Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1872,2,Mod(1,1872)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1872, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1872.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1872.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(14.9479952584\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 468) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 1872.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 4.00000 | 1.78885 | 0.894427 | − | 0.447214i | \(-0.147584\pi\) | ||||
0.894427 | + | 0.447214i | \(0.147584\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −4.00000 | −1.51186 | −0.755929 | − | 0.654654i | \(-0.772814\pi\) | ||||
−0.755929 | + | 0.654654i | \(0.772814\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 4.00000 | 1.20605 | 0.603023 | − | 0.797724i | \(-0.293963\pi\) | ||||
0.603023 | + | 0.797724i | \(0.293963\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −1.00000 | −0.277350 | ||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 8.00000 | 1.66812 | 0.834058 | − | 0.551677i | \(-0.186012\pi\) | ||||
0.834058 | + | 0.551677i | \(0.186012\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 11.0000 | 2.20000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −8.00000 | −1.48556 | −0.742781 | − | 0.669534i | \(-0.766494\pi\) | ||||
−0.742781 | + | 0.669534i | \(0.766494\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −4.00000 | −0.718421 | −0.359211 | − | 0.933257i | \(-0.616954\pi\) | ||||
−0.359211 | + | 0.933257i | \(0.616954\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | −16.0000 | −2.70449 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 6.00000 | 0.986394 | 0.493197 | − | 0.869918i | \(-0.335828\pi\) | ||||
0.493197 | + | 0.869918i | \(0.335828\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 12.0000 | 1.87409 | 0.937043 | − | 0.349215i | \(-0.113552\pi\) | ||||
0.937043 | + | 0.349215i | \(0.113552\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 8.00000 | 1.21999 | 0.609994 | − | 0.792406i | \(-0.291172\pi\) | ||||
0.609994 | + | 0.792406i | \(0.291172\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 4.00000 | 0.583460 | 0.291730 | − | 0.956501i | \(-0.405769\pi\) | ||||
0.291730 | + | 0.956501i | \(0.405769\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 9.00000 | 1.28571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 16.0000 | 2.15744 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −4.00000 | −0.520756 | −0.260378 | − | 0.965507i | \(-0.583847\pi\) | ||||
−0.260378 | + | 0.965507i | \(0.583847\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −2.00000 | −0.256074 | −0.128037 | − | 0.991769i | \(-0.540868\pi\) | ||||
−0.128037 | + | 0.991769i | \(0.540868\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | −4.00000 | −0.496139 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 8.00000 | 0.977356 | 0.488678 | − | 0.872464i | \(-0.337479\pi\) | ||||
0.488678 | + | 0.872464i | \(0.337479\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 4.00000 | 0.474713 | 0.237356 | − | 0.971423i | \(-0.423719\pi\) | ||||
0.237356 | + | 0.971423i | \(0.423719\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −10.0000 | −1.17041 | −0.585206 | − | 0.810885i | \(-0.698986\pi\) | ||||
−0.585206 | + | 0.810885i | \(0.698986\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | −16.0000 | −1.82337 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 4.00000 | 0.450035 | 0.225018 | − | 0.974355i | \(-0.427756\pi\) | ||||
0.225018 | + | 0.974355i | \(0.427756\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −12.0000 | −1.31717 | −0.658586 | − | 0.752506i | \(-0.728845\pi\) | ||||
−0.658586 | + | 0.752506i | \(0.728845\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −12.0000 | −1.27200 | −0.635999 | − | 0.771690i | \(-0.719412\pi\) | ||||
−0.635999 | + | 0.771690i | \(0.719412\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 4.00000 | 0.419314 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 14.0000 | 1.42148 | 0.710742 | − | 0.703452i | \(-0.248359\pi\) | ||||
0.710742 | + | 0.703452i | \(0.248359\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 8.00000 | 0.796030 | 0.398015 | − | 0.917379i | \(-0.369699\pi\) | ||||
0.398015 | + | 0.917379i | \(0.369699\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −4.00000 | −0.394132 | −0.197066 | − | 0.980390i | \(-0.563141\pi\) | ||||
−0.197066 | + | 0.980390i | \(0.563141\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 8.00000 | 0.773389 | 0.386695 | − | 0.922208i | \(-0.373617\pi\) | ||||
0.386695 | + | 0.922208i | \(0.373617\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −14.0000 | −1.34096 | −0.670478 | − | 0.741929i | \(-0.733911\pi\) | ||||
