Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1872,2,Mod(1,1872)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1872, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1872.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1872.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(14.9479952584\) |
Analytic rank: | \(1\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 312) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 1872.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 2.00000 | 0.894427 | 0.447214 | − | 0.894427i | \(-0.352416\pi\) | ||||
0.447214 | + | 0.894427i | \(0.352416\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −4.00000 | −1.51186 | −0.755929 | − | 0.654654i | \(-0.772814\pi\) | ||||
−0.755929 | + | 0.654654i | \(0.772814\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 1.00000 | 0.277350 | ||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −2.00000 | −0.485071 | −0.242536 | − | 0.970143i | \(-0.577979\pi\) | ||||
−0.242536 | + | 0.970143i | \(0.577979\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −8.00000 | −1.83533 | −0.917663 | − | 0.397360i | \(-0.869927\pi\) | ||||
−0.917663 | + | 0.397360i | \(0.869927\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 8.00000 | 1.66812 | 0.834058 | − | 0.551677i | \(-0.186012\pi\) | ||||
0.834058 | + | 0.551677i | \(0.186012\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −1.00000 | −0.200000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 2.00000 | 0.371391 | 0.185695 | − | 0.982607i | \(-0.440546\pi\) | ||||
0.185695 | + | 0.982607i | \(0.440546\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −4.00000 | −0.718421 | −0.359211 | − | 0.933257i | \(-0.616954\pi\) | ||||
−0.359211 | + | 0.933257i | \(0.616954\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | −8.00000 | −1.35225 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −10.0000 | −1.64399 | −0.821995 | − | 0.569495i | \(-0.807139\pi\) | ||||
−0.821995 | + | 0.569495i | \(0.807139\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −2.00000 | −0.312348 | −0.156174 | − | 0.987730i | \(-0.549916\pi\) | ||||
−0.156174 | + | 0.987730i | \(0.549916\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 4.00000 | 0.609994 | 0.304997 | − | 0.952353i | \(-0.401344\pi\) | ||||
0.304997 | + | 0.952353i | \(0.401344\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −12.0000 | −1.75038 | −0.875190 | − | 0.483779i | \(-0.839264\pi\) | ||||
−0.875190 | + | 0.483779i | \(0.839264\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 9.00000 | 1.28571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −6.00000 | −0.824163 | −0.412082 | − | 0.911147i | \(-0.635198\pi\) | ||||
−0.412082 | + | 0.911147i | \(0.635198\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −2.00000 | −0.256074 | −0.128037 | − | 0.991769i | \(-0.540868\pi\) | ||||
−0.128037 | + | 0.991769i | \(0.540868\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 2.00000 | 0.248069 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −8.00000 | −0.977356 | −0.488678 | − | 0.872464i | \(-0.662521\pi\) | ||||
−0.488678 | + | 0.872464i | \(0.662521\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −12.0000 | −1.42414 | −0.712069 | − | 0.702109i | \(-0.752242\pi\) | ||||
−0.712069 | + | 0.702109i | \(0.752242\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 10.0000 | 1.17041 | 0.585206 | − | 0.810885i | \(-0.301014\pi\) | ||||
0.585206 | + | 0.810885i | \(0.301014\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 8.00000 | 0.900070 | 0.450035 | − | 0.893011i | \(-0.351411\pi\) | ||||
0.450035 | + | 0.893011i | \(0.351411\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | −4.00000 | −0.433861 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 14.0000 | 1.48400 | 0.741999 | − | 0.670402i | \(-0.233878\pi\) | ||||
0.741999 | + | 0.670402i | \(0.233878\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −4.00000 | −0.419314 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | −16.0000 | −1.64157 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 2.00000 | 0.203069 | 0.101535 | − | 0.994832i | \(-0.467625\pi\) | ||||
0.101535 | + | 0.994832i | \(0.467625\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −6.00000 | −0.597022 | −0.298511 | − | 0.954406i | \(-0.596490\pi\) | ||||
−0.298511 | + | 0.954406i | \(0.596490\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −8.00000 | −0.788263 | −0.394132 | − | 0.919054i | \(-0.628955\pi\) | ||||
−0.394132 | + | 0.919054i | \(0.628955\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 4.00000 | 0.386695 | 0.193347 | − | 0.981130i | \(-0.438066\pi\) | ||||
