Properties

Label 1872.2.by.f.433.1
Level $1872$
Weight $2$
Character 1872.433
Analytic conductor $14.948$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1872,2,Mod(433,1872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1872, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1872.433");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1872.by (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.9479952584\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 433.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1872.433
Dual form 1872.2.by.f.1297.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.46410i q^{5} +(1.50000 - 0.866025i) q^{7} +O(q^{10})\) \(q-3.46410i q^{5} +(1.50000 - 0.866025i) q^{7} +(-3.00000 - 1.73205i) q^{11} +(3.50000 - 0.866025i) q^{13} +(-3.00000 + 1.73205i) q^{19} +(3.00000 - 5.19615i) q^{23} -7.00000 q^{25} +(3.00000 - 5.19615i) q^{29} -1.73205i q^{31} +(-3.00000 - 5.19615i) q^{35} +(6.00000 + 3.46410i) q^{41} +(-0.500000 - 0.866025i) q^{43} +3.46410i q^{47} +(-2.00000 + 3.46410i) q^{49} -12.0000 q^{53} +(-6.00000 + 10.3923i) q^{55} +(-3.00000 + 1.73205i) q^{59} +(-0.500000 - 0.866025i) q^{61} +(-3.00000 - 12.1244i) q^{65} +(-7.50000 - 4.33013i) q^{67} +(-9.00000 + 5.19615i) q^{71} +1.73205i q^{73} -6.00000 q^{77} +11.0000 q^{79} -13.8564i q^{83} +(-6.00000 - 3.46410i) q^{89} +(4.50000 - 4.33013i) q^{91} +(6.00000 + 10.3923i) q^{95} +(-4.50000 + 2.59808i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 3 q^{7} - 6 q^{11} + 7 q^{13} - 6 q^{19} + 6 q^{23} - 14 q^{25} + 6 q^{29} - 6 q^{35} + 12 q^{41} - q^{43} - 4 q^{49} - 24 q^{53} - 12 q^{55} - 6 q^{59} - q^{61} - 6 q^{65} - 15 q^{67} - 18 q^{71} - 12 q^{77} + 22 q^{79} - 12 q^{89} + 9 q^{91} + 12 q^{95} - 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1872\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.46410i 1.54919i −0.632456 0.774597i \(-0.717953\pi\)
0.632456 0.774597i \(-0.282047\pi\)
\(6\) 0 0
\(7\) 1.50000 0.866025i 0.566947 0.327327i −0.188982 0.981981i \(-0.560519\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.00000 1.73205i −0.904534 0.522233i −0.0258656 0.999665i \(-0.508234\pi\)
−0.878668 + 0.477432i \(0.841568\pi\)
\(12\) 0 0
\(13\) 3.50000 0.866025i 0.970725 0.240192i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) −3.00000 + 1.73205i −0.688247 + 0.397360i −0.802955 0.596040i \(-0.796740\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.00000 5.19615i 0.625543 1.08347i −0.362892 0.931831i \(-0.618211\pi\)
0.988436 0.151642i \(-0.0484560\pi\)
\(24\) 0 0
\(25\) −7.00000 −1.40000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.00000 5.19615i 0.557086 0.964901i −0.440652 0.897678i \(-0.645253\pi\)
0.997738 0.0672232i \(-0.0214140\pi\)
\(30\) 0 0
\(31\) 1.73205i 0.311086i −0.987829 0.155543i \(-0.950287\pi\)
0.987829 0.155543i \(-0.0497126\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.00000 5.19615i −0.507093 0.878310i
\(36\) 0 0
\(37\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.00000 + 3.46410i 0.937043 + 0.541002i 0.889032 0.457845i \(-0.151379\pi\)
0.0480106 + 0.998847i \(0.484712\pi\)
\(42\) 0 0
\(43\) −0.500000 0.866025i −0.0762493 0.132068i 0.825380 0.564578i \(-0.190961\pi\)
−0.901629 + 0.432511i \(0.857628\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.46410i 0.505291i 0.967559 + 0.252646i \(0.0813007\pi\)
−0.967559 + 0.252646i \(0.918699\pi\)
