Properties

Label 1872.2.by.h.433.1
Level $1872$
Weight $2$
Character 1872.433
Analytic conductor $14.948$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1872,2,Mod(433,1872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1872, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1872.433");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1872.by (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.9479952584\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 433.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1872.433
Dual form 1872.2.by.h.1297.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.73205i q^{5} +(-2.36603 + 1.36603i) q^{7} +(1.09808 + 0.633975i) q^{11} +(-2.59808 + 2.50000i) q^{13} +(2.86603 + 4.96410i) q^{17} +(-4.09808 + 2.36603i) q^{19} +(2.09808 - 3.63397i) q^{23} -8.92820 q^{25} +(-2.23205 + 3.86603i) q^{29} -1.46410i q^{31} +(5.09808 + 8.83013i) q^{35} +(3.06218 + 1.76795i) q^{37} +(-8.13397 - 4.69615i) q^{41} +(4.83013 + 8.36603i) q^{43} -2.19615i q^{47} +(0.232051 - 0.401924i) q^{49} +6.46410 q^{53} +(2.36603 - 4.09808i) q^{55} +(-6.92820 + 4.00000i) q^{59} +(4.59808 + 7.96410i) q^{61} +(9.33013 + 9.69615i) q^{65} +(11.3660 + 6.56218i) q^{67} +(4.09808 - 2.36603i) q^{71} +6.26795i q^{73} -3.46410 q^{77} +2.53590 q^{79} -0.196152i q^{83} +(18.5263 - 10.6962i) q^{85} +(8.19615 + 4.73205i) q^{89} +(2.73205 - 9.46410i) q^{91} +(8.83013 + 15.2942i) q^{95} +(-5.19615 + 3.00000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{7} - 6 q^{11} + 8 q^{17} - 6 q^{19} - 2 q^{23} - 8 q^{25} - 2 q^{29} + 10 q^{35} - 12 q^{37} - 36 q^{41} + 2 q^{43} - 6 q^{49} + 12 q^{53} + 6 q^{55} + 8 q^{61} + 20 q^{65} + 42 q^{67} + 6 q^{71}+ \cdots + 18 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1872\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.73205i 1.66902i −0.550990 0.834512i \(-0.685750\pi\)
0.550990 0.834512i \(-0.314250\pi\)
\(6\) 0 0
\(7\) −2.36603 + 1.36603i −0.894274 + 0.516309i −0.875338 0.483512i \(-0.839361\pi\)
−0.0189356 + 0.999821i \(0.506028\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.09808 + 0.633975i 0.331082 + 0.191151i 0.656322 0.754481i \(-0.272111\pi\)
−0.325239 + 0.945632i \(0.605445\pi\)
\(12\) 0 0
\(13\) −2.59808 + 2.50000i −0.720577 + 0.693375i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.86603 + 4.96410i 0.695113 + 1.20397i 0.970143 + 0.242536i \(0.0779791\pi\)
−0.275029 + 0.961436i \(0.588688\pi\)
\(18\) 0 0
\(19\) −4.09808 + 2.36603i −0.940163 + 0.542803i −0.890011 0.455938i \(-0.849304\pi\)
−0.0501517 + 0.998742i \(0.515970\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.09808 3.63397i 0.437479 0.757736i −0.560015 0.828482i \(-0.689205\pi\)
0.997494 + 0.0707462i \(0.0225381\pi\)
\(24\) 0 0
\(25\) −8.92820 −1.78564
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.23205 + 3.86603i −0.414481 + 0.717903i −0.995374 0.0960774i \(-0.969370\pi\)
0.580892 + 0.813980i \(0.302704\pi\)
\(30\) 0 0
\(31\) 1.46410i 0.262960i −0.991319 0.131480i \(-0.958027\pi\)
0.991319 0.131480i \(-0.0419730\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.09808 + 8.83013i 0.861732 + 1.49256i
\(36\) 0 0
\(37\) 3.06218 + 1.76795i 0.503419 + 0.290649i 0.730124 0.683314i \(-0.239462\pi\)
−0.226705 + 0.973963i \(0.572795\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.13397 4.69615i −1.27031 0.733416i −0.295267 0.955415i \(-0.595408\pi\)
−0.975047 + 0.221999i \(0.928742\pi\)
\(42\) 0 0
\(43\) 4.83013 + 8.36603i 0.736587 + 1.27581i 0.954023 + 0.299732i \(0.0968974\pi\)
−0.217436 + 0.976075i \(0.569769\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.19615i 0.320342i −0.987089 0.160171i \(-0.948795\pi\)
0.987089 0.160171i \(-0.0512045\pi\)
\(48\) 0 0
\(49\) 0.232051 0.401924i 0.0331501 0.0574177i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.46410 0.887913 0.443956 0.896048i \(-0.353575\pi\)
0.443956 + 0.896048i \(0.353575\pi\)
\(54\) 0 0
\(55\) 2.36603 4.09808i 0.319035 0.552584i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.92820 + 4.00000i −0.901975 + 0.520756i −0.877841 0.478953i \(-0.841016\pi\)
−0.0241347 + 0.999709i \(0.507683\pi\)
\(60\) 0 0
\(61\) 4.59808 + 7.96410i 0.588723 + 1.01970i 0.994400 + 0.105682i \(0.0337026\pi\)
−0.405677 + 0.914017i \(0.632964\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9.33013 + 9.69615i 1.15726 + 1.20266i
\(66\) 0 0
\(67\) 11.3660 + 6.56218i 1.38858 + 0.801698i 0.993155 0.116800i \(-0.0372638\pi\)
0.395426 + 0.918498i \(0.370597\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.09808 2.36603i 0.486352 0.280796i −0.236708 0.971581i \(-0.576068\pi\)
0.723060 + 0.690785i \(0.242735\pi\)
\(72\) 0 0
\(73\) 6.26795i 0.733608i 0.930298 + 0.366804i \(0.119548\pi\)
−0.930298 + 0.366804i \(0.880452\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.46410 −0.394771
\(78\) 0 0