0.193347 | + | 0.981130i | \(0.438066\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −18.0000 | −1.72409 | −0.862044 | − | 0.506834i | \(-0.830816\pi\) | ||||
−0.862044 | + | 0.506834i | \(0.830816\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −18.0000 | −1.69330 | −0.846649 | − | 0.532152i | \(-0.821383\pi\) | ||||
−0.846649 | + | 0.532152i | \(0.821383\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 16.0000 | 1.49201 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 8.00000 | 0.733359 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −11.0000 | −1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | −12.0000 | −1.07331 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 12.0000 | 1.04844 | 0.524222 | − | 0.851581i | \(-0.324356\pi\) | ||||
0.524222 | + | 0.851581i | \(0.324356\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 32.0000 | 2.77475 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −2.00000 | −0.170872 | −0.0854358 | − | 0.996344i | \(-0.527228\pi\) | ||||
−0.0854358 | + | 0.996344i | \(0.527228\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −4.00000 | −0.339276 | −0.169638 | − | 0.985506i | \(-0.554260\pi\) | ||||
−0.169638 | + | 0.985506i | \(0.554260\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 4.00000 | 0.332182 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 18.0000 | 1.47462 | 0.737309 | − | 0.675556i | \(-0.236096\pi\) | ||||
0.737309 | + | 0.675556i | \(0.236096\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 12.0000 | 0.976546 | 0.488273 | − | 0.872691i | \(-0.337627\pi\) | ||||
0.488273 | + | 0.872691i | \(0.337627\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | −8.00000 | −0.642575 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −2.00000 | −0.159617 | −0.0798087 | − | 0.996810i | \(-0.525431\pi\) | ||||
−0.0798087 | + | 0.996810i | \(0.525431\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −32.0000 | −2.52195 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 16.0000 | 1.25322 | 0.626608 | − | 0.779334i | \(-0.284443\pi\) | ||||
0.626608 | + | 0.779334i | \(0.284443\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 12.0000 | 0.928588 | 0.464294 | − | 0.885681i | \(-0.346308\pi\) | ||||
0.464294 | + | 0.885681i | \(0.346308\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 1.00000 | 0.0769231 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 18.0000 | 1.36851 | 0.684257 | − | 0.729241i | \(-0.260127\pi\) | ||||
0.684257 | + | 0.729241i | \(0.260127\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 4.00000 | 0.302372 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 20.0000 | 1.49487 | 0.747435 | − | 0.664335i | \(-0.231285\pi\) | ||||
0.747435 | + | 0.664335i | \(0.231285\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −10.0000 | −0.743294 | −0.371647 | − | 0.928374i | \(-0.621207\pi\) | ||||
−0.371647 | + | 0.928374i | \(0.621207\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | −20.0000 | −1.47043 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −24.0000 | −1.73658 | −0.868290 | − | 0.496058i | \(-0.834780\pi\) | ||||
−0.868290 | + | 0.496058i | \(0.834780\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −14.0000 | −1.00774 | −0.503871 | − | 0.863779i | \(-0.668091\pi\) | ||||
−0.503871 | + | 0.863779i | \(0.668091\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −14.0000 | −0.997459 | −0.498729 | − | 0.866758i | \(-0.666200\pi\) | ||||
−0.498729 | + | 0.866758i | \(0.666200\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −8.00000 | −0.567105 | −0.283552 | − | 0.958957i | \(-0.591513\pi\) | ||||
−0.283552 | + | 0.958957i | \(0.591513\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | −8.00000 | −0.561490 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | −4.00000 | −0.279372 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 4.00000 | 0.275371 | 0.137686 | − | 0.990476i | \(-0.456034\pi\) | ||||
0.137686 | + | 0.990476i | \(0.456034\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 8.00000 | 0.545595 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 16.0000 | 1.08615 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −2.00000 | −0.134535 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −20.0000 | −1.33930 | −0.669650 | − | 0.742677i | \(-0.733556\pi\) | ||||
−0.669650 | + | 0.742677i | \(0.733556\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −10.0000 | −0.660819 | −0.330409 | − | 0.943838i | \(-0.607187\pi\) | ||||
−0.330409 | + | 0.943838i | \(0.607187\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −26.0000 | −1.70332 | −0.851658 | − | 0.524097i | \(-0.824403\pi\) | ||||