\(48\) 0 0
\(49\) −2.00000 + 3.46410i −0.285714 + 0.494872i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −12.0000 −1.64833 −0.824163 0.566352i \(-0.808354\pi\)
−0.824163 + 0.566352i \(0.808354\pi\)
\(54\) 0 0
\(55\) −6.00000 + 10.3923i −0.809040 + 1.40130i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.00000 + 1.73205i −0.390567 + 0.225494i −0.682406 0.730974i \(-0.739066\pi\)
0.291839 + 0.956467i \(0.405733\pi\)
\(60\) 0 0
\(61\) −0.500000 0.866025i −0.0640184 0.110883i 0.832240 0.554416i \(-0.187058\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.00000 12.1244i −0.372104 1.50384i
\(66\) 0 0
\(67\) −7.50000 4.33013i −0.916271 0.529009i −0.0338274 0.999428i \(-0.510770\pi\)
−0.882443 + 0.470418i \(0.844103\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −9.00000 + 5.19615i −1.06810 + 0.616670i −0.927663 0.373419i \(-0.878185\pi\)
−0.140441 + 0.990089i \(0.544852\pi\)
\(72\) 0 0
\(73\) 1.73205i 0.202721i 0.994850 + 0.101361i \(0.0323196\pi\)
−0.994850 + 0.101361i \(0.967680\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.00000 −0.683763
\(78\) 0 0
\(79\) 11.0000 1.23760 0.618798 0.785550i \(-0.287620\pi\)
0.618798 + 0.785550i \(0.287620\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 13.8564i 1.52094i −0.649374 0.760469i \(-0.724969\pi\)
0.649374 0.760469i \(-0.275031\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.00000 3.46410i −0.635999 0.367194i 0.147073 0.989126i \(-0.453015\pi\)
−0.783072 + 0.621932i \(0.786348\pi\)
\(90\) 0 0
\(91\) 4.50000 4.33013i 0.471728 0.453921i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6.00000 + 10.3923i 0.615587 + 1.06623i
\(96\) 0 0
\(97\) −4.50000 + 2.59808i −0.456906 + 0.263795i −0.710742 0.703452i \(-0.751641\pi\)
0.253837 + 0.967247i \(0.418307\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −9.00000 + 15.5885i −0.895533 + 1.55111i −0.0623905 + 0.998052i \(0.519872\pi\)
−0.833143 + 0.553058i \(0.813461\pi\)
\(102\) 0 0
\(103\) 1.00000 0.0985329 0.0492665 0.998786i \(-0.484312\pi\)
0.0492665 + 0.998786i \(0.484312\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.00000 5.19615i 0.290021 0.502331i −0.683793 0.729676i \(-0.739671\pi\)
0.973814 + 0.227345i \(0.0730044\pi\)
\(108\) 0 0
\(109\) 15.5885i 1.49310i −0.665327 0.746552i \(-0.731708\pi\)
0.665327 0.746552i \(-0.268292\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.00000 + 5.19615i 0.282216 + 0.488813i 0.971930 0.235269i \(-0.0755971\pi\)
−0.689714 + 0.724082i \(0.742264\pi\)
\(114\) 0 0
\(115\) −18.0000 10.3923i −1.67851 0.969087i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.500000 + 0.866025i 0.0454545 + 0.0787296i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.92820i 0.619677i
\(126\) 0 0
\(127\) 6.50000 11.2583i 0.576782 0.999015i −0.419064 0.907957i \(-0.637642\pi\)
0.995846 0.0910585i \(-0.0290250\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.00000 0.524222 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(132\) 0 0
\(133\) −3.00000 + 5.19615i −0.260133 + 0.450564i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(138\) 0 0
\(139\) 2.50000 + 4.33013i 0.212047 + 0.367277i 0.952355 0.304991i \(-0.0986536\pi\)
−0.740308 + 0.672268i \(0.765320\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −12.0000 3.46410i −1.00349 0.289683i
\(144\) 0 0
