31531 0.759395i
\(540\) 0 0
\(541\) 3.09334i 0.132993i 0.997787 + 0.0664965i \(0.0211821\pi\)
−0.997787 + 0.0664965i \(0.978818\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −18.3578 −0.786362
\(546\) 0 0
\(547\) −13.5367 −0.578789 −0.289394 0.957210i \(-0.593454\pi\)
−0.289394 + 0.957210i \(0.593454\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 28.3326i 1.20701i
\(552\) 0 0
\(553\) −47.3051 + 27.3116i −2.01162 + 1.16141i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 27.8051 + 16.0533i 1.17814 + 0.680199i 0.955583 0.294721i \(-0.0952267\pi\)
0.222556 + 0.974920i \(0.428560\pi\)
\(558\) 0 0
\(559\) −2.94727 + 0.279435i −0.124656 + 0.0118188i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 9.17891 + 15.8983i 0.386845 + 0.670035i 0.992023 0.126055i \(-0.0402316\pi\)
−0.605178 + 0.796090i \(0.706898\pi\)
\(564\) 0 0
\(565\) 25.4473 14.6920i 1.07057 0.618097i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −15.3578 + 26.6005i −0.643833 + 1.11515i 0.340737 + 0.940159i \(0.389324\pi\)
−0.984570 + 0.174993i \(0.944010\pi\)
\(570\) 0 0
\(571\) 7.64218 0.319815 0.159908 0.987132i \(-0.448880\pi\)
0.159908 + 0.987132i \(0.448880\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.821092 + 1.42217i −0.0342419 + 0.0593087i
\(576\) 0 0
\(577\) 43.2404i 1.80012i −0.435765 0.900060i \(-0.643522\pi\)
0.435765 0.900060i \(-0.356478\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −24.3578 42.1890i −1.01053 1.75029i
\(582\) 0 0
\(583\) 30.5367 + 17.6304i 1.26470 + 0.730176i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −19.1789 11.0729i −0.791598 0.457029i 0.0489266 0.998802i \(-0.484420\pi\)
−0.840525 + 0.541773i \(0.817753\pi\)
\(588\) 0 0
\(589\) 13.1789 + 22.8265i 0.543027 + 0.940551i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 32.8481i 1.34891i 0.738316 + 0.674454i \(0.235621\pi\)
−0.738316 + 0.674454i \(0.764379\pi\)
\(594\) 0 0
\(595\) −30.8945 + 53.5109i −1.26655 + 2.19373i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 9.64218 0.393969 0.196984 0.980407i \(-0.436885\pi\)
0.196984 + 0.980407i \(0.436885\pi\)
\(600\) 0 0
\(601\) 0.0894542 0.154939i 0.00364891 0.00632010i −0.864195 0.503157i \(-0.832172\pi\)
0.867844 + 0.496837i \(0.165505\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.08945 1.20635i 0.0849484 0.0490450i
\(606\) 0 0
\(607\) 8.00000 + 13.8564i 0.324710 + 0.562414i 0.981454 0.191700i \(-0.0614000\pi\)
−0.656744 + 0.754114i \(0.728067\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 34.0735 + 15.5885i 1.37846 + 0.630641i
\(612\) 0 0
\(613\) −2.14218 1.23679i −0.0865220 0.0499535i 0.456115 0.889921i \(-0.349241\pi\)
−0.542637 + 0.839967i \(0.682574\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −2.08945 + 1.20635i −0.0841183 + 0.0485657i −0.541469 0.840721i \(-0.682132\pi\)
0.457351 + 0.889286i \(0.348798\pi\)
\(618\) 0 0
\(619\) 10.3314i 0.415255i −0.978208 0.207627i \(-0.933426\pi\)
0.978208 0.207627i \(-0.0665742\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −28.7156 −1.15047
\(624\) 0 0
\(625\) −28.4313 −1.13725
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.49655i 0.259034i
\(630\) 0 0
\(631\) −5.41055 + 3.12378i −0.215390 + 0.124356i −0.603814 0.797125i \(-0.706353\pi\)
0.388424 + 0.921481i \(0.373020\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5.89454 + 3.40322i 0.233918 + 0.135052i
\(636\) 0 0
\(637\) −21.2684 29.9097i −0.842683 1.18506i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.268363 0.464818i −0.0105997 0.0183592i 0.860677 0.509152i \(-0.170041\pi\)