−0.851658 | + | 0.524097i | \(0.824403\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | −24.0000 | −1.56559 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −20.0000 | −1.29369 | −0.646846 | − | 0.762620i | \(-0.723912\pi\) | ||||
−0.646846 | + | 0.762620i | \(0.723912\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −14.0000 | −0.901819 | −0.450910 | − | 0.892570i | \(-0.648900\pi\) | ||||
−0.450910 | + | 0.892570i | \(0.648900\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 18.0000 | 1.14998 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −8.00000 | −0.509028 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 28.0000 | 1.76734 | 0.883672 | − | 0.468106i | \(-0.155064\pi\) | ||||
0.883672 | + | 0.468106i | \(0.155064\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 14.0000 | 0.873296 | 0.436648 | − | 0.899632i | \(-0.356166\pi\) | ||||
0.436648 | + | 0.899632i | \(0.356166\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 40.0000 | 2.48548 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −16.0000 | −0.986602 | −0.493301 | − | 0.869859i | \(-0.664210\pi\) | ||||
−0.493301 | + | 0.869859i | \(0.664210\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | −12.0000 | −0.737154 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 18.0000 | 1.09748 | 0.548740 | − | 0.835993i | \(-0.315108\pi\) | ||||
0.548740 | + | 0.835993i | \(0.315108\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 20.0000 | 1.21491 | 0.607457 | − | 0.794353i | \(-0.292190\pi\) | ||||
0.607457 | + | 0.794353i | \(0.292190\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −10.0000 | −0.600842 | −0.300421 | − | 0.953807i | \(-0.597127\pi\) | ||||
−0.300421 | + | 0.953807i | \(0.597127\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 30.0000 | 1.78965 | 0.894825 | − | 0.446417i | \(-0.147300\pi\) | ||||
0.894825 | + | 0.446417i | \(0.147300\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 4.00000 | 0.237775 | 0.118888 | − | 0.992908i | \(-0.462067\pi\) | ||||
0.118888 | + | 0.992908i | \(0.462067\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 8.00000 | 0.472225 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −13.0000 | −0.764706 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 2.00000 | 0.116841 | 0.0584206 | − | 0.998292i | \(-0.481394\pi\) | ||||
0.0584206 | + | 0.998292i | \(0.481394\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 8.00000 | 0.462652 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −16.0000 | −0.922225 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | −4.00000 | −0.229039 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 32.0000 | 1.82634 | 0.913168 | − | 0.407583i | \(-0.133628\pi\) | ||||
0.913168 | + | 0.407583i | \(0.133628\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 24.0000 | 1.36092 | 0.680458 | − | 0.732787i | \(-0.261781\pi\) | ||||
0.680458 | + | 0.732787i | \(0.261781\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 10.0000 | 0.565233 | 0.282617 | − | 0.959233i | \(-0.408798\pi\) | ||||
0.282617 | + | 0.959233i | \(0.408798\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 10.0000 | 0.561656 | 0.280828 | − | 0.959758i | \(-0.409391\pi\) | ||||
0.280828 | + | 0.959758i | \(0.409391\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 16.0000 | 0.890264 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | −1.00000 | −0.0554700 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 48.0000 | 2.64633 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −16.0000 | −0.879440 | −0.439720 | − | 0.898135i | \(-0.644922\pi\) | ||||
−0.439720 | + | 0.898135i | \(0.644922\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | −16.0000 | −0.874173 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −30.0000 | −1.63420 | −0.817102 | − | 0.576493i | \(-0.804421\pi\) | ||||
−0.817102 | + | 0.576493i | \(0.804421\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −8.00000 | −0.431959 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 20.0000 | 1.07366 | 0.536828 | − | 0.843692i | \(-0.319622\pi\) | ||||
0.536828 | + | 0.843692i | \(0.319622\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 30.0000 | 1.60586 | 0.802932 | − | 0.596071i | \(-0.203272\pi\) | ||||
0.802932 | + | 0.596071i | \(0.203272\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 6.00000 | 0.319348 | 0.159674 | − | 0.987170i | \(-0.448956\pi\) | ||||
0.159674 | + | 0.987170i | \(0.448956\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | −24.0000 | −1.27379 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −20.0000 | −1.05556 | −0.527780 | − | 0.849381i | \(-0.676975\pi\) | ||||
−0.527780 | + | 0.849381i | \(0.676975\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 45.0000 | 2.36842 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 20.0000 | 1.04685 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −8.00000 | −0.417597 | −0.208798 | − | 0.977959i | \(-0.566955\pi\) | ||||
