Properties

Label 1872.2.a.m.1.1
Level $1872$
Weight $2$
Character 1872.1
Self dual yes
Analytic conductor $14.948$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1872,2,Mod(1,1872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1872, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1872.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1872.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.9479952584\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1872.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} -1.00000 q^{7} +O(q^{10})\) \(q+1.00000 q^{5} -1.00000 q^{7} -2.00000 q^{11} -1.00000 q^{13} +3.00000 q^{17} -6.00000 q^{19} -4.00000 q^{23} -4.00000 q^{25} -2.00000 q^{29} -4.00000 q^{31} -1.00000 q^{35} +3.00000 q^{37} +5.00000 q^{43} +13.0000 q^{47} -6.00000 q^{49} -12.0000 q^{53} -2.00000 q^{55} -10.0000 q^{59} -8.00000 q^{61} -1.00000 q^{65} +2.00000 q^{67} -5.00000 q^{71} -10.0000 q^{73} +2.00000 q^{77} +4.00000 q^{79} +3.00000 q^{85} -6.00000 q^{89} +1.00000 q^{91} -6.00000 q^{95} +14.0000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.00000 −0.169031
\(36\) 0 0
\(37\) 3.00000 0.493197 0.246598 0.969118i \(-0.420687\pi\)
0.246598 + 0.969118i \(0.420687\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 5.00000 0.762493 0.381246 0.924473i \(-0.375495\pi\)
0.381246 + 0.924473i \(0.375495\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 13.0000 1.89624 0.948122 0.317905i \(-0.102979\pi\)
0.948122 + 0.317905i \(0.102979\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −12.0000 −1.64833 −0.824163 0.566352i \(-0.808354\pi\)
−0.824163 + 0.566352i \(0.808354\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −10.0000 −1.30189 −0.650945 0.759125i \(-0.725627\pi\)
−0.650945 + 0.759125i \(0.725627\pi\)
\(60\) 0 0
\(61\) −8.00000 −1.02430 −0.512148 0.858898i \(-0.671150\pi\)
−0.512148 + 0.858898i \(0.671150\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.00000 −0.124035
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.00000 −0.593391 −0.296695 0.954972i \(-0.595885\pi\)
−0.296695 + 0.954972i \(0.595885\pi\)
\(72\) 0 0
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.00000 0.227921
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 3.00000 0.325396
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −6.00000 −0.615587
\(96\) 0 0
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.00000 −0.398015 −0.199007 0.979998i \(-0.563772\pi\)
−0.199007 + 0.979998i \(0.563772\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) 0 0
\(109\) 19.0000 1.81987 0.909935 0.414751i \(-0.136131\pi\)
0.909935 + 0.414751i \(0.136131\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 0 0
\(115\) −4.00000 −0.373002
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.00000 −0.275010
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.00000 −0.0873704 −0.0436852 0.999045i \(-0.513910\pi\)
−0.0436852 + 0.999045i \(0.513910\pi\)
\(132\) 0 0
\(133\) 6.00000 0.520266
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −12.0000 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) 0 0
\(139\) −7.00000 −0.593732 −0.296866 0.954919i \(-0.595942\pi\)
−0.296866 + 0.954919i \(0.595942\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.00000 0.167248
\(144\) 0 0
\(145\) −2.00000 −0.166091
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) 9.00000 0.732410 0.366205 0.930534i \(-0.380657\pi\)
0.366205 + 0.930534i \(0.380657\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.00000 0.315244
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −20.0000 −1.52057 −0.760286 0.649589i \(-0.774941\pi\)
−0.760286 + 0.649589i \(0.774941\pi\)
\(174\) 0 0
\(175\) 4.00000 0.302372
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −9.00000 −0.672692 −0.336346 0.941739i \(-0.609191\pi\)
−0.336346 + 0.941739i \(0.609191\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.00000 0.220564
\(186\) 0 0
\(187\) −6.00000 −0.438763
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.0000 0.723575 0.361787 0.932261i \(-0.382167\pi\)
0.361787 + 0.932261i \(0.382167\pi\)
\(192\) 0 0
\(193\) −16.0000 −1.15171 −0.575853 0.817554i \(-0.695330\pi\)
−0.575853 + 0.817554i \(0.695330\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −9.00000 −0.641223 −0.320612 0.947211i \(-0.603888\pi\)
−0.320612 + 0.947211i \(0.603888\pi\)