−0.871277 + 0.490792i \(0.836707\pi\)
\(642\) 0 0
\(643\) 13.7684 7.94917i 0.542971 0.313485i −0.203311 0.979114i \(-0.565170\pi\)
0.746282 + 0.665630i \(0.231837\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.82109 + 11.8145i −0.268165 + 0.464475i −0.968388 0.249449i \(-0.919750\pi\)
0.700223 + 0.713924i \(0.253084\pi\)
\(648\) 0 0
\(649\) 4.71563 0.185105
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.178908 0.309878i 0.00700122 0.0121265i −0.862504 0.506051i \(-0.831105\pi\)
0.869505 + 0.493925i \(0.164438\pi\)
\(654\) 0 0
\(655\) 15.3395i 0.599363i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 4.35782 + 7.54796i 0.169756 + 0.294027i 0.938334 0.345730i \(-0.112369\pi\)
−0.768578 + 0.639756i \(0.779035\pi\)
\(660\) 0 0
\(661\) 11.1422 + 6.43294i 0.433381 + 0.250212i 0.700786 0.713372i \(-0.252833\pi\)
−0.267405 + 0.963584i \(0.586166\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −30.0000 17.3205i −1.16335 0.671660i
\(666\) 0 0
\(667\) 8.17891 + 14.1663i 0.316689 + 0.548521i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 17.3205i 0.668651i
\(672\) 0 0
\(673\) 2.67891 4.64001i 0.103264 0.178859i −0.809763 0.586757i \(-0.800405\pi\)
0.913028 + 0.407897i \(0.133738\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.64218 0.139980 0.0699902 0.997548i \(-0.477703\pi\)
0.0699902 + 0.997548i \(0.477703\pi\)
\(678\) 0 0
\(679\) −4.23164 + 7.32941i −0.162395 + 0.281277i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −15.5367 + 8.97013i −0.594496 + 0.343233i −0.766873 0.641798i \(-0.778189\pi\)
0.172377 + 0.985031i \(0.444855\pi\)
\(684\) 0 0
\(685\) −15.4473 26.7555i −0.590210 1.02227i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 15.2684 33.3738i 0.581678 1.27144i
\(690\) 0 0
\(691\) 7.12618 + 4.11430i 0.271093 + 0.156515i 0.629384 0.777094i \(-0.283307\pi\)
−0.358291 + 0.933610i \(0.616641\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 35.8945 20.7237i 1.36156 0.786096i
\(696\) 0 0
\(697\) 36.3122i 1.37542i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −48.3578 −1.82645 −0.913225 0.407456i \(-0.866416\pi\)
−0.913225 + 0.407456i \(0.866416\pi\)
\(702\) 0 0
\(703\) 3.64218 0.137368
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 50.4785i 1.89844i
\(708\) 0 0
\(709\) 25.5000 14.7224i 0.957673 0.552913i 0.0622167 0.998063i \(-0.480183\pi\)
0.895456 + 0.445150i \(0.146850\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 13.1789 + 7.60885i 0.493554 + 0.284954i
\(714\) 0 0
\(715\) −17.4633 24.5586i −0.653089 0.918439i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 15.1789 + 26.2906i 0.566078 + 0.980475i 0.996949 + 0.0780618i \(0.0248731\pi\)
−0.430871 + 0.902414i \(0.641794\pi\)
\(720\) 0 0
\(721\) −11.4105 + 6.58788i −0.424951 + 0.245346i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.35782 5.81591i 0.124706 0.215997i
\(726\) 0 0
\(727\) −17.5367 −0.650401 −0.325201 0.945645i \(-0.605432\pi\)
−0.325201 + 0.945645i \(0.605432\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2.53673 + 4.39374i −0.0938242 + 0.162508i
\(732\) 0 0
\(733\) 10.6413i 0.393045i 0.980499 + 0.196523i \(0.0629649\pi\)
−0.980499 + 0.196523i \(0.937035\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −7.17891 12.4342i −0.264438 0.458021i
\(738\) 0 0
\(739\) 13.1789 + 7.60885i 0.484794 + 0.279896i 0.722412 0.691463i \(-0.243033\pi\)
−0.237618 + 0.971359i \(0.576367\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.17891 0.680643i −0.0432500 0.0249704i 0.478219 0.878241i \(-0.341282\pi\)