−0.208798 | + | 0.977959i | \(0.566955\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 24.0000 | 1.24602 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 22.0000 | 1.13912 | 0.569558 | − | 0.821951i | \(-0.307114\pi\) | ||||
0.569558 | + | 0.821951i | \(0.307114\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 2.00000 | 0.103005 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 16.0000 | 0.821865 | 0.410932 | − | 0.911666i | \(-0.365203\pi\) | ||||
0.410932 | + | 0.911666i | \(0.365203\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 12.0000 | 0.613171 | 0.306586 | − | 0.951843i | \(-0.400813\pi\) | ||||
0.306586 | + | 0.951843i | \(0.400813\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −22.0000 | −1.11544 | −0.557722 | − | 0.830028i | \(-0.688325\pi\) | ||||
−0.557722 | + | 0.830028i | \(0.688325\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −16.0000 | −0.809155 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 16.0000 | 0.805047 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −18.0000 | −0.903394 | −0.451697 | − | 0.892171i | \(-0.649181\pi\) | ||||
−0.451697 | + | 0.892171i | \(0.649181\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 22.0000 | 1.09863 | 0.549314 | − | 0.835616i | \(-0.314889\pi\) | ||||
0.549314 | + | 0.835616i | \(0.314889\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | −4.00000 | −0.199254 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 10.0000 | 0.494468 | 0.247234 | − | 0.968956i | \(-0.420478\pi\) | ||||
0.247234 | + | 0.968956i | \(0.420478\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −4.00000 | −0.195413 | −0.0977064 | − | 0.995215i | \(-0.531151\pi\) | ||||
−0.0977064 | + | 0.995215i | \(0.531151\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 22.0000 | 1.07221 | 0.536107 | − | 0.844150i | \(-0.319894\pi\) | ||||
0.536107 | + | 0.844150i | \(0.319894\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 2.00000 | 0.0970143 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 8.00000 | 0.387147 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 12.0000 | 0.578020 | 0.289010 | − | 0.957326i | \(-0.406674\pi\) | ||||
0.289010 | + | 0.957326i | \(0.406674\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 18.0000 | 0.865025 | 0.432512 | − | 0.901628i | \(-0.357627\pi\) | ||||
0.432512 | + | 0.901628i | \(0.357627\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | −64.0000 | −3.06154 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −8.00000 | −0.381819 | −0.190910 | − | 0.981608i | \(-0.561144\pi\) | ||||
−0.190910 | + | 0.981608i | \(0.561144\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 4.00000 | 0.190046 | 0.0950229 | − | 0.995475i | \(-0.469708\pi\) | ||||
0.0950229 | + | 0.995475i | \(0.469708\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 28.0000 | 1.32733 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 6.00000 | 0.283158 | 0.141579 | − | 0.989927i | \(-0.454782\pi\) | ||||
0.141579 | + | 0.989927i | \(0.454782\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | −8.00000 | −0.375046 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −6.00000 | −0.280668 | −0.140334 | − | 0.990104i | \(-0.544818\pi\) | ||||
−0.140334 | + | 0.990104i | \(0.544818\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 10.0000 | 0.465746 | 0.232873 | − | 0.972507i | \(-0.425187\pi\) | ||||
0.232873 | + | 0.972507i | \(0.425187\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 4.00000 | 0.185896 | 0.0929479 | − | 0.995671i | \(-0.470371\pi\) | ||||
0.0929479 | + | 0.995671i | \(0.470371\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −12.0000 | −0.555294 | −0.277647 | − | 0.960683i | \(-0.589555\pi\) | ||||
−0.277647 | + | 0.960683i | \(0.589555\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 32.0000 | 1.47762 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 8.00000 | 0.367065 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 4.00000 | 0.182765 | 0.0913823 | − | 0.995816i | \(-0.470871\pi\) | ||||
0.0913823 | + | 0.995816i | \(0.470871\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −10.0000 | −0.455961 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 4.00000 | 0.181631 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −28.0000 | −1.26880 | −0.634401 | − | 0.773004i | \(-0.718753\pi\) | ||||
−0.634401 | + | 0.773004i | \(0.718753\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 12.0000 | 0.541552 | 0.270776 | − | 0.962642i | \(-0.412720\pi\) | ||||