\(79\) 2.53590 0.285311 0.142655 0.989772i \(-0.454436\pi\)
0.142655 + 0.989772i \(0.454436\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.196152i 0.0215305i −0.999942 0.0107653i \(-0.996573\pi\)
0.999942 0.0107653i \(-0.00342676\pi\)
\(84\) 0 0
\(85\) 18.5263 10.6962i 2.00946 1.16016i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8.19615 + 4.73205i 0.868790 + 0.501596i 0.866946 0.498402i \(-0.166080\pi\)
0.00184433 + 0.999998i \(0.499413\pi\)
\(90\) 0 0
\(91\) 2.73205 9.46410i 0.286397 0.992107i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 8.83013 + 15.2942i 0.905952 + 1.56915i
\(96\) 0 0
\(97\) −5.19615 + 3.00000i −0.527589 + 0.304604i −0.740034 0.672569i \(-0.765191\pi\)
0.212445 + 0.977173i \(0.431857\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.964102 + 1.66987i −0.0959317 + 0.166159i −0.909997 0.414615i \(-0.863916\pi\)
0.814065 + 0.580773i \(0.197250\pi\)
\(102\) 0 0
\(103\) −15.2679 −1.50440 −0.752198 0.658937i \(-0.771006\pi\)
−0.752198 + 0.658937i \(0.771006\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.09808 + 8.83013i −0.492850 + 0.853641i −0.999966 0.00823695i \(-0.997378\pi\)
0.507116 + 0.861878i \(0.330711\pi\)
\(108\) 0 0
\(109\) 1.46410i 0.140236i 0.997539 + 0.0701178i \(0.0223375\pi\)
−0.997539 + 0.0701178i \(0.977662\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.669873 1.16025i −0.0630163 0.109148i 0.832796 0.553580i \(-0.186739\pi\)
−0.895812 + 0.444432i \(0.853405\pi\)
\(114\) 0 0
\(115\) −13.5622 7.83013i −1.26468 0.730163i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −13.5622 7.83013i −1.24324 0.717787i
\(120\) 0 0
\(121\) −4.69615 8.13397i −0.426923 0.739452i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 14.6603i 1.31125i
\(126\) 0 0
\(127\) 4.92820 8.53590i 0.437307 0.757438i −0.560173 0.828375i \(-0.689266\pi\)
0.997481 + 0.0709368i \(0.0225989\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.53590 0.571044 0.285522 0.958372i \(-0.407833\pi\)
0.285522 + 0.958372i \(0.407833\pi\)
\(132\) 0 0
\(133\) 6.46410 11.1962i 0.560509 0.970830i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.3301 5.96410i 0.882562 0.509548i 0.0110599 0.999939i \(-0.496479\pi\)
0.871502 + 0.490391i \(0.163146\pi\)
\(138\) 0 0
\(139\) 8.92820 + 15.4641i 0.757280 + 1.31165i 0.944233 + 0.329279i \(0.106806\pi\)
−0.186952 + 0.982369i \(0.559861\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.43782 + 1.09808i −0.371109 + 0.0918257i
\(144\) 0 0
\(145\) 14.4282 + 8.33013i 1.19820 + 0.691779i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −11.4282 + 6.59808i −0.936235 + 0.540535i −0.888778 0.458338i \(-0.848445\pi\)
−0.0474568 + 0.998873i \(0.515112\pi\)
\(150\) 0 0
\(151\) 6.73205i 0.547847i 0.961752 + 0.273923i \(0.0883214\pi\)
−0.961752 + 0.273923i \(0.911679\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −5.46410 −0.438887
\(156\) 0 0
\(157\) 7.58846 0.605625 0.302812 0.953050i \(-0.402074\pi\)
0.302812 + 0.953050i \(0.402074\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 11.4641i 0.903498i
\(162\) 0 0
\(163\) −11.6603 + 6.73205i −0.913302 + 0.527295i −0.881492 0.472199i \(-0.843460\pi\)
−0.0318096 + 0.999494i \(0.510127\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.19615 4.73205i −0.634237 0.366177i 0.148154 0.988964i \(-0.452667\pi\)
−0.782391 + 0.622787i \(0.786000\pi\)
\(168\) 0 0
\(169\) 0.500000 12.9904i 0.0384615 0.999260i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.19615 3.80385i −0.166970 0.289201i 0.770383 0.637582i \(-0.220065\pi\)
−0.937353 + 0.348380i \(0.886732\pi\)
\(174\) 0 0
\(175\) 21.1244 12.1962i 1.59685 0.921942i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −8.02628 + 13.9019i −0.599912 + 1.03908i 0.392921 + 0.919572i \(0.371465\pi\)
−0.992833 + 0.119506i \(0.961869\pi\)
\(180\) 0 0
\(181\) −19.1962 −1.42684 −0.713419 0.700737i \(-0.752855\pi\)
−0.713419 + 0.700737i \(0.752855\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.59808 11.4282i 0.485100 0.840218i
\(186\) 0 0
\(187\) 7.26795i 0.531485i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.46410 + 6.00000i 0.250654 + 0.434145i 0.963706 0.266966i \(-0.0860212\pi\)
−0.713052 + 0.701111i \(0.752688\pi\)
\(192\) 0 0
\(193\) −10.1603 5.86603i −0.731351 0.422246i 0.0875652 0.996159i \(-0.472091\pi\)
−0.818916 + 0.573913i \(0.805425\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −15.4641 8.92820i −1.10177 0.636108i −0.165086 0.986279i \(-0.552790\pi\)
−0.936686 + 0.350171i \(0.886123\pi\)
\(198\) 0 0
\(199\) 7.09808 + 12.2942i 0.503169 + 0.871515i 0.999993 + 0.00366345i \(0.00116611\pi\)
−0.496824 + 0.867851i \(0.665501\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 12.1962i 0.856002i
\(204\) 0 0
\(205\) −17.5263 + 30.3564i −1.22409 + 2.12018i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6.00000 −0.415029
\(210\) 0 0