\(198\) 0 0
\(199\) 10.0000 0.708881 0.354441 0.935079i \(-0.384671\pi\)
0.354441 + 0.935079i \(0.384671\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.00000 0.140372
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) −23.0000 −1.58339 −0.791693 0.610920i \(-0.790800\pi\)
−0.791693 + 0.610920i \(0.790800\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.00000 0.340997
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.00000 −0.201802
\(222\) 0 0
\(223\) 21.0000 1.40626 0.703132 0.711059i \(-0.251784\pi\)
0.703132 + 0.711059i \(0.251784\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −24.0000 −1.59294 −0.796468 0.604681i \(-0.793301\pi\)
−0.796468 + 0.604681i \(0.793301\pi\)
\(228\) 0 0
\(229\) −15.0000 −0.991228 −0.495614 0.868543i \(-0.665057\pi\)
−0.495614 + 0.868543i \(0.665057\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.0000 0.720634 0.360317 0.932830i \(-0.382669\pi\)
0.360317 + 0.932830i \(0.382669\pi\)
\(234\) 0 0
\(235\) 13.0000 0.848026
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 9.00000 0.582162 0.291081 0.956698i \(-0.405985\pi\)
0.291081 + 0.956698i \(0.405985\pi\)
\(240\) 0 0
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.00000 −0.383326
\(246\) 0 0
\(247\) 6.00000 0.381771
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 8.00000 0.502956
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 15.0000 0.935674 0.467837 0.883815i \(-0.345033\pi\)
0.467837 + 0.883815i \(0.345033\pi\)
\(258\) 0 0
\(259\) −3.00000 −0.186411
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 24.0000 1.46331 0.731653 0.681677i \(-0.238749\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(270\) 0 0
\(271\) −13.0000 −0.789694 −0.394847 0.918747i \(-0.629202\pi\)
−0.394847 + 0.918747i \(0.629202\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.00000 0.482418
\(276\) 0 0
\(277\) 12.0000 0.721010 0.360505 0.932757i \(-0.382604\pi\)
0.360505 + 0.932757i \(0.382604\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 26.0000 1.55103 0.775515 0.631329i \(-0.217490\pi\)
0.775515 + 0.631329i \(0.217490\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −7.00000 −0.408944 −0.204472 0.978872i \(-0.565548\pi\)
−0.204472 + 0.978872i \(0.565548\pi\)
\(294\) 0 0
\(295\) −10.0000 −0.582223
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.00000 0.231326
\(300\) 0 0
\(301\) −5.00000 −0.288195
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −8.00000 −0.458079
\(306\) 0 0
\(307\) −14.0000 −0.799022 −0.399511 0.916728i \(-0.630820\pi\)
−0.399511 + 0.916728i \(0.630820\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 18.0000 1.02069 0.510343 0.859971i \(-0.329518\pi\)
0.510343 + 0.859971i \(0.329518\pi\)
\(312\) 0 0
\(313\) −1.00000 −0.0565233 −0.0282617 0.999601i \(-0.508997\pi\)
−0.0282617 + 0.999601i \(0.508997\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) 4.00000 0.223957
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −18.0000 −1.00155
\(324\) 0 0
\(325\) 4.00000 0.221880
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −13.0000 −0.716713
\(330\) 0 0
\(331\) 4.00000 0.219860 0.109930 0.993939i \(-0.464937\pi\)
0.109930 + 0.993939i \(0.464937\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.00000 0.109272
\(336\) 0 0
\(337\) 23.0000 1.25289 0.626445 0.779466i \(-0.284509\pi\)
0.626445 + 0.779466i \(0.284509\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8.00000 0.433224
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −9.00000 −0.483145 −0.241573 0.970383i \(-0.577663\pi\)
−0.241573 + 0.970383i \(0.577663\pi\)
\(348\) 0 0
\(349\) 7.00000 0.374701 0.187351 0.982293i \(-0.440010\pi\)
0.187351 + 0.982293i \(0.440010\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4.00000 −0.212899 −0.106449 0.994318i \(-0.533948\pi\)
−0.106449 + 0.994318i \(0.533948\pi\)
\(354\) 0 0
\(355\) −5.00000 −0.265372
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −10.0000 −0.523424
\(366\) 0 0
\(367\) 10.0000 0.521996 0.260998 0.965339i \(-0.415948\pi\)
0.260998 + 0.965339i \(0.415948\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 12.0000 0.623009
\(372\) 0 0
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.00000 0.103005
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 27.0000 1.37964 0.689818 0.723983i \(-0.257691\pi\)