0.270776 | + | 0.962642i | \(0.412720\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −4.00000 | −0.180151 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 48.0000 | 2.15309 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 24.0000 | 1.07439 | 0.537194 | − | 0.843459i | \(-0.319484\pi\) | ||||
0.537194 | + | 0.843459i | \(0.319484\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 16.0000 | 0.713405 | 0.356702 | − | 0.934218i | \(-0.383901\pi\) | ||||
0.356702 | + | 0.934218i | \(0.383901\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | −12.0000 | −0.533993 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 10.0000 | 0.443242 | 0.221621 | − | 0.975133i | \(-0.428865\pi\) | ||||
0.221621 | + | 0.975133i | \(0.428865\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −40.0000 | −1.76950 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | −16.0000 | −0.705044 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 22.0000 | 0.963837 | 0.481919 | − | 0.876216i | \(-0.339940\pi\) | ||||
0.481919 | + | 0.876216i | \(0.339940\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −20.0000 | −0.874539 | −0.437269 | − | 0.899331i | \(-0.644054\pi\) | ||||
−0.437269 | + | 0.899331i | \(0.644054\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 8.00000 | 0.348485 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 41.0000 | 1.78261 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −2.00000 | −0.0866296 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 8.00000 | 0.345870 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 30.0000 | 1.28980 | 0.644900 | − | 0.764267i | \(-0.276899\pi\) | ||||
0.644900 | + | 0.764267i | \(0.276899\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | −36.0000 | −1.54207 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 20.0000 | 0.855138 | 0.427569 | − | 0.903983i | \(-0.359370\pi\) | ||||
0.427569 | + | 0.903983i | \(0.359370\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −16.0000 | −0.681623 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | −32.0000 | −1.36078 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | −38.0000 | −1.61011 | −0.805056 | − | 0.593199i | \(-0.797865\pi\) | ||||
−0.805056 | + | 0.593199i | \(0.797865\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 4.00000 | 0.169182 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −44.0000 | −1.85438 | −0.927189 | − | 0.374593i | \(-0.877783\pi\) | ||||
−0.927189 | + | 0.374593i | \(0.877783\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | −36.0000 | −1.51453 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 22.0000 | 0.922288 | 0.461144 | − | 0.887325i | \(-0.347439\pi\) | ||||
0.461144 | + | 0.887325i | \(0.347439\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 4.00000 | 0.167395 | 0.0836974 | − | 0.996491i | \(-0.473327\pi\) | ||||
0.0836974 | + | 0.996491i | \(0.473327\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | −8.00000 | −0.333623 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −30.0000 | −1.24892 | −0.624458 | − | 0.781058i | \(-0.714680\pi\) | ||||
−0.624458 | + | 0.781058i | \(0.714680\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 8.00000 | 0.330195 | 0.165098 | − | 0.986277i | \(-0.447206\pi\) | ||||
0.165098 | + | 0.986277i | \(0.447206\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 32.0000 | 1.31854 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −26.0000 | −1.06769 | −0.533846 | − | 0.845582i | \(-0.679254\pi\) | ||||
−0.533846 | + | 0.845582i | \(0.679254\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 16.0000 | 0.655936 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 10.0000 | 0.407909 | 0.203954 | − | 0.978980i | \(-0.434621\pi\) | ||||
0.203954 | + | 0.978980i | \(0.434621\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | −22.0000 | −0.894427 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −8.00000 | −0.324710 | −0.162355 | − | 0.986732i | \(-0.551909\pi\) | ||||
−0.162355 | + | 0.986732i | \(0.551909\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −12.0000 | −0.485468 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 22.0000 | 0.888572 | 0.444286 | − | 0.895885i | \(-0.353457\pi\) | ||||
0.444286 | + | 0.895885i | \(0.353457\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −18.0000 | −0.724653 | −0.362326 | − | 0.932051i | \(-0.618017\pi\) | ||||
−0.362326 | + | 0.932051i | \(0.618017\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −40.0000 | −1.60774 | −0.803868 | − | 0.594808i | \(-0.797228\pi\) | ||||
−0.803868 | + | 0.594808i | \(0.797228\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | −56.0000 | −2.24359 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −19.0000 | −0.760000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 20.0000 | 0.797452 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 12.0000 | 0.477712 | 0.238856 | − | 0.971055i | \(-0.423228\pi\) | ||||