\(211\) 8.19615 14.1962i 0.564246 0.977303i −0.432873 0.901455i \(-0.642500\pi\)
0.997119 0.0758485i \(-0.0241665\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 31.2224 18.0263i 2.12935 1.22938i
\(216\) 0 0
\(217\) 2.00000 + 3.46410i 0.135769 + 0.235159i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −19.8564 5.73205i −1.33569 0.385579i
\(222\) 0 0
\(223\) −23.3205 13.4641i −1.56166 0.901623i −0.997090 0.0762356i \(-0.975710\pi\)
−0.564567 0.825387i \(-0.690957\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −10.5622 + 6.09808i −0.701036 + 0.404744i −0.807733 0.589548i \(-0.799306\pi\)
0.106697 + 0.994292i \(0.465973\pi\)
\(228\) 0 0
\(229\) 11.8564i 0.783493i 0.920073 + 0.391747i \(0.128129\pi\)
−0.920073 + 0.391747i \(0.871871\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −7.85641 −0.514690 −0.257345 0.966320i \(-0.582848\pi\)
−0.257345 + 0.966320i \(0.582848\pi\)
\(234\) 0 0
\(235\) −8.19615 −0.534658
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 7.66025i 0.495501i 0.968824 + 0.247750i \(0.0796913\pi\)
−0.968824 + 0.247750i \(0.920309\pi\)
\(240\) 0 0
\(241\) −11.7679 + 6.79423i −0.758040 + 0.437655i −0.828592 0.559853i \(-0.810857\pi\)
0.0705514 + 0.997508i \(0.477524\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.50000 0.866025i −0.0958315 0.0553283i
\(246\) 0 0
\(247\) 4.73205 16.3923i 0.301093 1.04302i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.73205 + 11.6603i 0.424923 + 0.735989i 0.996413 0.0846203i \(-0.0269677\pi\)
−0.571490 + 0.820609i \(0.693634\pi\)
\(252\) 0 0
\(253\) 4.60770 2.66025i 0.289683 0.167249i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.66987 + 8.08846i −0.291299 + 0.504544i −0.974117 0.226044i \(-0.927421\pi\)
0.682818 + 0.730588i \(0.260754\pi\)
\(258\) 0 0
\(259\) −9.66025 −0.600259
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.02628 8.70577i 0.309934 0.536821i −0.668414 0.743790i \(-0.733026\pi\)
0.978348 + 0.206969i \(0.0663598\pi\)
\(264\) 0 0
\(265\) 24.1244i 1.48195i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.73205 + 4.73205i 0.166576 + 0.288518i 0.937214 0.348755i \(-0.113396\pi\)
−0.770638 + 0.637273i \(0.780062\pi\)
\(270\) 0 0
\(271\) 18.9282 + 10.9282i 1.14981 + 0.663841i 0.948840 0.315757i \(-0.102258\pi\)
0.200966 + 0.979598i \(0.435592\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −9.80385 5.66025i −0.591194 0.341326i
\(276\) 0 0
\(277\) −2.86603 4.96410i −0.172203 0.298264i 0.766987 0.641663i \(-0.221755\pi\)
−0.939190 + 0.343399i \(0.888422\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 12.3205i 0.734980i 0.930027 + 0.367490i \(0.119783\pi\)
−0.930027 + 0.367490i \(0.880217\pi\)
\(282\) 0 0
\(283\) −12.8301 + 22.2224i −0.762672 + 1.32099i 0.178797 + 0.983886i \(0.442780\pi\)
−0.941469 + 0.337100i \(0.890554\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 25.6603 1.51468
\(288\) 0 0
\(289\) −7.92820 + 13.7321i −0.466365 + 0.807768i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 26.4282 15.2583i 1.54395 0.891401i 0.545368 0.838196i \(-0.316390\pi\)
0.998584 0.0532048i \(-0.0169436\pi\)
\(294\) 0 0
\(295\) 14.9282 + 25.8564i 0.869154 + 1.50542i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.63397 + 14.6865i 0.210158 + 0.849344i
\(300\) 0 0
\(301\) −22.8564 13.1962i −1.31742 0.760614i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 29.7224 17.1603i 1.70190 0.982593i
\(306\) 0 0
\(307\) 22.5885i 1.28919i −0.764524 0.644596i \(-0.777026\pi\)
0.764524 0.644596i \(-0.222974\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.66025 0.0941444 0.0470722 0.998891i \(-0.485011\pi\)
0.0470722 + 0.998891i \(0.485011\pi\)
\(312\) 0 0
\(313\) 6.53590 0.369431 0.184715 0.982792i \(-0.440864\pi\)
0.184715 + 0.982792i \(0.440864\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.6603i 1.16040i −0.814476 0.580198i \(-0.802975\pi\)
0.814476 0.580198i \(-0.197025\pi\)
\(318\) 0 0
\(319\) −4.90192 + 2.83013i −0.274455 + 0.158457i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −23.4904 13.5622i −1.30704 0.754620i
\(324\) 0 0
\(325\) 23.1962 22.3205i 1.28669 1.23812i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.00000 + 5.19615i 0.165395 + 0.286473i
\(330\) 0 0
\(331\) −17.3205 + 10.0000i −0.952021 + 0.549650i −0.893708 0.448649i \(-0.851905\pi\)
−0.0583130 + 0.998298i \(0.518572\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 24.4904 42.4186i 1.33805 2.31757i
\(336\) 0 0
\(337\) 20.8564 1.13612 0.568060 0.822987i \(-0.307694\pi\)
0.568060 + 0.822987i \(0.307694\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.928203 1.60770i 0.0502650 0.0870616i
\(342\) 0 0
\(343\) 17.8564i 0.964155i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −16.5622 28.6865i −0.889104 1.53997i −0.840936 0.541135i \(-0.817995\pi\)
−0.0481683 0.998839i \(-0.515338\pi\)
\(348\) 0 0