−0.521469 + 0.853270i \(0.674616\pi\)
\(744\) 0 0
\(745\) 7.08945 + 12.2793i 0.259738 + 0.449879i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 41.4474i 1.51446i
\(750\) 0 0
\(751\) −9.82109 + 17.0106i −0.358377 + 0.620727i −0.987690 0.156425i \(-0.950003\pi\)
0.629313 + 0.777152i \(0.283336\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 48.3578 1.75992
\(756\) 0 0
\(757\) 19.3578 33.5287i 0.703572 1.21862i −0.263633 0.964623i \(-0.584921\pi\)
0.967204 0.253999i \(-0.0817460\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 42.0000 24.2487i 1.52250 0.879015i 0.522852 0.852423i \(-0.324868\pi\)
0.999646 0.0265919i \(-0.00846546\pi\)
\(762\) 0 0
\(763\) −15.7684 27.3116i −0.570853 0.988746i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.463275 4.88627i −0.0167279 0.176433i
\(768\) 0 0
\(769\) −6.00000 3.46410i −0.216366 0.124919i 0.387901 0.921701i \(-0.373200\pi\)
−0.604266 + 0.796782i \(0.706534\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 27.5367 15.8983i 0.990427 0.571823i 0.0850252 0.996379i \(-0.472903\pi\)
0.905402 + 0.424555i \(0.139570\pi\)
\(774\) 0 0
\(775\) 6.24756i 0.224419i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −20.3578 −0.729394
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 16.8889i 0.602789i
\(786\) 0 0
\(787\) 29.4105 16.9802i 1.04837 0.605278i 0.126179 0.992007i \(-0.459729\pi\)
0.922193 + 0.386729i \(0.126395\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 43.7156 + 25.2392i 1.55435 + 0.897404i
\(792\) 0 0
\(793\) −17.9473 + 1.70161i −0.637326 + 0.0604259i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 8.53673 + 14.7860i 0.302386 + 0.523748i 0.976676 0.214718i \(-0.0688834\pi\)
−0.674290 + 0.738467i \(0.735550\pi\)
\(798\) 0 0
\(799\) 55.6102 32.1065i 1.96735 1.13585i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −19.7156 + 34.1485i −0.695750 + 1.20507i
\(804\) 0 0
\(805\) −20.0000 −0.704907
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 23.2684 40.3020i 0.818072 1.41694i −0.0890288 0.996029i \(-0.528376\pi\)
0.907101 0.420913i \(-0.138290\pi\)
\(810\) 0 0
\(811\) 0.680643i 0.0239006i 0.999929 + 0.0119503i \(0.00380399\pi\)
−0.999929 + 0.0119503i \(0.996196\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −9.17891 15.8983i −0.321523 0.556894i
\(816\) 0 0
\(817\) −2.46327 1.42217i −0.0861791 0.0497555i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −27.5367 15.8983i −0.961038 0.554856i −0.0645459 0.997915i \(-0.520560\pi\)
−0.896492 + 0.443059i \(0.853893\pi\)
\(822\) 0 0
\(823\) −12.0000 20.7846i −0.418294 0.724506i 0.577474 0.816409i \(-0.304038\pi\)
−0.995768 + 0.0919029i \(0.970705\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 35.8805i 1.24769i −0.781549 0.623844i \(-0.785570\pi\)
0.781549 0.623844i \(-0.214430\pi\)
\(828\) 0 0
\(829\) −11.6789 + 20.2285i −0.405625 + 0.702564i −0.994394 0.105738i \(-0.966280\pi\)
0.588769 + 0.808302i \(0.299613\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −62.8945 −2.17917
\(834\) 0 0
\(835\) 8.35782 14.4762i 0.289234 0.500968i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −13.1789 + 7.60885i −0.454986 + 0.262687i −0.709934 0.704268i \(-0.751275\pi\)
0.254947 + 0.966955i \(0.417942\pi\)
\(840\) 0 0
\(841\) −18.9473 32.8176i −0.653354 1.13164i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −23.7316 + 20.5079i −0.816393 + 0.705493i
\(846\) 0 0
\(847\) 3.58945 + 2.07237i 0.123335 + 0.0712076i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.82109 1.05141i 0.0624262 0.0360418i