0.238856 | + | 0.971055i | \(0.423228\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 9.00000 | 0.356593 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −18.0000 | −0.710957 | −0.355479 | − | 0.934684i | \(-0.615682\pi\) | ||||
−0.355479 | + | 0.934684i | \(0.615682\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −40.0000 | −1.57745 | −0.788723 | − | 0.614749i | \(-0.789257\pi\) | ||||
−0.788723 | + | 0.614749i | \(0.789257\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −40.0000 | −1.57256 | −0.786281 | − | 0.617869i | \(-0.787996\pi\) | ||||
−0.786281 | + | 0.617869i | \(0.787996\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −46.0000 | −1.80012 | −0.900060 | − | 0.435767i | \(-0.856477\pi\) | ||||
−0.900060 | + | 0.435767i | \(0.856477\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 24.0000 | 0.937758 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −20.0000 | −0.779089 | −0.389545 | − | 0.921008i | \(-0.627368\pi\) | ||||
−0.389545 | + | 0.921008i | \(0.627368\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −10.0000 | −0.388955 | −0.194477 | − | 0.980907i | \(-0.562301\pi\) | ||||
−0.194477 | + | 0.980907i | \(0.562301\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 64.0000 | 2.48181 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 16.0000 | 0.619522 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −14.0000 | −0.539660 | −0.269830 | − | 0.962908i | \(-0.586968\pi\) | ||||
−0.269830 | + | 0.962908i | \(0.586968\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 42.0000 | 1.61419 | 0.807096 | − | 0.590421i | \(-0.201038\pi\) | ||||
0.807096 | + | 0.590421i | \(0.201038\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −8.00000 | −0.307012 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 32.0000 | 1.22445 | 0.612223 | − | 0.790685i | \(-0.290275\pi\) | ||||
0.612223 | + | 0.790685i | \(0.290275\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | −4.00000 | −0.152832 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −6.00000 | −0.228582 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −8.00000 | −0.304334 | −0.152167 | − | 0.988355i | \(-0.548625\pi\) | ||||
−0.152167 | + | 0.988355i | \(0.548625\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | −8.00000 | −0.303457 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 4.00000 | 0.151511 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 18.0000 | 0.679851 | 0.339925 | − | 0.940452i | \(-0.389598\pi\) | ||||
0.339925 | + | 0.940452i | \(0.389598\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 80.0000 | 3.01726 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 24.0000 | 0.902613 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −42.0000 | −1.57734 | −0.788672 | − | 0.614815i | \(-0.789231\pi\) | ||||
−0.788672 | + | 0.614815i | \(0.789231\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | −32.0000 | −1.19841 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 16.0000 | 0.596699 | 0.298350 | − | 0.954457i | \(-0.403564\pi\) | ||||
0.298350 | + | 0.954457i | \(0.403564\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 32.0000 | 1.19174 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | −2.00000 | −0.0742781 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 40.0000 | 1.48352 | 0.741759 | − | 0.670667i | \(-0.233992\pi\) | ||||
0.741759 | + | 0.670667i | \(0.233992\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −8.00000 | −0.295891 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 14.0000 | 0.517102 | 0.258551 | − | 0.965998i | \(-0.416755\pi\) | ||||
0.258551 | + | 0.965998i | \(0.416755\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −16.0000 | −0.588570 | −0.294285 | − | 0.955718i | \(-0.595081\pi\) | ||||
−0.294285 | + | 0.955718i | \(0.595081\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 4.00000 | 0.146746 | 0.0733729 | − | 0.997305i | \(-0.476624\pi\) | ||||
0.0733729 | + | 0.997305i | \(0.476624\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 36.0000 | 1.31894 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −16.0000 | −0.584627 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −16.0000 | −0.583848 | −0.291924 | − | 0.956441i | \(-0.594295\pi\) | ||||
−0.291924 | + | 0.956441i | \(0.594295\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 24.0000 | 0.873449 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −42.0000 | −1.52652 | −0.763258 | − | 0.646094i | \(-0.776401\pi\) | ||||
−0.763258 | + | 0.646094i | \(0.776401\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 46.0000 | 1.66750 | 0.833749 | − | 0.552143i | \(-0.186190\pi\) | ||||