−0.670478 | + | 0.741929i | \(0.733911\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −8.00000 | −0.752577 | −0.376288 | − | 0.926503i | \(-0.622800\pi\) | ||||
−0.376288 | + | 0.926503i | \(0.622800\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 32.0000 | 2.98402 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 5.00000 | 0.454545 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 24.0000 | 2.14663 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −4.00000 | −0.354943 | −0.177471 | − | 0.984126i | \(-0.556792\pi\) | ||||
−0.177471 | + | 0.984126i | \(0.556792\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 8.00000 | 0.698963 | 0.349482 | − | 0.936943i | \(-0.386358\pi\) | ||||
0.349482 | + | 0.936943i | \(0.386358\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 12.0000 | 1.02523 | 0.512615 | − | 0.858619i | \(-0.328677\pi\) | ||||
0.512615 | + | 0.858619i | \(0.328677\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −16.0000 | −1.35710 | −0.678551 | − | 0.734553i | \(-0.737392\pi\) | ||||
−0.678551 | + | 0.734553i | \(0.737392\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | −4.00000 | −0.334497 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | −32.0000 | −2.65746 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 12.0000 | 0.983078 | 0.491539 | − | 0.870855i | \(-0.336434\pi\) | ||||
0.491539 | + | 0.870855i | \(0.336434\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 12.0000 | 0.976546 | 0.488273 | − | 0.872691i | \(-0.337627\pi\) | ||||
0.488273 | + | 0.872691i | \(0.337627\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | −16.0000 | −1.28515 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 14.0000 | 1.11732 | 0.558661 | − | 0.829396i | \(-0.311315\pi\) | ||||
0.558661 | + | 0.829396i | \(0.311315\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −32.0000 | −2.52195 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 16.0000 | 1.25322 | 0.626608 | − | 0.779334i | \(-0.284443\pi\) | ||||
0.626608 | + | 0.779334i | \(0.284443\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −12.0000 | −0.928588 | −0.464294 | − | 0.885681i | \(-0.653692\pi\) | ||||
−0.464294 | + | 0.885681i | \(0.653692\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 1.00000 | 0.0769231 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −8.00000 | −0.608229 | −0.304114 | − | 0.952636i | \(-0.598361\pi\) | ||||
−0.304114 | + | 0.952636i | \(0.598361\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | −44.0000 | −3.32609 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −6.00000 | −0.445976 | −0.222988 | − | 0.974821i | \(-0.571581\pi\) | ||||
−0.222988 | + | 0.974821i | \(0.571581\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 24.0000 | 1.76452 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 16.0000 | 1.15772 | 0.578860 | − | 0.815427i | \(-0.303498\pi\) | ||||
0.578860 | + | 0.815427i | \(0.303498\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 2.00000 | 0.143963 | 0.0719816 | − | 0.997406i | \(-0.477068\pi\) | ||||
0.0719816 | + | 0.997406i | \(0.477068\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −12.0000 | −0.854965 | −0.427482 | − | 0.904024i | \(-0.640599\pi\) | ||||
−0.427482 | + | 0.904024i | \(0.640599\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −20.0000 | −1.41776 | −0.708881 | − | 0.705328i | \(-0.750800\pi\) | ||||
−0.708881 | + | 0.705328i | \(0.750800\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 32.0000 | 2.24596 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 48.0000 | 3.35247 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 16.0000 | 1.10149 | 0.550743 | − | 0.834675i | \(-0.314345\pi\) | ||||
0.550743 | + | 0.834675i | \(0.314345\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 32.0000 | 2.18238 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 16.0000 | 1.08615 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −12.0000 | −0.803579 | −0.401790 | − | 0.915732i | \(-0.631612\pi\) | ||||
−0.401790 | + | 0.915732i | \(0.631612\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 12.0000 | 0.796468 | 0.398234 | − | 0.917284i | \(-0.369623\pi\) | ||||
0.398234 | + | 0.917284i | \(0.369623\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −6.00000 | −0.396491 | −0.198246 | − | 0.980152i | \(-0.563524\pi\) | ||||
−0.198246 | + | 0.980152i | \(0.563524\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 8.00000 | 0.524097 | 0.262049 | − | 0.965055i | \(-0.415602\pi\) | ||||
0.262049 | + | 0.965055i | \(0.415602\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 16.0000 | 1.04372 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −12.0000 | −0.776215 | −0.388108 | − | 0.921614i | \(-0.626871\pi\) | ||||
