Properties

Label 1872.2.bf.l
Level $1872$
Weight $2$
Character orbit 1872.bf
Analytic conductor $14.948$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1872,2,Mod(1279,1872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1872, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1872.1279");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1872.bf (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.9479952584\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.3317760000.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 7x^{4} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{5} - \beta_{5} q^{7} + \beta_{7} q^{11} + ( - 2 \beta_{3} - 3) q^{13} + ( - \beta_{4} - \beta_1) q^{17} + \beta_{2} q^{19} + ( - \beta_{7} - \beta_{6}) q^{23} - 7 \beta_{3} q^{25} - \beta_{2} q^{31}+ \cdots + ( - 5 \beta_{3} + 5) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 24 q^{13} - 40 q^{37} + 8 q^{73} - 96 q^{85} + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 7x^{4} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{7} + \nu^{3} ) / 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{5} - \nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{6} - 3\nu^{2} ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} - 5\nu \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -3\nu^{7} + 13\nu^{3} ) / 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{6} + 8\nu^{4} + 11\nu^{2} - 28 ) / 4 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -\nu^{6} - 8\nu^{4} + 11\nu^{2} + 28 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{4} + \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{7} + \beta_{6} + 2\beta_{3} ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{5} + 3\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -\beta_{7} + \beta_{6} + 14 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -\beta_{4} + 5\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 3\beta_{7} + 3\beta_{6} + 22\beta_{3} ) / 4 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -\beta_{5} + 13\beta_1 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1872\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(-\beta_{3}\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1279.1
0.178197 + 1.40294i
−1.40294 0.178197i
1.40294 + 0.178197i
−0.178197 1.40294i
0.178197 1.40294i
−1.40294 + 0.178197i
1.40294 0.178197i
−0.178197 + 1.40294i
0 0 0 −2.44949 + 2.44949i 0 −3.16228 + 3.16228i 0 0 0
1279.2 0 0 0 −2.44949 + 2.44949i 0 3.16228 3.16228i 0 0 0
1279.3 0 0 0 2.44949 2.44949i 0 −3.16228 + 3.16228i 0 0 0
1279.4 0 0 0 2.44949 2.44949i 0 3.16228 3.16228i 0 0 0
1711.1 0 0 0 −2.44949 2.44949i 0 −3.16228 3.16228i 0 0 0
1711.2 0 0 0 −2.44949 2.44949i 0 3.16228 + 3.16228i 0 0 0
1711.3 0 0 0 2.44949 + 2.44949i 0 −3.16228 3.16228i 0 0 0
1711.4 0 0 0 2.44949 + 2.44949i 0 3.16228 + 3.16228i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1279.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner
13.d odd 4 1 inner
39.f even 4 1 inner
52.f even 4 1 inner
156.l odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1872.2.bf.l 8
3.b odd 2 1 inner 1872.2.bf.l 8
4.b odd 2 1 inner 1872.2.bf.l 8
12.b even 2 1 inner 1872.2.bf.l 8
13.d odd 4 1 inner 1872.2.bf.l 8
39.f even 4 1 inner 1872.2.bf.l 8
52.f even 4 1 inner 1872.2.bf.l 8
156.l odd 4 1 inner 1872.2.bf.l 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1872.2.bf.l 8 1.a even 1 1 trivial
1872.2.bf.l 8 3.b odd 2 1 inner
1872.2.bf.l 8 4.b odd 2 1 inner
1872.2.bf.l 8 12.b even 2 1 inner
1872.2.bf.l 8 13.d odd 4 1 inner
1872.2.bf.l 8 39.f even 4 1 inner
1872.2.bf.l 8 52.f even 4 1 inner
1872.2.bf.l 8 156.l odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1872, [\chi])\):

\( T_{5}^{4} + 144 \) Copy content Toggle raw display
\( T_{7}^{4} + 400 \) Copy content Toggle raw display
\( T_{17}^{2} + 24 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} + 144)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 400)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} + 900)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 6 T + 13)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 24)^{4} \) Copy content Toggle raw display
$19$ \( (T^{4} + 400)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 60)^{4} \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( (T^{4} + 400)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 10 T + 50)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} + 144)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 40)^{4} \) Copy content Toggle raw display
$47$ \( (T^{4} + 900)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 96)^{4} \) Copy content Toggle raw display
$59$ \( (T^{4} + 900)^{2} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( (T^{4} + 400)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 900)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 2 T + 2)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 160)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} + 72900)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + 11664)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 10 T + 50)^{4} \) Copy content Toggle raw display
show more
show less