0.833749 | + | 0.552143i | \(0.186190\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 72.0000 | 2.60658 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −14.0000 | −0.504853 | −0.252426 | − | 0.967616i | \(-0.581229\pi\) | ||||
−0.252426 | + | 0.967616i | \(0.581229\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −14.0000 | −0.503545 | −0.251773 | − | 0.967786i | \(-0.581013\pi\) | ||||
−0.251773 | + | 0.967786i | \(0.581013\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 4.00000 | 0.143684 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 16.0000 | 0.573259 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | −4.00000 | −0.142766 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −16.0000 | −0.570338 | −0.285169 | − | 0.958477i | \(-0.592050\pi\) | ||||
−0.285169 | + | 0.958477i | \(0.592050\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 72.0000 | 2.56003 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −2.00000 | −0.0710221 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −14.0000 | −0.495905 | −0.247953 | − | 0.968772i | \(-0.579758\pi\) | ||||
−0.247953 | + | 0.968772i | \(0.579758\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 24.0000 | 0.849059 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | −64.0000 | −2.25570 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 22.0000 | 0.773479 | 0.386739 | − | 0.922189i | \(-0.373601\pi\) | ||||
0.386739 | + | 0.922189i | \(0.373601\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −48.0000 | −1.68551 | −0.842754 | − | 0.538299i | \(-0.819067\pi\) | ||||
−0.842754 | + | 0.538299i | \(0.819067\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 32.0000 | 1.12091 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −32.0000 | −1.11954 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −30.0000 | −1.04701 | −0.523504 | − | 0.852023i | \(-0.675375\pi\) | ||||
−0.523504 | + | 0.852023i | \(0.675375\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −56.0000 | −1.95204 | −0.976019 | − | 0.217687i | \(-0.930149\pi\) | ||||
−0.976019 | + | 0.217687i | \(0.930149\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −16.0000 | −0.556375 | −0.278187 | − | 0.960527i | \(-0.589734\pi\) | ||||
−0.278187 | + | 0.960527i | \(0.589734\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −34.0000 | −1.18087 | −0.590434 | − | 0.807086i | \(-0.701044\pi\) | ||||
−0.590434 | + | 0.807086i | \(0.701044\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −18.0000 | −0.623663 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 24.0000 | 0.830554 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 12.0000 | 0.414286 | 0.207143 | − | 0.978311i | \(-0.433583\pi\) | ||||
0.207143 | + | 0.978311i | \(0.433583\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −25.0000 | −0.862069 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 2.00000 | 0.0688021 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 44.0000 | 1.51186 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −80.0000 | −2.74236 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 22.0000 | 0.753266 | 0.376633 | − | 0.926363i | \(-0.377082\pi\) | ||||
0.376633 | + | 0.926363i | \(0.377082\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −42.0000 | −1.43469 | −0.717346 | − | 0.696717i | \(-0.754643\pi\) | ||||
−0.717346 | + | 0.696717i | \(0.754643\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −20.0000 | −0.682391 | −0.341196 | − | 0.939992i | \(-0.610832\pi\) | ||||
−0.341196 | + | 0.939992i | \(0.610832\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −36.0000 | −1.22545 | −0.612727 | − | 0.790295i | \(-0.709928\pi\) | ||||
−0.612727 | + | 0.790295i | \(0.709928\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 36.0000 | 1.22404 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −8.00000 | −0.271070 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 48.0000 | 1.62270 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 14.0000 | 0.472746 | 0.236373 | − | 0.971662i | \(-0.424041\pi\) | ||||
0.236373 | + | 0.971662i | \(0.424041\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −2.00000 | −0.0673817 | −0.0336909 | − | 0.999432i | \(-0.510726\pi\) | ||||
−0.0336909 | + | 0.999432i | \(0.510726\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −20.0000 | −0.673054 | −0.336527 | − | 0.941674i | \(-0.609252\pi\) | ||||
−0.336527 | + | 0.941674i | \(0.609252\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −16.0000 | −0.537227 | −0.268614 | − | 0.963248i | \(-0.586566\pi\) | ||||