\(145\) −18.0000 10.3923i −1.49482 0.863034i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.00000 3.46410i 0.491539 0.283790i −0.233674 0.972315i \(-0.575075\pi\)
0.725213 + 0.688525i \(0.241741\pi\)
\(150\) 0 0
\(151\) 3.46410i 0.281905i 0.990016 + 0.140952i \(0.0450164\pi\)
−0.990016 + 0.140952i \(0.954984\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.00000 −0.481932
\(156\) 0 0
\(157\) 11.0000 0.877896 0.438948 0.898513i \(-0.355351\pi\)
0.438948 + 0.898513i \(0.355351\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 10.3923i 0.819028i
\(162\) 0 0
\(163\) 16.5000 9.52628i 1.29238 0.746156i 0.313304 0.949653i \(-0.398564\pi\)
0.979076 + 0.203497i \(0.0652307\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.00000 3.46410i −0.464294 0.268060i 0.249554 0.968361i \(-0.419716\pi\)
−0.713848 + 0.700301i \(0.753049\pi\)
\(168\) 0 0
\(169\) 11.5000 6.06218i 0.884615 0.466321i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.00000 5.19615i −0.228086 0.395056i 0.729155 0.684349i \(-0.239913\pi\)
−0.957241 + 0.289292i \(0.906580\pi\)
\(174\) 0 0
\(175\) −10.5000 + 6.06218i −0.793725 + 0.458258i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −6.00000 + 10.3923i −0.448461 + 0.776757i −0.998286 0.0585225i \(-0.981361\pi\)
0.549825 + 0.835280i \(0.314694\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.00000 + 15.5885i 0.651217 + 1.12794i 0.982828 + 0.184525i \(0.0590746\pi\)
−0.331611 + 0.943416i \(0.607592\pi\)
\(192\) 0 0
\(193\) −13.5000 7.79423i −0.971751 0.561041i −0.0719816 0.997406i \(-0.522932\pi\)
−0.899770 + 0.436365i \(0.856266\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −12.0000 6.92820i −0.854965 0.493614i 0.00735824 0.999973i \(-0.497658\pi\)
−0.862323 + 0.506359i \(0.830991\pi\)
\(198\) 0 0
\(199\) 3.50000 + 6.06218i 0.248108 + 0.429736i 0.963001 0.269498i \(-0.0868577\pi\)
−0.714893 + 0.699234i \(0.753524\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 10.3923i 0.729397i
\(204\) 0 0
\(205\) 12.0000 20.7846i 0.838116 1.45166i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) 6.50000 11.2583i 0.447478 0.775055i −0.550743 0.834675i \(-0.685655\pi\)
0.998221 + 0.0596196i \(0.0189888\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.00000 + 1.73205i −0.204598 + 0.118125i
\(216\) 0 0
\(217\) −1.50000 2.59808i −0.101827 0.176369i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −15.0000 8.66025i −1.00447 0.579934i −0.0949052 0.995486i \(-0.530255\pi\)
−0.909569 + 0.415553i \(0.863588\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 18.0000 10.3923i 1.19470 0.689761i 0.235333 0.971915i \(-0.424382\pi\)
0.959369 + 0.282153i \(0.0910487\pi\)
\(228\) 0 0
\(229\) 27.7128i 1.83131i 0.401960 + 0.915657i \(0.368329\pi\)
−0.401960 + 0.915657i \(0.631671\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 0 0
\(235\) 12.0000 0.782794
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 18.0000 10.3923i 1.15948 0.669427i 0.208302 0.978065i \(-0.433206\pi\)
0.951180 + 0.308637i \(0.0998729\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 12.0000 + 6.92820i 0.766652 + 0.442627i
\(246\) 0 0
\(247\) −9.00000 + 8.66025i −0.572656 + 0.551039i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −6.00000 10.3923i −0.378717 0.655956i 0.612159 0.790735i \(-0.290301\pi\)
−0.990876 + 0.134778i \(0.956968\pi\)
\(252\) 0 0
\(253\) −18.0000 + 10.3923i −1.13165 + 0.653359i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.00000 + 10.3923i −0.369976 + 0.640817i −0.989561 0.144112i \(-0.953967\pi\)