\(852\) 0 0
\(853\) 24.6195i 0.842955i 0.906839 + 0.421477i \(0.138488\pi\)
−0.906839 + 0.421477i \(0.861512\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 20.1789 0.689298 0.344649 0.938732i \(-0.387998\pi\)
0.344649 + 0.938732i \(0.387998\pi\)
\(858\) 0 0
\(859\) −54.2524 −1.85107 −0.925533 0.378666i \(-0.876383\pi\)
−0.925533 + 0.378666i \(0.876383\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 20.0431i 0.682274i −0.940014 0.341137i \(-0.889188\pi\)
0.940014 0.341137i \(-0.110812\pi\)
\(864\) 0 0
\(865\) 37.6102 21.7142i 1.27878 0.738306i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −39.5367 22.8265i −1.34119 0.774337i
\(870\) 0 0
\(871\) −12.1789 + 8.66025i −0.412667 + 0.293442i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −20.8945 36.1904i −0.706364 1.22346i
\(876\) 0 0
\(877\) 11.0895 6.40250i 0.374464 0.216197i −0.300943 0.953642i \(-0.597301\pi\)
0.675407 + 0.737445i \(0.263968\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −18.9105 + 32.7540i −0.637112 + 1.10351i 0.348951 + 0.937141i \(0.386538\pi\)
−0.986063 + 0.166370i \(0.946795\pi\)
\(882\) 0 0
\(883\) 17.8945 0.602199 0.301100 0.953593i \(-0.402646\pi\)
0.301100 + 0.953593i \(0.402646\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −10.8211 + 18.7427i −0.363337 + 0.629318i −0.988508 0.151170i \(-0.951696\pi\)
0.625171 + 0.780488i \(0.285029\pi\)
\(888\) 0 0
\(889\) 11.6927i 0.392161i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 18.0000 + 31.1769i 0.602347 + 1.04330i
\(894\) 0 0
\(895\) −17.4633 10.0824i −0.583733 0.337018i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −53.8945 31.1160i −1.79748 1.03778i
\(900\) 0 0
\(901\) −31.4473 54.4683i −1.04766 1.81460i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 49.5488i 1.64706i
\(906\) 0 0
\(907\) 14.0000 24.2487i 0.464862 0.805165i −0.534333 0.845274i \(-0.679437\pi\)
0.999195 + 0.0401089i \(0.0127705\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 4.71563 0.156236 0.0781180 0.996944i \(-0.475109\pi\)
0.0781180 + 0.996944i \(0.475109\pi\)
\(912\) 0 0
\(913\) 20.3578 35.2608i 0.673745 1.16696i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 22.8211 13.1758i 0.753619 0.435102i
\(918\) 0 0
\(919\) 12.0000 + 20.7846i 0.395843 + 0.685621i 0.993208 0.116348i \(-0.0371189\pi\)
−0.597365 + 0.801970i \(0.703786\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.17891 + 12.4342i 0.0388042 + 0.409278i
\(924\) 0 0
\(925\) −0.747642 0.431651i −0.0245823 0.0141926i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 27.2684 15.7434i 0.894646 0.516524i 0.0191866 0.999816i \(-0.493892\pi\)
0.875459 + 0.483292i \(0.160559\pi\)
\(930\) 0 0
\(931\) 35.2608i 1.15563i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −51.6422 −1.68888
\(936\) 0 0
\(937\) 48.8945 1.59732 0.798658 0.601786i \(-0.205544\pi\)
0.798658 + 0.601786i \(0.205544\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 37.2418i 1.21405i 0.794683 + 0.607024i \(0.207637\pi\)
−0.794683 + 0.607024i \(0.792363\pi\)
\(942\) 0 0
\(943\) −10.1789 + 5.87680i −0.331471 + 0.191375i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −26.3578 15.2177i −0.856514 0.494509i 0.00632940 0.999980i \(-0.497985\pi\)
−0.862843 + 0.505471i \(0.831319\pi\)
\(948\) 0 0
\(949\) 37.3211 + 17.0742i 1.21149 + 0.554253i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 3.00000 + 5.19615i 0.0971795 + 0.168320i 0.910516 0.413473i \(-0.135685\pi\)
−0.813337 + 0.581793i \(0.802351\pi\)
