Defining parameters
Level: | \( N \) | \(=\) | \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1872.bf (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 52 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 15 \) | ||
Sturm bound: | \(672\) | ||
Trace bound: | \(29\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1872, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 720 | 70 | 650 |
Cusp forms | 624 | 70 | 554 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1872, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(1872, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1872, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(468, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(624, [\chi])\)\(^{\oplus 2}\)