0.619586 + 0.784929i \(0.287301\pi\)
\(264\) 0 0
\(265\) 41.5692i 2.55358i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(270\) 0 0
\(271\) 4.50000 + 2.59808i 0.273356 + 0.157822i 0.630412 0.776261i \(-0.282886\pi\)
−0.357056 + 0.934083i \(0.616219\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 21.0000 + 12.1244i 1.26635 + 0.731126i
\(276\) 0 0
\(277\) 5.00000 + 8.66025i 0.300421 + 0.520344i 0.976231 0.216731i \(-0.0695395\pi\)
−0.675810 + 0.737075i \(0.736206\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 24.2487i 1.44656i 0.690557 + 0.723278i \(0.257366\pi\)
−0.690557 + 0.723278i \(0.742634\pi\)
\(282\) 0 0
\(283\) −5.50000 + 9.52628i −0.326941 + 0.566279i −0.981903 0.189383i \(-0.939351\pi\)
0.654962 + 0.755662i \(0.272685\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 12.0000 0.708338
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 15.0000 8.66025i 0.876309 0.505937i 0.00686959 0.999976i \(-0.497813\pi\)
0.869440 + 0.494039i \(0.164480\pi\)
\(294\) 0 0
\(295\) 6.00000 + 10.3923i 0.349334 + 0.605063i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.00000 20.7846i 0.346989 1.20201i
\(300\) 0 0
\(301\) −1.50000 0.866025i −0.0864586 0.0499169i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.00000 + 1.73205i −0.171780 + 0.0991769i
\(306\) 0 0
\(307\) 1.73205i 0.0988534i 0.998778 + 0.0494267i \(0.0157394\pi\)
−0.998778 + 0.0494267i \(0.984261\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 13.0000 0.734803 0.367402 0.930062i \(-0.380247\pi\)
0.367402 + 0.930062i \(0.380247\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.92820i 0.389127i −0.980890 0.194563i \(-0.937671\pi\)
0.980890 0.194563i \(-0.0623290\pi\)
\(318\) 0 0
\(319\) −18.0000 + 10.3923i −1.00781 + 0.581857i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −24.5000 + 6.06218i −1.35902 + 0.336269i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.00000 + 5.19615i 0.165395 + 0.286473i
\(330\) 0 0
\(331\) −4.50000 + 2.59808i −0.247342 + 0.142803i −0.618547 0.785748i \(-0.712278\pi\)
0.371204 + 0.928551i \(0.378945\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −15.0000 + 25.9808i −0.819538 + 1.41948i
\(336\) 0 0
\(337\) −5.00000 −0.272367 −0.136184 0.990684i \(-0.543484\pi\)
−0.136184 + 0.990684i \(0.543484\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3.00000 + 5.19615i −0.162459 + 0.281387i
\(342\) 0 0
\(343\) 19.0526i 1.02874i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.0000 + 20.7846i 0.644194 + 1.11578i 0.984487 + 0.175457i \(0.0561403\pi\)
−0.340293 + 0.940319i \(0.610526\pi\)
\(348\) 0 0
\(349\) −16.5000 9.52628i −0.883225 0.509930i −0.0115044 0.999934i \(-0.503662\pi\)
−0.871720 + 0.490004i \(0.836995\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9.00000 5.19615i −0.479022 0.276563i 0.240987 0.970528i \(-0.422529\pi\)
−0.720009 + 0.693965i \(0.755862\pi\)
\(354\) 0 0
\(355\) 18.0000 + 31.1769i 0.955341 + 1.65470i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.92820i 0.365657i 0.983145 + 0.182828i \(0.0585252\pi\)
−0.983145 + 0.182828i \(0.941475\pi\)
\(360\) 0 0
\(361\) −3.50000 + 6.06218i −0.184211 + 0.319062i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6.00000 0.314054
\(366\) 0 0
\(367\) 8.50000 14.7224i 0.443696 0.768505i −0.554264 0.832341i \(-0.687000\pi\)