\(954\) 0 0
\(955\) 4.92655 2.84434i 0.159419 0.0920408i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 26.5367 45.9630i 0.856916 1.48422i
\(960\) 0 0
\(961\) −26.8945 −0.867566
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −16.2684 + 28.1776i −0.523697 + 0.907070i
\(966\) 0 0
\(967\) 35.3825i 1.13783i 0.822398 + 0.568913i \(0.192636\pi\)
−0.822398 + 0.568913i \(0.807364\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −2.35782 4.08386i −0.0756659 0.131057i 0.825710 0.564095i \(-0.190775\pi\)
−0.901376 + 0.433038i \(0.857442\pi\)
\(972\) 0 0
\(973\) 61.6629 + 35.6011i 1.97682 + 1.14132i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −14.7316 8.50531i −0.471307 0.272109i 0.245480 0.969402i \(-0.421055\pi\)
−0.716787 + 0.697293i \(0.754388\pi\)
\(978\) 0 0
\(979\) −12.0000 20.7846i −0.383522 0.664279i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 24.8685i 0.793181i −0.917996 0.396590i \(-0.870193\pi\)
0.917996 0.396590i \(-0.129807\pi\)
\(984\) 0 0
\(985\) 11.6422 20.1649i 0.370951 0.642506i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.64218 −0.0522184
\(990\) 0 0
\(991\) −22.5367 + 39.0348i −0.715903 + 1.23998i 0.246708 + 0.969090i \(0.420651\pi\)
−0.962610 + 0.270890i \(0.912682\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −45.0000 + 25.9808i −1.42660 + 0.823646i
\(996\) 0 0
\(997\) −17.6789 30.6208i −0.559897 0.969769i −0.997504 0.0706035i \(-0.977507\pi\)
0.437608 0.899166i \(-0.355826\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1872.2.by.j.433.1 4
3.2 odd 2 624.2.bv.f.433.2 4
4.3 odd 2 468.2.t.d.433.1 4
12.11 even 2 156.2.q.b.121.2 yes 4
13.10 even 6 inner 1872.2.by.j.1297.2 4
39.20 even 12 8112.2.a.cr.1.2 4
39.23 odd 6 624.2.bv.f.49.1 4
39.32 even 12 8112.2.a.cr.1.3 4
52.7 even 12 6084.2.a.bd.1.3 4
52.19 even 12 6084.2.a.bd.1.2 4
52.23 odd 6 468.2.t.d.361.2 4
52.35 odd 6 6084.2.b.o.4393.2 4
52.43 odd 6 6084.2.b.o.4393.3 4
60.23 odd 4 3900.2.bw.j.2149.2 8
60.47 odd 4 3900.2.bw.j.2149.3 8
60.59 even 2 3900.2.cd.i.901.2 4
156.11 odd 12 2028.2.i.n.2005.2 8
156.23 even 6 156.2.q.b.49.1 4
156.35 even 6 2028.2.b.e.337.3 4
156.47 odd 4 2028.2.i.n.529.2 8
156.59 odd 12 2028.2.a.m.1.2 4
156.71 odd 12 2028.2.a.m.1.3 4
156.83 odd 4 2028.2.i.n.529.3 8
156.95 even 6 2028.2.b.e.337.2 4
156.107 even 6 2028.2.q.f.361.2 4
156.119 odd 12 2028.2.i.n.2005.3 8
156.155 even 2 2028.2.q.f.1837.1 4
780.23 odd 12 3900.2.bw.j.49.3 8
780.179 even 6 3900.2.cd.i.2701.2 4
780.647 odd 12 3900.2.bw.j.49.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.2.q.b.49.1 4 156.23 even 6
156.2.q.b.121.2 yes 4 12.11 even 2
468.2.t.d.361.2 4 52.23 odd 6
468.2.t.d.433.1 4 4.3 odd 2
624.2.bv.f.49.1 4 39.23 odd 6
624.2.bv.f.433.2 4 3.2 odd 2
1872.2.by.j.433.1 4 1.1 even 1 trivial
1872.2.by.j.1297.2 4 13.10 even 6 inner
2028.2.a.m.1.2 4 156.59 odd 12
2028.2.a.m.1.3 4 156.71 odd 12
2028.2.b.e.337.2 4 156.95 even 6
2028.2.b.e.337.3 4 156.35 even 6
2028.2.i.n.529.2 8 156.47 odd 4
2028.2.i.n.529.3 8 156.83 odd 4
2028.2.i.n.2005.2 8 156.11 odd 12
2028.2.i.n.2005.3 8 156.119 odd 12
2028.2.q.f.361.2 4 156.107 even 6
2028.2.q.f.1837.1 4 156.155 even 2
3900.2.bw.j.49.2 8 780.647 odd 12
3900.2.bw.j.49.3 8 780.23 odd 12
3900.2.bw.j.2149.2 8 60.23 odd 4
3900.2.bw.j.2149.3 8 60.47 odd 4
3900.2.cd.i.901.2 4 60.59 even 2
3900.2.cd.i.2701.2 4 780.179 even 6
6084.2.a.bd.1.2 4 52.19 even 12
6084.2.a.bd.1.3 4 52.7 even 12
6084.2.b.o.4393.2 4 52.35 odd 6
6084.2.b.o.4393.3 4 52.43 odd 6
8112.2.a.cr.1.2 4 39.20 even 12
8112.2.a.cr.1.3 4 39.32 even 12