−0.388108 | + | 0.921614i | \(0.626871\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −18.0000 | −1.15948 | −0.579741 | − | 0.814801i | \(-0.696846\pi\) | ||||
−0.579741 | + | 0.814801i | \(0.696846\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 36.0000 | 2.29996 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −24.0000 | −1.51487 | −0.757433 | − | 0.652913i | \(-0.773547\pi\) | ||||
−0.757433 | + | 0.652913i | \(0.773547\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 32.0000 | 2.01182 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 24.0000 | 1.49708 | 0.748539 | − | 0.663090i | \(-0.230755\pi\) | ||||
0.748539 | + | 0.663090i | \(0.230755\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −24.0000 | −1.49129 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −24.0000 | −1.47990 | −0.739952 | − | 0.672660i | \(-0.765152\pi\) | ||||
−0.739952 | + | 0.672660i | \(0.765152\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −24.0000 | −1.46331 | −0.731653 | − | 0.681677i | \(-0.761251\pi\) | ||||
−0.731653 | + | 0.681677i | \(0.761251\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 20.0000 | 1.21491 | 0.607457 | − | 0.794353i | \(-0.292190\pi\) | ||||
0.607457 | + | 0.794353i | \(0.292190\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 44.0000 | 2.65330 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −6.00000 | −0.360505 | −0.180253 | − | 0.983620i | \(-0.557691\pi\) | ||||
−0.180253 | + | 0.983620i | \(0.557691\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −4.00000 | −0.238620 | −0.119310 | − | 0.992857i | \(-0.538068\pi\) | ||||
−0.119310 | + | 0.992857i | \(0.538068\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −16.0000 | −0.951101 | −0.475551 | − | 0.879688i | \(-0.657751\pi\) | ||||
−0.475551 | + | 0.879688i | \(0.657751\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | −48.0000 | −2.83335 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −17.0000 | −1.00000 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −4.00000 | −0.233682 | −0.116841 | − | 0.993151i | \(-0.537277\pi\) | ||||
−0.116841 | + | 0.993151i | \(0.537277\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | −16.0000 | −0.931556 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −8.00000 | −0.462652 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −32.0000 | −1.84445 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | −8.00000 | −0.458079 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −8.00000 | −0.456584 | −0.228292 | − | 0.973593i | \(-0.573314\pi\) | ||||
−0.228292 | + | 0.973593i | \(0.573314\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −24.0000 | −1.36092 | −0.680458 | − | 0.732787i | \(-0.738219\pi\) | ||||
−0.680458 | + | 0.732787i | \(0.738219\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 26.0000 | 1.46961 | 0.734803 | − | 0.678280i | \(-0.237274\pi\) | ||||
0.734803 | + | 0.678280i | \(0.237274\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −12.0000 | −0.673987 | −0.336994 | − | 0.941507i | \(-0.609410\pi\) | ||||
−0.336994 | + | 0.941507i | \(0.609410\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −32.0000 | −1.79166 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | −11.0000 | −0.610170 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −16.0000 | −0.882109 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −8.00000 | −0.439720 | −0.219860 | − | 0.975531i | \(-0.570560\pi\) | ||||
−0.219860 | + | 0.975531i | \(0.570560\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 32.0000 | 1.74835 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 14.0000 | 0.762629 | 0.381314 | − | 0.924445i | \(-0.375472\pi\) | ||||
0.381314 | + | 0.924445i | \(0.375472\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −16.0000 | −0.866449 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −8.00000 | −0.431959 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −2.00000 | −0.107058 | −0.0535288 | − | 0.998566i | \(-0.517047\pi\) | ||||
−0.0535288 | + | 0.998566i | \(0.517047\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −4.00000 | −0.212899 | −0.106449 | − | 0.994318i | \(-0.533948\pi\) | ||||
−0.106449 | + | 0.994318i | \(0.533948\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 16.0000 | 0.849192 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −12.0000 | −0.633336 | −0.316668 | − | 0.948536i | \(-0.602564\pi\) | ||||
−0.316668 | + | 0.948536i | \(0.602564\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −19.0000 | −1.00000 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | −40.0000 | −2.09370 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 4.00000 | 0.208798 | 0.104399 | − | 0.994535i | \(-0.466708\pi\) | ||||