\(349\) 13.2679 + 7.66025i 0.710217 + 0.410044i 0.811141 0.584850i \(-0.198847\pi\)
−0.100924 + 0.994894i \(0.532180\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −18.8660 10.8923i −1.00414 0.579739i −0.0946674 0.995509i \(-0.530179\pi\)
−0.909470 + 0.415770i \(0.863512\pi\)
\(354\) 0 0
\(355\) −8.83013 15.2942i −0.468654 0.811733i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.12436i 0.0593412i 0.999560 + 0.0296706i \(0.00944584\pi\)
−0.999560 + 0.0296706i \(0.990554\pi\)
\(360\) 0 0
\(361\) 1.69615 2.93782i 0.0892712 0.154622i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 23.3923 1.22441
\(366\) 0 0
\(367\) −5.63397 + 9.75833i −0.294091 + 0.509381i −0.974773 0.223198i \(-0.928350\pi\)
0.680682 + 0.732579i \(0.261684\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −15.2942 + 8.83013i −0.794037 + 0.458437i
\(372\) 0 0
\(373\) 6.86603 + 11.8923i 0.355509 + 0.615760i 0.987205 0.159456i \(-0.0509741\pi\)
−0.631696 + 0.775216i \(0.717641\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3.86603 15.6244i −0.199110 0.804695i
\(378\) 0 0
\(379\) −4.73205 2.73205i −0.243069 0.140336i 0.373517 0.927623i \(-0.378152\pi\)
−0.616587 + 0.787287i \(0.711485\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.26795 + 0.732051i −0.0647892 + 0.0374060i −0.532045 0.846716i \(-0.678576\pi\)
0.467255 + 0.884122i \(0.345243\pi\)
\(384\) 0 0
\(385\) 12.9282i 0.658882i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 11.7846 0.597503 0.298752 0.954331i \(-0.403430\pi\)
0.298752 + 0.954331i \(0.403430\pi\)
\(390\) 0 0
\(391\) 24.0526 1.21639
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 9.46410i 0.476191i
\(396\) 0 0
\(397\) −17.6603 + 10.1962i −0.886343 + 0.511730i −0.872744 0.488177i \(-0.837662\pi\)
−0.0135983 + 0.999908i \(0.504329\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.99038 4.03590i −0.349083 0.201543i 0.315198 0.949026i \(-0.397929\pi\)
−0.664281 + 0.747483i \(0.731262\pi\)
\(402\) 0 0
\(403\) 3.66025 + 3.80385i 0.182330 + 0.189483i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.24167 + 3.88269i 0.111115 + 0.192458i
\(408\) 0 0
\(409\) 15.3564 8.86603i 0.759325 0.438397i −0.0697281 0.997566i \(-0.522213\pi\)
0.829053 + 0.559169i \(0.188880\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 10.9282 18.9282i 0.537742 0.931396i
\(414\) 0 0
\(415\) −0.732051 −0.0359350
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8.73205 15.1244i 0.426589 0.738873i −0.569979 0.821659i \(-0.693049\pi\)
0.996567 + 0.0827863i \(0.0263819\pi\)
\(420\) 0 0
\(421\) 22.7128i 1.10695i −0.832864 0.553477i \(-0.813301\pi\)
0.832864 0.553477i \(-0.186699\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −25.5885 44.3205i −1.24122 2.14986i
\(426\) 0 0
\(427\) −21.7583 12.5622i −1.05296 0.607926i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −11.3660 6.56218i −0.547482 0.316089i 0.200624 0.979668i \(-0.435703\pi\)
−0.748106 + 0.663579i \(0.769036\pi\)
\(432\) 0 0
\(433\) 6.42820 + 11.1340i 0.308920 + 0.535065i 0.978126 0.208012i \(-0.0666992\pi\)
−0.669207 + 0.743076i \(0.733366\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 19.8564i 0.949861i
\(438\) 0 0
\(439\) 0.169873 0.294229i 0.00810760 0.0140428i −0.861943 0.507005i \(-0.830753\pi\)
0.870051 + 0.492962i \(0.164086\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 15.6077 0.741544 0.370772 0.928724i \(-0.379093\pi\)
0.370772 + 0.928724i \(0.379093\pi\)
\(444\) 0 0
\(445\) 17.6603 30.5885i 0.837176 1.45003i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.80385 5.66025i 0.462672 0.267124i −0.250495 0.968118i \(-0.580593\pi\)
0.713167 + 0.700994i \(0.247260\pi\)
\(450\) 0 0
\(451\) −5.95448 10.3135i −0.280386 0.485642i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −35.3205 10.1962i −1.65585 0.478003i
\(456\) 0 0
\(457\) −1.16025 0.669873i −0.0542744 0.0313353i 0.472617 0.881268i \(-0.343309\pi\)
−0.526892 + 0.849932i \(0.676643\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −19.2846 + 11.1340i −0.898174 + 0.518561i −0.876607 0.481207i \(-0.840199\pi\)
−0.0215666 + 0.999767i \(0.506865\pi\)
\(462\) 0 0
\(463\) 10.0526i 0.467182i 0.972335 + 0.233591i \(0.0750477\pi\)
−0.972335 + 0.233591i \(0.924952\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −18.5885 −0.860171 −0.430086 0.902788i \(-0.641517\pi\)
−0.430086 + 0.902788i \(0.641517\pi\)
\(468\) 0 0
\(469\) −35.8564 −1.65570
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 12.2487i 0.563196i
\(474\) 0 0
\(475\) 36.5885 21.1244i 1.67879 0.969252i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 28.9808 + 16.7321i 1.32416 + 0.764507i 0.984390 0.176000i \(-0.0563159\pi\)
0.339775 + 0.940507i \(0.389649\pi\)
\(480\) 0 0
\(481\) −12.3756 + 3.06218i −0.564281 + 0.139623i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 11.1962 + 19.3923i 0.508391 + 0.880559i
\(486\) 0 0