0.997960 + 0.0638362i \(0.0203335\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −18.0000 + 10.3923i −0.934513 + 0.539542i
\(372\) 0 0
\(373\) 5.50000 + 9.52628i 0.284779 + 0.493252i 0.972556 0.232671i \(-0.0747464\pi\)
−0.687776 + 0.725923i \(0.741413\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.00000 20.7846i 0.309016 1.07046i
\(378\) 0 0
\(379\) 19.5000 + 11.2583i 1.00165 + 0.578302i 0.908735 0.417373i \(-0.137049\pi\)
0.0929123 + 0.995674i \(0.470382\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 24.0000 13.8564i 1.22634 0.708029i 0.260080 0.965587i \(-0.416251\pi\)
0.966263 + 0.257558i \(0.0829178\pi\)
\(384\) 0 0
\(385\) 20.7846i 1.05928i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −12.0000 −0.608424 −0.304212 0.952604i \(-0.598393\pi\)
−0.304212 + 0.952604i \(0.598393\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 38.1051i 1.91728i
\(396\) 0 0
\(397\) 13.5000 7.79423i 0.677546 0.391181i −0.121384 0.992606i \(-0.538733\pi\)
0.798930 + 0.601424i \(0.205400\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(402\) 0 0
\(403\) −1.50000 6.06218i −0.0747203 0.301979i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 7.50000 4.33013i 0.370851 0.214111i −0.302979 0.952997i \(-0.597981\pi\)
0.673830 + 0.738886i \(0.264648\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3.00000 + 5.19615i −0.147620 + 0.255686i
\(414\) 0 0
\(415\) −48.0000 −2.35623
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.00000 10.3923i 0.293119 0.507697i −0.681426 0.731887i \(-0.738640\pi\)
0.974546 + 0.224189i \(0.0719734\pi\)
\(420\) 0 0
\(421\) 12.1244i 0.590905i −0.955357 0.295452i \(-0.904530\pi\)
0.955357 0.295452i \(-0.0954704\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1.50000 0.866025i −0.0725901 0.0419099i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 18.0000 + 10.3923i 0.867029 + 0.500580i 0.866360 0.499420i \(-0.166454\pi\)
0.000669521 1.00000i \(0.499787\pi\)
\(432\) 0 0
\(433\) 11.5000 + 19.9186i 0.552655 + 0.957226i 0.998082 + 0.0619079i \(0.0197185\pi\)
−0.445427 + 0.895318i \(0.646948\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 20.7846i 0.994263i
\(438\) 0 0
\(439\) 17.5000 30.3109i 0.835229 1.44666i −0.0586141 0.998281i \(-0.518668\pi\)
0.893843 0.448379i \(-0.147999\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) 0 0
\(445\) −12.0000 + 20.7846i −0.568855 + 0.985285i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −33.0000 + 19.0526i −1.55737 + 0.899146i −0.559859 + 0.828588i \(0.689145\pi\)
−0.997508 + 0.0705577i \(0.977522\pi\)
\(450\) 0 0
\(451\) −12.0000 20.7846i −0.565058 0.978709i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −15.0000 15.5885i −0.703211 0.730798i
\(456\) 0 0
\(457\) −31.5000 18.1865i −1.47351 0.850730i −0.473953 0.880550i \(-0.657173\pi\)
−0.999555 + 0.0298202i \(0.990507\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 36.0000 20.7846i 1.67669 0.968036i 0.712938 0.701228i \(-0.247364\pi\)
0.963750 0.266808i \(-0.0859690\pi\)
\(462\) 0 0
\(463\) 36.3731i 1.69040i 0.534450 + 0.845200i \(0.320519\pi\)
−0.534450 + 0.845200i \(0.679481\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 6.00000 0.277647 0.138823 0.990317i \(-0.455668\pi\)
0.138823 + 0.990317i \(0.455668\pi\)
\(468\) 0 0
\(469\) −15.0000 −0.692636
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.46410i 0.159280i
\(474\) 0 0