0.104399 | + | 0.994535i | \(0.466708\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −10.0000 | −0.517780 | −0.258890 | − | 0.965907i | \(-0.583357\pi\) | ||||
−0.258890 | + | 0.965907i | \(0.583357\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 8.00000 | 0.412021 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 32.0000 | 1.64373 | 0.821865 | − | 0.569683i | \(-0.192934\pi\) | ||||
0.821865 | + | 0.569683i | \(0.192934\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −36.0000 | −1.83951 | −0.919757 | − | 0.392488i | \(-0.871614\pi\) | ||||
−0.919757 | + | 0.392488i | \(0.871614\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | −64.0000 | −3.26174 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 16.0000 | 0.805047 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 14.0000 | 0.702640 | 0.351320 | − | 0.936255i | \(-0.385733\pi\) | ||||
0.351320 | + | 0.936255i | \(0.385733\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −12.0000 | −0.599251 | −0.299626 | − | 0.954057i | \(-0.596862\pi\) | ||||
−0.299626 | + | 0.954057i | \(0.596862\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 4.00000 | 0.199254 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 24.0000 | 1.18964 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −26.0000 | −1.28562 | −0.642809 | − | 0.766027i | \(-0.722231\pi\) | ||||
−0.642809 | + | 0.766027i | \(0.722231\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 16.0000 | 0.787309 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | −48.0000 | −2.35623 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −24.0000 | −1.17248 | −0.586238 | − | 0.810139i | \(-0.699392\pi\) | ||||
−0.586238 | + | 0.810139i | \(0.699392\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −38.0000 | −1.85201 | −0.926003 | − | 0.377515i | \(-0.876779\pi\) | ||||
−0.926003 | + | 0.377515i | \(0.876779\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 8.00000 | 0.387147 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −36.0000 | −1.73406 | −0.867029 | − | 0.498257i | \(-0.833974\pi\) | ||||
−0.867029 | + | 0.498257i | \(0.833974\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −14.0000 | −0.672797 | −0.336399 | − | 0.941720i | \(-0.609209\pi\) | ||||
−0.336399 | + | 0.941720i | \(0.609209\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −20.0000 | −0.954548 | −0.477274 | − | 0.878755i | \(-0.658375\pi\) | ||||
−0.477274 | + | 0.878755i | \(0.658375\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 24.0000 | 1.14027 | 0.570137 | − | 0.821549i | \(-0.306890\pi\) | ||||
0.570137 | + | 0.821549i | \(0.306890\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −48.0000 | −2.27542 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 20.0000 | 0.943858 | 0.471929 | − | 0.881636i | \(-0.343558\pi\) | ||||
0.471929 | + | 0.881636i | \(0.343558\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 48.0000 | 2.26023 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 16.0000 | 0.750092 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 22.0000 | 1.02912 | 0.514558 | − | 0.857455i | \(-0.327956\pi\) | ||||
0.514558 | + | 0.857455i | \(0.327956\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −12.0000 | −0.558896 | −0.279448 | − | 0.960161i | \(-0.590151\pi\) | ||||
−0.279448 | + | 0.960161i | \(0.590151\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −28.0000 | −1.30127 | −0.650635 | − | 0.759390i | \(-0.725497\pi\) | ||||
−0.650635 | + | 0.759390i | \(0.725497\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 8.00000 | 0.370196 | 0.185098 | − | 0.982720i | \(-0.440740\pi\) | ||||
0.185098 | + | 0.982720i | \(0.440740\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −32.0000 | −1.47762 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 32.0000 | 1.47136 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 12.0000 | 0.548294 | 0.274147 | − | 0.961688i | \(-0.411605\pi\) | ||||
0.274147 | + | 0.961688i | \(0.411605\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −6.00000 | −0.273576 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 56.0000 | 2.54283 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −20.0000 | −0.906287 | −0.453143 | − | 0.891438i | \(-0.649697\pi\) | ||||
−0.453143 | + | 0.891438i | \(0.649697\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −8.00000 | −0.361035 | −0.180517 | − | 0.983572i | \(-0.557777\pi\) | ||||
−0.180517 | + | 0.983572i | \(0.557777\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | −16.0000 | −0.717698 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −40.0000 | −1.79065 | −0.895323 | − | 0.445418i | \(-0.853055\pi\) | ||||
