Properties

Label 1872.2.bq
Level $1872$
Weight $2$
Character orbit 1872.bq
Rep. character $\chi_{1872}(307,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $276$
Sturm bound $672$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1872.bq (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 208 \)
Character field: \(\Q(i)\)
Sturm bound: \(672\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1872, [\chi])\).

Total New Old
Modular forms 688 284 404
Cusp forms 656 276 380
Eisenstein series 32 8 24

Trace form

\( 276 q + 2 q^{2} + 4 q^{5} - 4 q^{7} - 4 q^{8} - 16 q^{10} + 4 q^{11} - 2 q^{13} - 12 q^{14} - 4 q^{16} - 4 q^{19} + 8 q^{20} - 12 q^{22} + 260 q^{25} - 10 q^{26} + 28 q^{28} + 4 q^{29} - 28 q^{32} + 32 q^{34}+ \cdots + 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1872, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1872, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1872, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(624, [\chi])\)\(^{\oplus 2}\)