\(487\) 2.70577 1.56218i 0.122610 0.0707890i −0.437441 0.899247i \(-0.644115\pi\)
0.560051 + 0.828458i \(0.310782\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.36603 7.56218i 0.197036 0.341276i −0.750530 0.660836i \(-0.770202\pi\)
0.947566 + 0.319560i \(0.103535\pi\)
\(492\) 0 0
\(493\) −25.5885 −1.15245
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.46410 + 11.1962i −0.289955 + 0.502216i
\(498\) 0 0
\(499\) 32.0000i 1.43252i −0.697835 0.716258i \(-0.745853\pi\)
0.697835 0.716258i \(-0.254147\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −20.4904 35.4904i −0.913621 1.58244i −0.808908 0.587935i \(-0.799941\pi\)
−0.104713 0.994502i \(-0.533392\pi\)
\(504\) 0 0
\(505\) 6.23205 + 3.59808i 0.277323 + 0.160112i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 11.8923 + 6.86603i 0.527117 + 0.304331i 0.739842 0.672781i \(-0.234900\pi\)
−0.212725 + 0.977112i \(0.568234\pi\)
\(510\) 0 0
\(511\) −8.56218 14.8301i −0.378768 0.656046i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 56.9808i 2.51087i
\(516\) 0 0
\(517\) 1.39230 2.41154i 0.0612335 0.106060i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −41.4449 −1.81573 −0.907866 0.419260i \(-0.862290\pi\)
−0.907866 + 0.419260i \(0.862290\pi\)
\(522\) 0 0
\(523\) −11.2224 + 19.4378i −0.490723 + 0.849957i −0.999943 0.0106796i \(-0.996601\pi\)
0.509220 + 0.860636i \(0.329934\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7.26795 4.19615i 0.316597 0.182787i
\(528\) 0 0
\(529\) 2.69615 + 4.66987i 0.117224 + 0.203038i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 32.8731 8.13397i 1.42389 0.352322i
\(534\) 0 0
\(535\) 32.9545 + 19.0263i 1.42475 + 0.822578i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.509619 0.294229i 0.0219508 0.0126733i
\(540\) 0 0
\(541\) 5.67949i 0.244180i −0.992519 0.122090i \(-0.961040\pi\)
0.992519 0.122090i \(-0.0389597\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.46410 0.234056
\(546\) 0 0
\(547\) 4.19615 0.179415 0.0897073 0.995968i \(-0.471407\pi\)
0.0897073 + 0.995968i \(0.471407\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 21.1244i 0.899928i
\(552\) 0 0
\(553\) −6.00000 + 3.46410i −0.255146 + 0.147309i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −36.6962 21.1865i −1.55487 0.897702i −0.997734 0.0672780i \(-0.978569\pi\)
−0.557132 0.830424i \(-0.688098\pi\)
\(558\) 0 0
\(559\) −33.4641 9.66025i −1.41538 0.408585i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 17.4641 + 30.2487i 0.736024 + 1.27483i 0.954273 + 0.298938i \(0.0966324\pi\)
−0.218248 + 0.975893i \(0.570034\pi\)
\(564\) 0 0
\(565\) −4.33013 + 2.50000i −0.182170 + 0.105176i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −15.3205 + 26.5359i −0.642269 + 1.11244i 0.342656 + 0.939461i \(0.388674\pi\)
−0.984925 + 0.172982i \(0.944660\pi\)
\(570\) 0 0
\(571\) 14.0526 0.588081 0.294041 0.955793i \(-0.405000\pi\)
0.294041 + 0.955793i \(0.405000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −18.7321 + 32.4449i −0.781181 + 1.35304i
\(576\) 0 0
\(577\) 3.73205i 0.155367i 0.996978 + 0.0776837i \(0.0247524\pi\)
−0.996978 + 0.0776837i \(0.975248\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0.267949 + 0.464102i 0.0111164 + 0.0192542i
\(582\) 0 0
\(583\) 7.09808 + 4.09808i 0.293972 + 0.169725i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −13.8564 8.00000i −0.571915 0.330195i 0.185999 0.982550i \(-0.440448\pi\)
−0.757914 + 0.652355i \(0.773781\pi\)
\(588\) 0 0
\(589\) 3.46410 + 6.00000i 0.142736 + 0.247226i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.14359i 0.375482i −0.982219 0.187741i \(-0.939883\pi\)
0.982219 0.187741i \(-0.0601166\pi\)
\(594\) 0 0
\(595\) −29.2224 + 50.6147i −1.19800 + 2.07500i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −2.53590 −0.103614 −0.0518070 0.998657i \(-0.516498\pi\)
−0.0518070 + 0.998657i \(0.516498\pi\)
\(600\) 0 0
\(601\) −3.96410 + 6.86603i −0.161699 + 0.280071i −0.935478 0.353385i \(-0.885031\pi\)
0.773779 + 0.633456i \(0.218364\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −30.3564 + 17.5263i −1.23416 + 0.712545i
\(606\) 0 0
\(607\) −20.3923 35.3205i −0.827698 1.43362i −0.899840 0.436221i \(-0.856317\pi\)
0.0721415 0.997394i \(-0.477017\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.49038 + 5.70577i 0.222117 + 0.230831i
\(612\) 0 0
\(613\) 8.13397 + 4.69615i 0.328528 + 0.189676i 0.655187 0.755466i \(-0.272590\pi\)
−0.326659 + 0.945142i \(0.605923\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11.4737 6.62436i 0.461915 0.266687i −0.250934 0.968004i \(-0.580738\pi\)
0.712849 + 0.701318i \(0.247404\pi\)
\(618\) 0 0
\(619\) 17.4641i 0.701942i 0.936386 + 0.350971i \(0.114148\pi\)
−0.936386 + 0.350971i \(0.885852\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −25.8564 −1.03592
\(624\) 0 0
\(625\) 10.0718 0.402872