−0.895323 | + | 0.445418i | \(0.853055\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −8.00000 | −0.356702 | −0.178351 | − | 0.983967i | \(-0.557076\pi\) | ||||
−0.178351 | + | 0.983967i | \(0.557076\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 32.0000 | 1.42398 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 20.0000 | 0.886484 | 0.443242 | − | 0.896402i | \(-0.353828\pi\) | ||||
0.443242 | + | 0.896402i | \(0.353828\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 40.0000 | 1.76950 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | −16.0000 | −0.705044 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 16.0000 | 0.703679 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 24.0000 | 1.05146 | 0.525730 | − | 0.850652i | \(-0.323792\pi\) | ||||
0.525730 | + | 0.850652i | \(0.323792\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 24.0000 | 1.04945 | 0.524723 | − | 0.851273i | \(-0.324169\pi\) | ||||
0.524723 | + | 0.851273i | \(0.324169\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 41.0000 | 1.78261 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −12.0000 | −0.519778 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 32.0000 | 1.38348 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 36.0000 | 1.55063 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 2.00000 | 0.0859867 | 0.0429934 | − | 0.999075i | \(-0.486311\pi\) | ||||
0.0429934 | + | 0.999075i | \(0.486311\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | −56.0000 | −2.39878 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 8.00000 | 0.342055 | 0.171028 | − | 0.985266i | \(-0.445291\pi\) | ||||
0.171028 | + | 0.985266i | \(0.445291\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | −16.0000 | −0.680389 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | −36.0000 | −1.52537 | −0.762684 | − | 0.646771i | \(-0.776119\pi\) | ||||
−0.762684 | + | 0.646771i | \(0.776119\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −8.00000 | −0.338364 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 32.0000 | 1.34864 | 0.674320 | − | 0.738440i | \(-0.264437\pi\) | ||||
0.674320 | + | 0.738440i | \(0.264437\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | −32.0000 | −1.34625 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 8.00000 | 0.335377 | 0.167689 | − | 0.985840i | \(-0.446370\pi\) | ||||
0.167689 | + | 0.985840i | \(0.446370\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 88.0000 | 3.66985 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 18.0000 | 0.749350 | 0.374675 | − | 0.927156i | \(-0.377754\pi\) | ||||
0.374675 | + | 0.927156i | \(0.377754\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 48.0000 | 1.99138 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −28.0000 | −1.15568 | −0.577842 | − | 0.816149i | \(-0.696105\pi\) | ||||
−0.577842 | + | 0.816149i | \(0.696105\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 4.00000 | 0.164260 | 0.0821302 | − | 0.996622i | \(-0.473828\pi\) | ||||
0.0821302 | + | 0.996622i | \(0.473828\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −8.00000 | −0.326871 | −0.163436 | − | 0.986554i | \(-0.552258\pi\) | ||||
−0.163436 | + | 0.986554i | \(0.552258\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 10.0000 | 0.407909 | 0.203954 | − | 0.978980i | \(-0.434621\pi\) | ||||
0.203954 | + | 0.978980i | \(0.434621\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 20.0000 | 0.813116 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 12.0000 | 0.487065 | 0.243532 | − | 0.969893i | \(-0.421694\pi\) | ||||
0.243532 | + | 0.969893i | \(0.421694\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −4.00000 | −0.161823 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 38.0000 | 1.53481 | 0.767403 | − | 0.641165i | \(-0.221549\pi\) | ||||
0.767403 | + | 0.641165i | \(0.221549\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −4.00000 | −0.161034 | −0.0805170 | − | 0.996753i | \(-0.525657\pi\) | ||||
−0.0805170 | + | 0.996753i | \(0.525657\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 8.00000 | 0.321547 | 0.160774 | − | 0.986991i | \(-0.448601\pi\) | ||||
0.160774 | + | 0.986991i | \(0.448601\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 48.0000 | 1.92308 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 41.0000 | 1.64000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −4.00000 | −0.159237 | −0.0796187 | − | 0.996825i | \(-0.525370\pi\) | ||||
−0.0796187 | + | 0.996825i | \(0.525370\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | −16.0000 | −0.634941 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −9.00000 | −0.356593 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −16.0000 | −0.631962 | −0.315981 | − | 0.948766i | \(-0.602334\pi\) | ||||