\(475\) 21.0000 12.1244i 0.963546 0.556304i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 30.0000 + 17.3205i 1.37073 + 0.791394i 0.991021 0.133710i \(-0.0426889\pi\)
0.379714 + 0.925104i \(0.376022\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9.00000 + 15.5885i 0.408669 + 0.707835i
\(486\) 0 0
\(487\) 21.0000 12.1244i 0.951601 0.549407i 0.0580230 0.998315i \(-0.481520\pi\)
0.893578 + 0.448908i \(0.148187\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3.00000 + 5.19615i −0.135388 + 0.234499i −0.925746 0.378147i \(-0.876561\pi\)
0.790358 + 0.612646i \(0.209895\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.00000 + 15.5885i −0.403705 + 0.699238i
\(498\) 0 0
\(499\) 31.1769i 1.39567i −0.716258 0.697835i \(-0.754147\pi\)
0.716258 0.697835i \(-0.245853\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 15.0000 + 25.9808i 0.668817 + 1.15842i 0.978235 + 0.207499i \(0.0665323\pi\)
−0.309418 + 0.950926i \(0.600134\pi\)
\(504\) 0 0
\(505\) 54.0000 + 31.1769i 2.40297 + 1.38735i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 15.0000 + 8.66025i 0.664863 + 0.383859i 0.794128 0.607751i \(-0.207928\pi\)
−0.129264 + 0.991610i \(0.541262\pi\)
\(510\) 0 0
\(511\) 1.50000 + 2.59808i 0.0663561 + 0.114932i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.46410i 0.152647i
\(516\) 0 0
\(517\) 6.00000 10.3923i 0.263880 0.457053i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 24.0000 1.05146 0.525730 0.850652i \(-0.323792\pi\)
0.525730 + 0.850652i \(0.323792\pi\)
\(522\) 0 0
\(523\) −14.0000 + 24.2487i −0.612177 + 1.06032i 0.378695 + 0.925521i \(0.376373\pi\)
−0.990873 + 0.134801i \(0.956961\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 24.0000 + 6.92820i 1.03956 + 0.300094i
\(534\) 0 0
\(535\) −18.0000 10.3923i −0.778208 0.449299i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 12.0000 6.92820i 0.516877 0.298419i
\(540\) 0 0
\(541\) 29.4449i 1.26593i −0.774179 0.632967i \(-0.781837\pi\)
0.774179 0.632967i \(-0.218163\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −54.0000 −2.31311
\(546\) 0 0
\(547\) 19.0000 0.812381 0.406191 0.913788i \(-0.366857\pi\)
0.406191 + 0.913788i \(0.366857\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 20.7846i 0.885454i
\(552\) 0 0
\(553\) 16.5000 9.52628i 0.701651 0.405099i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 24.0000 + 13.8564i 1.01691 + 0.587115i 0.913208 0.407493i \(-0.133597\pi\)
0.103704 + 0.994608i \(0.466930\pi\)
\(558\) 0 0
\(559\) −2.50000 2.59808i −0.105739 0.109887i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 21.0000 + 36.3731i 0.885044 + 1.53294i 0.845663 + 0.533718i \(0.179206\pi\)
0.0393818 + 0.999224i \(0.487461\pi\)
\(564\) 0 0
\(565\) 18.0000 10.3923i 0.757266 0.437208i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.00000 + 5.19615i −0.125767 + 0.217834i −0.922032 0.387113i \(-0.873472\pi\)
0.796266 + 0.604947i \(0.206806\pi\)
\(570\) 0 0
\(571\) 44.0000 1.84134 0.920671 0.390339i \(-0.127642\pi\)
0.920671 + 0.390339i \(0.127642\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −21.0000 + 36.3731i −0.875761 + 1.51686i
\(576\) 0 0
\(577\) 34.6410i 1.44212i −0.692870 0.721062i \(-0.743654\pi\)
0.692870 0.721062i \(-0.256346\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −12.0000 20.7846i −0.497844 0.862291i
\(582\) 0 0
\(583\) 36.0000 + 20.7846i 1.49097 + 0.860811i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −27.0000 15.5885i −1.11441 0.643404i −0.174441 0.984668i \(-0.555812\pi\)