−0.268614 | + | 0.963248i | \(0.586566\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 96.0000 | 3.21252 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 40.0000 | 1.33705 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −8.00000 | −0.266815 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 12.0000 | 0.399778 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | −20.0000 | −0.664822 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 52.0000 | 1.72663 | 0.863316 | − | 0.504664i | \(-0.168384\pi\) | ||||
0.863316 | + | 0.504664i | \(0.168384\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 8.00000 | 0.265052 | 0.132526 | − | 0.991180i | \(-0.457691\pi\) | ||||
0.132526 | + | 0.991180i | \(0.457691\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | −48.0000 | −1.58510 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −12.0000 | −0.394985 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 10.0000 | 0.328798 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −42.0000 | −1.37798 | −0.688988 | − | 0.724773i | \(-0.741945\pi\) | ||||
−0.688988 | + | 0.724773i | \(0.741945\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −72.0000 | −2.35970 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −22.0000 | −0.718709 | −0.359354 | − | 0.933201i | \(-0.617003\pi\) | ||||
−0.359354 | + | 0.933201i | \(0.617003\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −22.0000 | −0.717180 | −0.358590 | − | 0.933495i | \(-0.616742\pi\) | ||||
−0.358590 | + | 0.933495i | \(0.616742\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | −16.0000 | −0.521032 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 40.0000 | 1.29983 | 0.649913 | − | 0.760009i | \(-0.274805\pi\) | ||||
0.649913 | + | 0.760009i | \(0.274805\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 10.0000 | 0.324614 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −42.0000 | −1.36051 | −0.680257 | − | 0.732974i | \(-0.738132\pi\) | ||||
−0.680257 | + | 0.732974i | \(0.738132\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | −48.0000 | −1.55324 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 8.00000 | 0.258333 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −15.0000 | −0.483871 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | −28.0000 | −0.901352 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −12.0000 | −0.385894 | −0.192947 | − | 0.981209i | \(-0.561805\pi\) | ||||
−0.192947 | + | 0.981209i | \(0.561805\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 20.0000 | 0.641831 | 0.320915 | − | 0.947108i | \(-0.396010\pi\) | ||||
0.320915 | + | 0.947108i | \(0.396010\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 16.0000 | 0.512936 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −10.0000 | −0.319928 | −0.159964 | − | 0.987123i | \(-0.551138\pi\) | ||||
−0.159964 | + | 0.987123i | \(0.551138\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −36.0000 | −1.14822 | −0.574111 | − | 0.818778i | \(-0.694652\pi\) | ||||
−0.574111 | + | 0.818778i | \(0.694652\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −28.0000 | −0.892154 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 32.0000 | 1.01754 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −24.0000 | −0.762385 | −0.381193 | − | 0.924496i | \(-0.624487\pi\) | ||||
−0.381193 | + | 0.924496i | \(0.624487\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | −16.0000 | −0.507234 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 38.0000 | 1.20347 | 0.601736 | − | 0.798695i | \(-0.294476\pi\) | ||||
0.601736 | + | 0.798695i | \(0.294476\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1872.2.a.n.1.1 | 1 | ||
3.2 | odd | 2 | 624.2.a.f.1.1 | 1 | |||
4.3 | odd | 2 | 936.2.a.h.1.1 | 1 | |||
8.3 | odd | 2 | 7488.2.a.t.1.1 | 1 | |||
8.5 | even | 2 | 7488.2.a.i.1.1 | 1 | |||
12.11 | even | 2 | 312.2.a.a.1.1 | ✓ | 1 | ||
24.5 | odd | 2 | 2496.2.a.k.1.1 | 1 | |||
24.11 | even | 2 | 2496.2.a.bb.1.1 | 1 | |||
39.38 | odd | 2 | 8112.2.a.bg.1.1 | 1 | |||
60.59 | even | 2 | 7800.2.a.n.1.1 | 1 | |||
156.47 | odd | 4 | 4056.2.c.c.337.1 | 2 | |||
156.83 | odd | 4 | 4056.2.c.c.337.2 | 2 | |||
156.155 | even | 2 | 4056.2.a.g.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
312.2.a.a.1.1 | ✓ | 1 | 12.11 | even | 2 | ||
624.2.a.f.1.1 | 1 | 3.2 | odd | 2 | |||
936.2.a.h.1.1 | 1 | 4.3 | odd | 2 | |||
1872.2.a.n.1.1 | 1 | 1.1 | even | 1 | trivial | ||
2496.2.a.k.1.1 | 1 | 24.5 | odd | 2 | |||
2496.2.a.bb.1.1 | 1 | 24.11 | even | 2 | |||
4056.2.a.g.1.1 | 1 | 156.155 | even | 2 | |||
4056.2.c.c.337.1 | 2 | 156.47 | odd | 4 | |||
4056.2.c.c.337.2 | 2 | 156.83 | odd | 4 | |||
7488.2.a.i.1.1 | 1 | 8.5 | even | 2 | |||
7488.2.a.t.1.1 | 1 | 8.3 | odd | 2 | |||
7800.2.a.n.1.1 | 1 | 60.59 | even | 2 | |||
8112.2.a.bg.1.1 | 1 | 39.38 | odd | 2 |