−0.315981 | + | 0.948766i | \(0.602334\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −32.0000 | −1.26196 | −0.630978 | − | 0.775800i | \(-0.717346\pi\) | ||||
−0.630978 | + | 0.775800i | \(0.717346\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 16.0000 | 0.629025 | 0.314512 | − | 0.949253i | \(-0.398159\pi\) | ||||
0.314512 | + | 0.949253i | \(0.398159\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −16.0000 | −0.628055 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 24.0000 | 0.939193 | 0.469596 | − | 0.882881i | \(-0.344399\pi\) | ||||
0.469596 | + | 0.882881i | \(0.344399\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 32.0000 | 1.25034 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −48.0000 | −1.86981 | −0.934907 | − | 0.354892i | \(-0.884518\pi\) | ||||
−0.934907 | + | 0.354892i | \(0.884518\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −10.0000 | −0.388955 | −0.194477 | − | 0.980907i | \(-0.562301\pi\) | ||||
−0.194477 | + | 0.980907i | \(0.562301\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | −64.0000 | −2.47809 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −8.00000 | −0.308837 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −14.0000 | −0.539660 | −0.269830 | − | 0.962908i | \(-0.586968\pi\) | ||||
−0.269830 | + | 0.962908i | \(0.586968\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −56.0000 | −2.14908 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −44.0000 | −1.68361 | −0.841807 | − | 0.539779i | \(-0.818508\pi\) | ||||
−0.841807 | + | 0.539779i | \(0.818508\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 48.0000 | 1.83399 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −16.0000 | −0.608669 | −0.304334 | − | 0.952565i | \(-0.598434\pi\) | ||||
−0.304334 | + | 0.952565i | \(0.598434\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | −64.0000 | −2.42766 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 48.0000 | 1.81293 | 0.906467 | − | 0.422276i | \(-0.138769\pi\) | ||||
0.906467 | + | 0.422276i | \(0.138769\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 0 | 0 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | −32.0000 | −1.20348 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 26.0000 | 0.976450 | 0.488225 | − | 0.872718i | \(-0.337644\pi\) | ||||
0.488225 | + | 0.872718i | \(0.337644\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | −32.0000 | −1.19841 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | −16.0000 | −0.598366 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 8.00000 | 0.298350 | 0.149175 | − | 0.988811i | \(-0.452338\pi\) | ||||
0.149175 | + | 0.988811i | \(0.452338\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 16.0000 | 0.595871 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | −88.0000 | −3.26824 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −28.0000 | −1.03846 | −0.519231 | − | 0.854634i | \(-0.673782\pi\) | ||||
−0.519231 | + | 0.854634i | \(0.673782\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 2.00000 | 0.0738717 | 0.0369358 | − | 0.999318i | \(-0.488240\pi\) | ||||
0.0369358 | + | 0.999318i | \(0.488240\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 32.0000 | 1.17874 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 24.0000 | 0.882854 | 0.441427 | − | 0.897297i | \(-0.354472\pi\) | ||||
0.441427 | + | 0.897297i | \(0.354472\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −44.0000 | −1.61420 | −0.807102 | − | 0.590412i | \(-0.798965\pi\) | ||||
−0.807102 | + | 0.590412i | \(0.798965\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 48.0000 | 1.75858 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −32.0000 | −1.16925 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 36.0000 | 1.31366 | 0.656829 | − | 0.754039i | \(-0.271897\pi\) | ||||
0.656829 | + | 0.754039i | \(0.271897\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 48.0000 | 1.74690 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 42.0000 | 1.52652 | 0.763258 | − | 0.646094i | \(-0.223599\pi\) | ||||
0.763258 | + | 0.646094i | \(0.223599\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −36.0000 | −1.30500 | −0.652499 | − | 0.757789i | \(-0.726280\pi\) | ||||
−0.652499 | + | 0.757789i | \(0.726280\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 56.0000 | 2.02734 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 4.00000 | 0.144432 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −30.0000 | −1.08183 | −0.540914 | − | 0.841078i | \(-0.681921\pi\) | ||||