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 20.2679i 0.808136i
\(630\) 0 0
\(631\) −6.67949 + 3.85641i −0.265906 + 0.153521i −0.627026 0.778998i \(-0.715728\pi\)
0.361119 + 0.932520i \(0.382395\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −31.8564 18.3923i −1.26418 0.729876i
\(636\) 0 0
\(637\) 0.401924 + 1.62436i 0.0159248 + 0.0643593i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12.9904 + 22.5000i 0.513089 + 0.888697i 0.999885 + 0.0151806i \(0.00483233\pi\)
−0.486796 + 0.873516i \(0.661834\pi\)
\(642\) 0 0
\(643\) 12.0000 6.92820i 0.473234 0.273222i −0.244359 0.969685i \(-0.578577\pi\)
0.717592 + 0.696463i \(0.245244\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −11.1244 + 19.2679i −0.437344 + 0.757501i −0.997484 0.0708966i \(-0.977414\pi\)
0.560140 + 0.828398i \(0.310747\pi\)
\(648\) 0 0
\(649\) −10.1436 −0.398171
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8.73205 + 15.1244i −0.341712 + 0.591862i −0.984751 0.173972i \(-0.944340\pi\)
0.643039 + 0.765833i \(0.277673\pi\)
\(654\) 0 0
\(655\) 24.3923i 0.953086i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 5.12436 + 8.87564i 0.199617 + 0.345746i 0.948404 0.317064i \(-0.102697\pi\)
−0.748788 + 0.662810i \(0.769364\pi\)
\(660\) 0 0
\(661\) 9.86603 + 5.69615i 0.383744 + 0.221555i 0.679446 0.733726i \(-0.262220\pi\)
−0.295702 + 0.955280i \(0.595554\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −41.7846 24.1244i −1.62034 0.935502i
\(666\) 0 0
\(667\) 9.36603 + 16.2224i 0.362654 + 0.628135i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 11.6603i 0.450139i
\(672\) 0 0
\(673\) 13.9641 24.1865i 0.538277 0.932322i −0.460720 0.887545i \(-0.652409\pi\)
0.998997 0.0447770i \(-0.0142577\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 45.4641 1.74733 0.873664 0.486530i \(-0.161738\pi\)
0.873664 + 0.486530i \(0.161738\pi\)
\(678\) 0 0
\(679\) 8.19615 14.1962i 0.314539 0.544798i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 8.78461 5.07180i 0.336134 0.194067i −0.322427 0.946594i \(-0.604499\pi\)
0.658561 + 0.752527i \(0.271165\pi\)
\(684\) 0 0
\(685\) −22.2583 38.5526i −0.850447 1.47302i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −16.7942 + 16.1603i −0.639809 + 0.615657i
\(690\) 0 0
\(691\) 37.8109 + 21.8301i 1.43839 + 0.830457i 0.997738 0.0672190i \(-0.0214126\pi\)
0.440656 + 0.897676i \(0.354746\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 57.7128 33.3205i 2.18917 1.26392i
\(696\) 0 0
\(697\) 53.8372i 2.03923i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −3.32051 −0.125414 −0.0627069 0.998032i \(-0.519973\pi\)
−0.0627069 + 0.998032i \(0.519973\pi\)
\(702\) 0 0
\(703\) −16.7321 −0.631061
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.26795i 0.198122i
\(708\) 0 0
\(709\) −11.3827 + 6.57180i −0.427486 + 0.246809i −0.698275 0.715830i \(-0.746049\pi\)
0.270789 + 0.962639i \(0.412715\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −5.32051 3.07180i −0.199255 0.115040i
\(714\) 0 0
\(715\) 4.09808 + 16.5622i 0.153259 + 0.619390i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −14.7321 25.5167i −0.549413 0.951611i −0.998315 0.0580299i \(-0.981518\pi\)
0.448902 0.893581i \(-0.351815\pi\)
\(720\) 0 0
\(721\) 36.1244 20.8564i 1.34534 0.776733i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 19.9282 34.5167i 0.740115 1.28192i
\(726\) 0 0
\(727\) −30.9808 −1.14901 −0.574506 0.818500i \(-0.694806\pi\)
−0.574506 + 0.818500i \(0.694806\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −27.6865 + 47.9545i −1.02402 + 1.77366i
\(732\) 0 0
\(733\) 19.0000i 0.701781i 0.936416 + 0.350891i \(0.114121\pi\)
−0.936416 + 0.350891i \(0.885879\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.32051 + 14.4115i 0.306490 + 0.530856i
\(738\) 0 0
\(739\) −2.53590 1.46410i −0.0932845 0.0538578i 0.452632 0.891697i \(-0.350485\pi\)
−0.545917 + 0.837840i \(0.683818\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 41.9090 + 24.1962i 1.53749 + 0.887671i 0.998985 + 0.0450491i \(0.0143444\pi\)
0.538506 + 0.842622i \(0.318989\pi\)
\(744\) 0 0
\(745\) 24.6244 + 42.6506i 0.902167 + 1.56260i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 27.8564i 1.01785i
\(750\) 0 0
\(751\) 24.9545 43.2224i 0.910602 1.57721i 0.0973862 0.995247i \(-0.468952\pi\)
0.813216 0.581962i \(-0.197715\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 25.1244 0.914369
\(756\) 0 0
\(757\) −10.4641 + 18.1244i −0.380324 + 0.658741i −0.991109 0.133056i \(-0.957521\pi\)
0.610784 + 0.791797i \(0.290854\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 9.80385 5.66025i 0.355389 0.205184i −0.311667 0.950191i \(-0.600887\pi\)
0.667056 + 0.745007i \(0.267554\pi\)
\(762\) 0 0
\(763\) −2.00000 3.46410i −0.0724049 0.125409i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.00000 27.7128i 0.288863 1.00065i
\(768\) 0 0
\(769\) 37.9808 + 21.9282i 1.36962 + 0.790751i 0.990879 0.134751i \(-0.0430235\pi\)