0.689818 + 0.723983i \(0.257691\pi\)
\(384\) 0 0
\(385\) 2.00000 0.101929
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) −12.0000 −0.606866
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.00000 0.201262
\(396\) 0 0
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −24.0000 −1.19850 −0.599251 0.800561i \(-0.704535\pi\)
−0.599251 + 0.800561i \(0.704535\pi\)
\(402\) 0 0
\(403\) 4.00000 0.199254
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −6.00000 −0.297409
\(408\) 0 0
\(409\) 4.00000 0.197787 0.0988936 0.995098i \(-0.468470\pi\)
0.0988936 + 0.995098i \(0.468470\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 10.0000 0.492068
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 21.0000 1.02592 0.512959 0.858413i \(-0.328549\pi\)
0.512959 + 0.858413i \(0.328549\pi\)
\(420\) 0 0
\(421\) −5.00000 −0.243685 −0.121843 0.992549i \(-0.538880\pi\)
−0.121843 + 0.992549i \(0.538880\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −12.0000 −0.582086
\(426\) 0 0
\(427\) 8.00000 0.387147
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 33.0000 1.58955 0.794777 0.606902i \(-0.207588\pi\)
0.794777 + 0.606902i \(0.207588\pi\)
\(432\) 0 0
\(433\) 7.00000 0.336399 0.168199 0.985753i \(-0.446205\pi\)
0.168199 + 0.985753i \(0.446205\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 24.0000 1.14808
\(438\) 0 0
\(439\) 22.0000 1.05000 0.525001 0.851101i \(-0.324065\pi\)
0.525001 + 0.851101i \(0.324065\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −39.0000 −1.85295 −0.926473 0.376361i \(-0.877175\pi\)
−0.926473 + 0.376361i \(0.877175\pi\)
\(444\) 0 0
\(445\) −6.00000 −0.284427
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 26.0000 1.22702 0.613508 0.789689i \(-0.289758\pi\)
0.613508 + 0.789689i \(0.289758\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.00000 0.0468807
\(456\) 0 0
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 21.0000 0.978068 0.489034 0.872265i \(-0.337349\pi\)
0.489034 + 0.872265i \(0.337349\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20.0000 0.925490 0.462745 0.886492i \(-0.346865\pi\)
0.462745 + 0.886492i \(0.346865\pi\)
\(468\) 0 0
\(469\) −2.00000 −0.0923514
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −10.0000 −0.459800
\(474\) 0 0
\(475\) 24.0000 1.10120
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3.00000 −0.137073 −0.0685367 0.997649i \(-0.521833\pi\)
−0.0685367 + 0.997649i \(0.521833\pi\)
\(480\) 0 0
\(481\) −3.00000 −0.136788
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 14.0000 0.635707
\(486\) 0 0
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −5.00000 −0.225647 −0.112823 0.993615i \(-0.535989\pi\)
−0.112823 + 0.993615i \(0.535989\pi\)
\(492\) 0 0
\(493\) −6.00000 −0.270226
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.00000 0.224281
\(498\) 0 0
\(499\) 32.0000 1.43252 0.716258 0.697835i \(-0.245853\pi\)
0.716258 + 0.697835i \(0.245853\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −14.0000 −0.624229 −0.312115 0.950044i \(-0.601037\pi\)
−0.312115 + 0.950044i \(0.601037\pi\)
\(504\) 0 0
\(505\) −4.00000 −0.177998
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −34.0000 −1.50702 −0.753512 0.657434i \(-0.771642\pi\)
−0.753512 + 0.657434i \(0.771642\pi\)
\(510\) 0 0
\(511\) 10.0000 0.442374
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 8.00000 0.352522
\(516\) 0 0
\(517\) −26.0000 −1.14348
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −39.0000 −1.70862 −0.854311 0.519763i \(-0.826020\pi\)
−0.854311 + 0.519763i \(0.826020\pi\)
\(522\) 0 0
\(523\) 36.0000 1.57417 0.787085 0.616844i \(-0.211589\pi\)
0.787085 + 0.616844i \(0.211589\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −12.0000 −0.522728
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −4.00000 −0.172935
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 12.0000 0.516877
\(540\) 0 0
\(541\) 17.0000 0.730887 0.365444 0.930834i \(-0.380917\pi\)
0.365444 + 0.930834i \(0.380917\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 19.0000 0.813871
\(546\) 0 0
\(547\) −37.0000 −1.58201 −0.791003 0.611812i \(-0.790441\pi\)
−0.791003 + 0.611812i \(0.790441\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 12.0000 0.511217
\(552\) 0 0
\(553\) −4.00000 −0.170097
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −33.0000 −1.39825 −0.699127 0.714997i \(-0.746428\pi\)