−0.540914 | + | 0.841078i | \(0.681921\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −20.0000 | −0.719350 | −0.359675 | − | 0.933078i | \(-0.617112\pi\) | ||||
−0.359675 | + | 0.933078i | \(0.617112\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −44.0000 | −1.58053 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 16.0000 | 0.572525 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 56.0000 | 1.99873 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 16.0000 | 0.570338 | 0.285169 | − | 0.958477i | \(-0.407950\pi\) | ||||
0.285169 | + | 0.958477i | \(0.407950\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 32.0000 | 1.13779 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 2.00000 | 0.0710221 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −40.0000 | −1.41157 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | −128.000 | −4.51141 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −24.0000 | −0.843795 | −0.421898 | − | 0.906644i | \(-0.638636\pi\) | ||||
−0.421898 | + | 0.906644i | \(0.638636\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 16.0000 | 0.561836 | 0.280918 | − | 0.959732i | \(-0.409361\pi\) | ||||
0.280918 | + | 0.959732i | \(0.409361\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 64.0000 | 2.24182 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 0 | 0 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −20.0000 | −0.698005 | −0.349002 | − | 0.937122i | \(-0.613479\pi\) | ||||
−0.349002 | + | 0.937122i | \(0.613479\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 36.0000 | 1.25488 | 0.627441 | − | 0.778664i | \(-0.284103\pi\) | ||||
0.627441 | + | 0.778664i | \(0.284103\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −12.0000 | −0.417281 | −0.208640 | − | 0.977992i | \(-0.566904\pi\) | ||||
−0.208640 | + | 0.977992i | \(0.566904\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 34.0000 | 1.18087 | 0.590434 | − | 0.807086i | \(-0.298956\pi\) | ||||
0.590434 | + | 0.807086i | \(0.298956\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | −48.0000 | −1.66111 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 44.0000 | 1.51905 | 0.759524 | − | 0.650479i | \(-0.225432\pi\) | ||||
0.759524 | + | 0.650479i | \(0.225432\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 35.0000 | 1.20690 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 4.00000 | 0.137604 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | −20.0000 | −0.687208 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 48.0000 | 1.64542 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 22.0000 | 0.753266 | 0.376633 | − | 0.926363i | \(-0.377082\pi\) | ||||
0.376633 | + | 0.926363i | \(0.377082\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 56.0000 | 1.91292 | 0.956462 | − | 0.291858i | \(-0.0942733\pi\) | ||||
0.956462 | + | 0.291858i | \(0.0942733\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 40.0000 | 1.36478 | 0.682391 | − | 0.730987i | \(-0.260940\pi\) | ||||
0.682391 | + | 0.730987i | \(0.260940\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 28.0000 | 0.953131 | 0.476566 | − | 0.879139i | \(-0.341881\pi\) | ||||
0.476566 | + | 0.879139i | \(0.341881\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | −32.0000 | −1.08803 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 16.0000 | 0.542763 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −8.00000 | −0.271070 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | −96.0000 | −3.24539 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −18.0000 | −0.607817 | −0.303908 | − | 0.952701i | \(-0.598292\pi\) | ||||
−0.303908 | + | 0.952701i | \(0.598292\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −24.0000 | −0.808581 | −0.404290 | − | 0.914631i | \(-0.632481\pi\) | ||||
−0.404290 | + | 0.914631i | \(0.632481\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 8.00000 | 0.269221 | 0.134611 | − | 0.990899i | \(-0.457022\pi\) | ||||
0.134611 | + | 0.990899i | \(0.457022\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −32.0000 | −1.07445 | −0.537227 | − | 0.843437i | \(-0.680528\pi\) | ||||
−0.537227 | + | 0.843437i | \(0.680528\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 16.0000 | 0.536623 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 32.0000 | 1.06726 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 0 | 0 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | −24.0000 | −0.797787 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 24.0000 | 0.796907 | 0.398453 | − | 0.917189i | \(-0.369547\pi\) | ||||
0.398453 | + | 0.917189i | \(0.369547\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −48.0000 | −1.59031 | −0.795155 | − | 0.606406i | \(-0.792611\pi\) | ||||