0.378742 + 0.925502i \(0.376357\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 42.3731 24.4641i 1.52405 0.879913i 0.524459 0.851436i \(-0.324268\pi\)
0.999594 0.0284768i \(-0.00906566\pi\)
\(774\) 0 0
\(775\) 13.0718i 0.469553i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 44.4449 1.59240
\(780\) 0 0
\(781\) 6.00000 0.214697
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 28.3205i 1.01080i
\(786\) 0 0
\(787\) 4.05256 2.33975i 0.144458 0.0834029i −0.426029 0.904710i \(-0.640088\pi\)
0.570487 + 0.821307i \(0.306754\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3.16987 + 1.83013i 0.112708 + 0.0650718i
\(792\) 0 0
\(793\) −31.8564 9.19615i −1.13125 0.326565i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 17.0000 + 29.4449i 0.602171 + 1.04299i 0.992492 + 0.122312i \(0.0390308\pi\)
−0.390321 + 0.920679i \(0.627636\pi\)
\(798\) 0 0
\(799\) 10.9019 6.29423i 0.385682 0.222674i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −3.97372 + 6.88269i −0.140230 + 0.242885i
\(804\) 0 0
\(805\) 42.7846 1.50796
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −26.7942 + 46.4090i −0.942035 + 1.63165i −0.180453 + 0.983584i \(0.557756\pi\)
−0.761582 + 0.648069i \(0.775577\pi\)
\(810\) 0 0
\(811\) 17.1769i 0.603163i −0.953440 0.301582i \(-0.902485\pi\)
0.953440 0.301582i \(-0.0975145\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 25.1244 + 43.5167i 0.880068 + 1.52432i
\(816\) 0 0
\(817\) −39.5885 22.8564i −1.38502 0.799644i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.803848 0.464102i −0.0280545 0.0161973i 0.485907 0.874010i \(-0.338489\pi\)
−0.513962 + 0.857813i \(0.671823\pi\)
\(822\) 0 0
\(823\) −20.7846 36.0000i −0.724506 1.25488i −0.959177 0.282806i \(-0.908735\pi\)
0.234671 0.972075i \(-0.424599\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 26.5359i 0.922744i −0.887207 0.461372i \(-0.847357\pi\)
0.887207 0.461372i \(-0.152643\pi\)
\(828\) 0 0
\(829\) −6.06218 + 10.5000i −0.210548 + 0.364680i −0.951886 0.306452i \(-0.900858\pi\)
0.741338 + 0.671132i \(0.234192\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.66025 0.0921723
\(834\) 0 0
\(835\) −17.6603 + 30.5885i −0.611158 + 1.05856i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −36.2487 + 20.9282i −1.25144 + 0.722522i −0.971396 0.237464i \(-0.923684\pi\)
−0.280048 + 0.959986i \(0.590350\pi\)
\(840\) 0 0
\(841\) 4.53590 + 7.85641i 0.156410 + 0.270911i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −48.4808 1.86603i −1.66779 0.0641932i
\(846\) 0 0
\(847\) 22.2224 + 12.8301i 0.763572 + 0.440848i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 12.8494 7.41858i 0.440471 0.254306i
\(852\) 0 0
\(853\) 54.1769i 1.85498i 0.373845 + 0.927491i \(0.378039\pi\)
−0.373845 + 0.927491i \(0.621961\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 39.4449 1.34741 0.673705 0.739000i \(-0.264702\pi\)
0.673705 + 0.739000i \(0.264702\pi\)
\(858\) 0 0
\(859\) 47.1244 1.60786 0.803931 0.594722i \(-0.202738\pi\)
0.803931 + 0.594722i \(0.202738\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 17.1244i 0.582920i −0.956583 0.291460i \(-0.905859\pi\)
0.956583 0.291460i \(-0.0941410\pi\)
\(864\) 0 0
\(865\) −14.1962 + 8.19615i −0.482684 + 0.278678i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2.78461 + 1.60770i 0.0944614 + 0.0545373i
\(870\) 0 0
\(871\) −45.9352 + 11.3660i −1.55646 + 0.385123i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −20.0263 34.6865i −0.677012 1.17262i
\(876\) 0 0
\(877\) 20.7224 11.9641i 0.699747 0.403999i −0.107506 0.994204i \(-0.534287\pi\)
0.807253 + 0.590205i \(0.200953\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 13.9186 24.1077i 0.468929 0.812209i −0.530440 0.847722i \(-0.677973\pi\)
0.999369 + 0.0355135i \(0.0113067\pi\)
\(882\) 0 0
\(883\) 42.9282 1.44465 0.722325 0.691554i \(-0.243074\pi\)
0.722325 + 0.691554i \(0.243074\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −18.9282 + 32.7846i −0.635547 + 1.10080i 0.350852 + 0.936431i \(0.385892\pi\)
−0.986399 + 0.164369i \(0.947441\pi\)
\(888\) 0 0
\(889\) 26.9282i 0.903143i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.19615 + 9.00000i 0.173883 + 0.301174i
\(894\) 0 0
\(895\) 51.8827 + 29.9545i 1.73425 + 1.00127i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 5.66025 + 3.26795i 0.188780 + 0.108992i
\(900\) 0 0
\(901\) 18.5263 + 32.0885i 0.617200 + 1.06902i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 71.6410i 2.38143i
\(906\) 0 0
\(907\) −18.1962 + 31.5167i −0.604193 + 1.04649i 0.387985 + 0.921666i \(0.373171\pi\)
−0.992178 + 0.124828i \(0.960162\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −2.53590 −0.0840181 −0.0420090 0.999117i \(-0.513376\pi\)
−0.0420090 + 0.999117i \(0.513376\pi\)
\(912\) 0 0