−0.939968 + 0.341263i \(0.889145\pi\)
\(588\) 0 0
\(589\) 3.00000 + 5.19615i 0.123613 + 0.214104i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 3.46410i 0.142254i −0.997467 0.0711268i \(-0.977341\pi\)
0.997467 0.0711268i \(-0.0226595\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −30.0000 −1.22577 −0.612883 0.790173i \(-0.709990\pi\)
−0.612883 + 0.790173i \(0.709990\pi\)
\(600\) 0 0
\(601\) 13.0000 22.5167i 0.530281 0.918474i −0.469095 0.883148i \(-0.655420\pi\)
0.999376 0.0353259i \(-0.0112469\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.00000 1.73205i 0.121967 0.0704179i
\(606\) 0 0
\(607\) 4.00000 + 6.92820i 0.162355 + 0.281207i 0.935713 0.352763i \(-0.114758\pi\)
−0.773358 + 0.633970i \(0.781424\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.00000 + 12.1244i 0.121367 + 0.490499i
\(612\) 0 0
\(613\) 7.50000 + 4.33013i 0.302922 + 0.174892i 0.643755 0.765232i \(-0.277376\pi\)
−0.340833 + 0.940124i \(0.610709\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.00000 5.19615i 0.362326 0.209189i −0.307774 0.951459i \(-0.599584\pi\)
0.670101 + 0.742270i \(0.266251\pi\)
\(618\) 0 0
\(619\) 25.9808i 1.04425i −0.852867 0.522127i \(-0.825139\pi\)
0.852867 0.522127i \(-0.174861\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12.0000 −0.480770
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −1.50000 + 0.866025i −0.0597141 + 0.0344759i −0.529560 0.848273i \(-0.677643\pi\)
0.469846 + 0.882749i \(0.344310\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −39.0000 22.5167i −1.54767 0.893546i
\(636\) 0 0
\(637\) −4.00000 + 13.8564i −0.158486 + 0.549011i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 9.00000 + 15.5885i 0.355479 + 0.615707i 0.987200 0.159489i \(-0.0509845\pi\)
−0.631721 + 0.775196i \(0.717651\pi\)
\(642\) 0 0
\(643\) −16.5000 + 9.52628i −0.650696 + 0.375680i −0.788723 0.614749i \(-0.789257\pi\)
0.138027 + 0.990429i \(0.455924\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.00000 15.5885i 0.353827 0.612845i −0.633090 0.774078i \(-0.718214\pi\)
0.986916 + 0.161233i \(0.0515470\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 18.0000 31.1769i 0.704394 1.22005i −0.262515 0.964928i \(-0.584552\pi\)
0.966910 0.255119i \(-0.0821147\pi\)
\(654\) 0 0
\(655\) 20.7846i 0.812122i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −24.0000 41.5692i −0.934907 1.61931i −0.774799 0.632207i \(-0.782149\pi\)
−0.160108 0.987099i \(-0.551184\pi\)
\(660\) 0 0
\(661\) −22.5000 12.9904i −0.875149 0.505267i −0.00609283 0.999981i \(-0.501939\pi\)
−0.869056 + 0.494714i \(0.835273\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 18.0000 + 10.3923i 0.698010 + 0.402996i
\(666\) 0 0
\(667\) −18.0000 31.1769i −0.696963 1.20717i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.46410i 0.133730i
\(672\) 0 0
\(673\) 0.500000 0.866025i 0.0192736 0.0333828i −0.856228 0.516599i \(-0.827198\pi\)
0.875501 + 0.483216i \(0.160531\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −48.0000 −1.84479 −0.922395 0.386248i \(-0.873771\pi\)
−0.922395 + 0.386248i \(0.873771\pi\)
\(678\) 0 0
\(679\) −4.50000 + 7.79423i −0.172694 + 0.299115i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 21.0000 12.1244i 0.803543 0.463926i −0.0411658 0.999152i \(-0.513107\pi\)
0.844708 + 0.535227i \(0.179774\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −42.0000 + 10.3923i −1.60007 + 0.395915i