−0.795155 | + | 0.606406i | \(0.792611\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | −48.0000 | −1.58857 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | −32.0000 | −1.05673 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −12.0000 | −0.395843 | −0.197922 | − | 0.980218i | \(-0.563419\pi\) | ||||
−0.197922 | + | 0.980218i | \(0.563419\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −4.00000 | −0.131662 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 66.0000 | 2.17007 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 12.0000 | 0.393707 | 0.196854 | − | 0.980433i | \(-0.436928\pi\) | ||||
0.196854 | + | 0.980433i | \(0.436928\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 0 | 0 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 42.0000 | 1.37208 | 0.686040 | − | 0.727564i | \(-0.259347\pi\) | ||||
0.686040 | + | 0.727564i | \(0.259347\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −4.00000 | −0.130396 | −0.0651981 | − | 0.997872i | \(-0.520768\pi\) | ||||
−0.0651981 | + | 0.997872i | \(0.520768\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 96.0000 | 3.12619 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 12.0000 | 0.389948 | 0.194974 | − | 0.980808i | \(-0.437538\pi\) | ||||
0.194974 | + | 0.980808i | \(0.437538\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 10.0000 | 0.324614 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −56.0000 | −1.81402 | −0.907009 | − | 0.421111i | \(-0.861640\pi\) | ||||
−0.907009 | + | 0.421111i | \(0.861640\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 64.0000 | 2.07099 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −48.0000 | −1.55000 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −15.0000 | −0.483871 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 8.00000 | 0.257529 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 4.00000 | 0.128631 | 0.0643157 | − | 0.997930i | \(-0.479514\pi\) | ||||
0.0643157 | + | 0.997930i | \(0.479514\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 64.0000 | 2.05175 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −12.0000 | −0.383914 | −0.191957 | − | 0.981403i | \(-0.561483\pi\) | ||||
−0.191957 | + | 0.981403i | \(0.561483\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −48.0000 | −1.53409 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −4.00000 | −0.127580 | −0.0637901 | − | 0.997963i | \(-0.520319\pi\) | ||||
−0.0637901 | + | 0.997963i | \(0.520319\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −48.0000 | −1.52941 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 64.0000 | 2.03508 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −12.0000 | −0.381193 | −0.190596 | − | 0.981669i | \(-0.561042\pi\) | ||||
−0.190596 | + | 0.981669i | \(0.561042\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | −80.0000 | −2.53617 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | −10.0000 | −0.316703 | −0.158352 | − | 0.987383i | \(-0.550618\pi\) | ||||
−0.158352 | + | 0.987383i | \(0.550618\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1872.2.a.r.1.1 | 1 | ||
3.2 | odd | 2 | 1872.2.a.a.1.1 | 1 | |||
4.3 | odd | 2 | 468.2.a.e.1.1 | yes | 1 | ||
8.3 | odd | 2 | 7488.2.a.f.1.1 | 1 | |||
8.5 | even | 2 | 7488.2.a.a.1.1 | 1 | |||
12.11 | even | 2 | 468.2.a.a.1.1 | ✓ | 1 | ||
24.5 | odd | 2 | 7488.2.a.ca.1.1 | 1 | |||
24.11 | even | 2 | 7488.2.a.cd.1.1 | 1 | |||
36.7 | odd | 6 | 4212.2.i.a.1405.1 | 2 | |||
36.11 | even | 6 | 4212.2.i.k.1405.1 | 2 | |||
36.23 | even | 6 | 4212.2.i.k.2809.1 | 2 | |||
36.31 | odd | 6 | 4212.2.i.a.2809.1 | 2 | |||
52.31 | even | 4 | 6084.2.b.i.4393.1 | 2 | |||
52.47 | even | 4 | 6084.2.b.i.4393.2 | 2 | |||
52.51 | odd | 2 | 6084.2.a.a.1.1 | 1 | |||
156.47 | odd | 4 | 6084.2.b.e.4393.1 | 2 | |||
156.83 | odd | 4 | 6084.2.b.e.4393.2 | 2 | |||
156.155 | even | 2 | 6084.2.a.p.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
468.2.a.a.1.1 | ✓ | 1 | 12.11 | even | 2 | ||
468.2.a.e.1.1 | yes | 1 | 4.3 | odd | 2 | ||
1872.2.a.a.1.1 | 1 | 3.2 | odd | 2 | |||
1872.2.a.r.1.1 | 1 | 1.1 | even | 1 | trivial | ||
4212.2.i.a.1405.1 | 2 | 36.7 | odd | 6 | |||
4212.2.i.a.2809.1 | 2 | 36.31 | odd | 6 | |||
4212.2.i.k.1405.1 | 2 | 36.11 | even | 6 | |||
4212.2.i.k.2809.1 | 2 | 36.23 | even | 6 | |||
6084.2.a.a.1.1 | 1 | 52.51 | odd | 2 | |||
6084.2.a.p.1.1 | 1 | 156.155 | even | 2 | |||
6084.2.b.e.4393.1 | 2 | 156.47 | odd | 4 | |||
6084.2.b.e.4393.2 | 2 | 156.83 | odd | 4 | |||
6084.2.b.i.4393.1 | 2 | 52.31 | even | 4 | |||
6084.2.b.i.4393.2 | 2 | 52.47 | even | 4 | |||
7488.2.a.a.1.1 | 1 | 8.5 | even | 2 | |||
7488.2.a.f.1.1 | 1 | 8.3 | odd | 2 | |||
7488.2.a.ca.1.1 | 1 | 24.5 | odd | 2 | |||
7488.2.a.cd.1.1 | 1 | 24.11 | even | 2 |