\(913\) 0.124356 0.215390i 0.00411557 0.00712838i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −15.4641 + 8.92820i −0.510670 + 0.294835i
\(918\) 0 0
\(919\) 22.9808 + 39.8038i 0.758065 + 1.31301i 0.943836 + 0.330415i \(0.107189\pi\)
−0.185770 + 0.982593i \(0.559478\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −4.73205 + 16.3923i −0.155757 + 0.539559i
\(924\) 0 0
\(925\) −27.3397 15.7846i −0.898925 0.518995i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 33.9904 19.6244i 1.11519 0.643854i 0.175020 0.984565i \(-0.444001\pi\)
0.940168 + 0.340711i \(0.110668\pi\)
\(930\) 0 0
\(931\) 2.19615i 0.0719760i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 27.1244 0.887061
\(936\) 0 0
\(937\) −5.24871 −0.171468 −0.0857340 0.996318i \(-0.527324\pi\)
−0.0857340 + 0.996318i \(0.527324\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 12.6410i 0.412085i −0.978543 0.206043i \(-0.933941\pi\)
0.978543 0.206043i \(-0.0660586\pi\)
\(942\) 0 0
\(943\) −34.1314 + 19.7058i −1.11147 + 0.641708i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 18.2487 + 10.5359i 0.593003 + 0.342371i 0.766284 0.642502i \(-0.222103\pi\)
−0.173281 + 0.984872i \(0.555437\pi\)
\(948\) 0 0
\(949\) −15.6699 16.2846i −0.508666 0.528621i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −20.7846 36.0000i −0.673280 1.16615i −0.976969 0.213383i \(-0.931552\pi\)
0.303689 0.952771i \(-0.401782\pi\)
\(954\) 0 0
\(955\) 22.3923 12.9282i 0.724598 0.418347i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −16.2942 + 28.2224i −0.526168 + 0.911350i
\(960\) 0 0
\(961\) 28.8564 0.930852
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −21.8923 + 37.9186i −0.704738 + 1.22064i
\(966\) 0 0
\(967\) 43.1244i 1.38679i 0.720560 + 0.693393i \(0.243885\pi\)
−0.720560 + 0.693393i \(0.756115\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −15.1244 26.1962i −0.485364 0.840675i 0.514495 0.857493i \(-0.327979\pi\)
−0.999859 + 0.0168189i \(0.994646\pi\)
\(972\) 0 0
\(973\) −42.2487 24.3923i −1.35443 0.781981i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 39.7750 + 22.9641i 1.27251 + 0.734687i 0.975461 0.220174i \(-0.0706625\pi\)
0.297054 + 0.954861i \(0.403996\pi\)
\(978\) 0 0
\(979\) 6.00000 + 10.3923i 0.191761 + 0.332140i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 20.7846i 0.662926i −0.943468 0.331463i \(-0.892458\pi\)
0.943468 0.331463i \(-0.107542\pi\)
\(984\) 0 0
\(985\) −33.3205 + 57.7128i −1.06168 + 1.83888i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 40.5359 1.28897
\(990\) 0 0
\(991\) 11.2942 19.5622i 0.358773 0.621413i −0.628983 0.777419i \(-0.716529\pi\)
0.987756 + 0.156006i \(0.0498619\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 45.8827 26.4904i 1.45458 0.839802i
\(996\) 0 0
\(997\) −10.6699 18.4808i −0.337918 0.585292i 0.646123 0.763234i \(-0.276389\pi\)
−0.984041 + 0.177942i \(0.943056\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1872.2.by.h.433.1 4
3.2 odd 2 624.2.bv.e.433.2 4
4.3 odd 2 234.2.l.c.199.2 4
12.11 even 2 78.2.i.a.43.1 4
13.10 even 6 inner 1872.2.by.h.1297.2 4
39.20 even 12 8112.2.a.bj.1.1 2
39.23 odd 6 624.2.bv.e.49.1 4
39.32 even 12 8112.2.a.bp.1.2 2
52.7 even 12 3042.2.a.y.1.2 2
52.19 even 12 3042.2.a.p.1.1 2
52.23 odd 6 234.2.l.c.127.2 4
52.35 odd 6 3042.2.b.i.1351.1 4
52.43 odd 6 3042.2.b.i.1351.4 4
60.23 odd 4 1950.2.y.b.199.1 4
60.47 odd 4 1950.2.y.g.199.2 4
60.59 even 2 1950.2.bc.d.901.2 4
156.11 odd 12 1014.2.e.i.991.1 4
156.23 even 6 78.2.i.a.49.1 yes 4
156.35 even 6 1014.2.b.e.337.4 4
156.47 odd 4 1014.2.e.i.529.1 4
156.59 odd 12 1014.2.a.i.1.1 2
156.71 odd 12 1014.2.a.k.1.2 2
156.83 odd 4 1014.2.e.g.529.2 4
156.95 even 6 1014.2.b.e.337.1 4
156.107 even 6 1014.2.i.a.361.2 4
156.119 odd 12 1014.2.e.g.991.2 4
156.155 even 2 1014.2.i.a.823.2 4
780.23 odd 12 1950.2.y.g.49.2 4
780.179 even 6 1950.2.bc.d.751.2 4
780.647 odd 12 1950.2.y.b.49.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.2.i.a.43.1 4 12.11 even 2
78.2.i.a.49.1 yes 4 156.23 even 6
234.2.l.c.127.2 4 52.23 odd 6
234.2.l.c.199.2 4 4.3 odd 2
624.2.bv.e.49.1 4 39.23 odd 6
624.2.bv.e.433.2 4 3.2 odd 2
1014.2.a.i.1.1 2 156.59 odd 12
1014.2.a.k.1.2 2 156.71 odd 12
1014.2.b.e.337.1 4 156.95 even 6
1014.2.b.e.337.4 4 156.35 even 6
1014.2.e.g.529.2 4 156.83 odd 4
1014.2.e.g.991.2 4 156.119 odd 12
1014.2.e.i.529.1 4 156.47 odd 4
1014.2.e.i.991.1 4 156.11 odd 12
1014.2.i.a.361.2 4 156.107 even 6
1014.2.i.a.823.2 4 156.155 even 2
1872.2.by.h.433.1 4 1.1 even 1 trivial
1872.2.by.h.1297.2 4 13.10 even 6 inner
1950.2.y.b.49.1 4 780.647 odd 12
1950.2.y.b.199.1 4 60.23 odd 4
1950.2.y.g.49.2 4 780.23 odd 12
1950.2.y.g.199.2 4 60.47 odd 4
1950.2.bc.d.751.2 4 780.179 even 6
1950.2.bc.d.901.2 4 60.59 even 2
3042.2.a.p.1.1 2 52.19 even 12
3042.2.a.y.1.2 2 52.7 even 12
3042.2.b.i.1351.1 4 52.35 odd 6
3042.2.b.i.1351.4 4 52.43 odd 6
8112.2.a.bj.1.1 2 39.20 even 12
8112.2.a.bp.1.2 2 39.32 even 12