\(690\) 0 0
\(691\) −37.5000 21.6506i −1.42657 0.823629i −0.429719 0.902963i \(-0.641387\pi\)
−0.996848 + 0.0793336i \(0.974721\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 15.0000 8.66025i 0.568982 0.328502i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12.0000 0.453234 0.226617 0.973984i \(-0.427233\pi\)
0.226617 + 0.973984i \(0.427233\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 31.1769i 1.17253i
\(708\) 0 0
\(709\) −16.5000 + 9.52628i −0.619671 + 0.357767i −0.776741 0.629821i \(-0.783128\pi\)
0.157070 + 0.987587i \(0.449795\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −9.00000 5.19615i −0.337053 0.194597i
\(714\) 0 0
\(715\) −12.0000 + 41.5692i −0.448775 + 1.55460i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3.00000 + 5.19615i 0.111881 + 0.193784i 0.916529 0.399969i \(-0.130979\pi\)
−0.804648 + 0.593753i \(0.797646\pi\)
\(720\) 0 0
\(721\) 1.50000 0.866025i 0.0558629 0.0322525i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −21.0000 + 36.3731i −0.779920 + 1.35086i
\(726\) 0 0
\(727\) 35.0000 1.29808 0.649039 0.760755i \(-0.275171\pi\)
0.649039 + 0.760755i \(0.275171\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 39.8372i 1.47142i 0.677297 + 0.735710i \(0.263151\pi\)
−0.677297 + 0.735710i \(0.736849\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 15.0000 + 25.9808i 0.552532 + 0.957014i
\(738\) 0 0
\(739\) −39.0000 22.5167i −1.43464 0.828289i −0.437168 0.899380i \(-0.644019\pi\)
−0.997470 + 0.0710909i \(0.977352\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −9.00000 5.19615i −0.330178 0.190628i 0.325742 0.945459i \(-0.394386\pi\)
−0.655920 + 0.754830i \(0.727719\pi\)
\(744\) 0 0
\(745\) −12.0000 20.7846i −0.439646 0.761489i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 10.3923i 0.379727i
\(750\) 0 0
\(751\) 4.00000 6.92820i 0.145962 0.252814i −0.783769 0.621052i \(-0.786706\pi\)
0.929731 + 0.368238i \(0.120039\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 12.0000 0.436725
\(756\) 0 0
\(757\) −17.0000 + 29.4449i −0.617876 + 1.07019i 0.371997 + 0.928234i \(0.378673\pi\)
−0.989873 + 0.141958i \(0.954660\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 18.0000 10.3923i 0.652499 0.376721i −0.136914 0.990583i \(-0.543718\pi\)
0.789413 + 0.613862i \(0.210385\pi\)
\(762\) 0 0
\(763\) −13.5000 23.3827i −0.488733 0.846510i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.00000 + 8.66025i −0.324971 + 0.312704i
\(768\) 0 0
\(769\) −6.00000 3.46410i −0.216366 0.124919i 0.387901 0.921701i \(-0.373200\pi\)
−0.604266 + 0.796782i \(0.706534\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 45.0000 25.9808i 1.61854 0.934463i 0.631239 0.775589i \(-0.282547\pi\)
0.987299 0.158874i \(-0.0507865\pi\)
\(774\) 0 0
\(775\) 12.1244i 0.435520i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −24.0000 −0.859889
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 38.1051i 1.36003i
\(786\) 0 0
\(787\) −28.5000 + 16.4545i −1.01592 + 0.586539i −0.912918 0.408143i \(-0.866177\pi\)
−0.102997 + 0.994682i \(0.532843\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9.00000 + 5.19615i 0.320003 + 0.184754i
\(792\) 0 0
\(793\) −2.50000 2.59808i −0.0887776 0.0922604i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.00000 + 10.3923i 0.212531 + 0.368114i 0.952506 0.304520i \(-0.0984960\pi\)