−0.699127 + 0.714997i \(0.746428\pi\)
\(558\) 0 0
\(559\) −5.00000 −0.211477
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 11.0000 0.463595 0.231797 0.972764i \(-0.425539\pi\)
0.231797 + 0.972764i \(0.425539\pi\)
\(564\) 0 0
\(565\) −2.00000 −0.0841406
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −31.0000 −1.29959 −0.649794 0.760111i \(-0.725145\pi\)
−0.649794 + 0.760111i \(0.725145\pi\)
\(570\) 0 0
\(571\) −33.0000 −1.38101 −0.690504 0.723329i \(-0.742611\pi\)
−0.690504 + 0.723329i \(0.742611\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 16.0000 0.667246
\(576\) 0 0
\(577\) 18.0000 0.749350 0.374675 0.927156i \(-0.377754\pi\)
0.374675 + 0.927156i \(0.377754\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 24.0000 0.993978
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −28.0000 −1.15568 −0.577842 0.816149i \(-0.696105\pi\)
−0.577842 + 0.816149i \(0.696105\pi\)
\(588\) 0 0
\(589\) 24.0000 0.988903
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 22.0000 0.903432 0.451716 0.892162i \(-0.350812\pi\)
0.451716 + 0.892162i \(0.350812\pi\)
\(594\) 0 0
\(595\) −3.00000 −0.122988
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −2.00000 −0.0817178 −0.0408589 0.999165i \(-0.513009\pi\)
−0.0408589 + 0.999165i \(0.513009\pi\)
\(600\) 0 0
\(601\) −35.0000 −1.42768 −0.713840 0.700309i \(-0.753046\pi\)
−0.713840 + 0.700309i \(0.753046\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −7.00000 −0.284590
\(606\) 0 0
\(607\) −6.00000 −0.243532 −0.121766 0.992559i \(-0.538856\pi\)
−0.121766 + 0.992559i \(0.538856\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −13.0000 −0.525924
\(612\) 0 0
\(613\) 26.0000 1.05013 0.525065 0.851062i \(-0.324041\pi\)
0.525065 + 0.851062i \(0.324041\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −16.0000 −0.644136 −0.322068 0.946717i \(-0.604378\pi\)
−0.322068 + 0.946717i \(0.604378\pi\)
\(618\) 0 0
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6.00000 0.240385
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 9.00000 0.358854
\(630\) 0 0
\(631\) 5.00000 0.199047 0.0995234 0.995035i \(-0.468268\pi\)
0.0995234 + 0.995035i \(0.468268\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −16.0000 −0.634941
\(636\) 0 0
\(637\) 6.00000 0.237729
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2.00000 0.0789953 0.0394976 0.999220i \(-0.487424\pi\)
0.0394976 + 0.999220i \(0.487424\pi\)
\(642\) 0 0
\(643\) −14.0000 −0.552106 −0.276053 0.961142i \(-0.589027\pi\)
−0.276053 + 0.961142i \(0.589027\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −38.0000 −1.49393 −0.746967 0.664861i \(-0.768491\pi\)
−0.746967 + 0.664861i \(0.768491\pi\)
\(648\) 0 0
\(649\) 20.0000 0.785069
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −24.0000 −0.939193 −0.469596 0.882881i \(-0.655601\pi\)
−0.469596 + 0.882881i \(0.655601\pi\)
\(654\) 0 0
\(655\) −1.00000 −0.0390732
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.00000 0.232670
\(666\) 0 0
\(667\) 8.00000 0.309761
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 16.0000 0.617673
\(672\) 0 0
\(673\) 37.0000 1.42625 0.713123 0.701039i \(-0.247280\pi\)
0.713123 + 0.701039i \(0.247280\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 36.0000 1.38359 0.691796 0.722093i \(-0.256820\pi\)
0.691796 + 0.722093i \(0.256820\pi\)
\(678\) 0 0
\(679\) −14.0000 −0.537271
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −44.0000 −1.68361 −0.841807 0.539779i \(-0.818508\pi\)
−0.841807 + 0.539779i \(0.818508\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) 8.00000 0.304334 0.152167 0.988355i \(-0.451375\pi\)
0.152167 + 0.988355i \(0.451375\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.00000 −0.265525
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12.0000 0.453234 0.226617 0.973984i \(-0.427233\pi\)
0.226617 + 0.973984i \(0.427233\pi\)
\(702\) 0 0
\(703\) −18.0000 −0.678883
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.00000 0.150435
\(708\) 0 0
\(709\) 38.0000 1.42712 0.713560 0.700594i \(-0.247082\pi\)
0.713560 + 0.700594i \(0.247082\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 16.0000 0.599205
\(714\) 0 0
\(715\) 2.00000 0.0747958
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −22.0000 −0.820462 −0.410231 0.911982i \(-0.634552\pi\)
−0.410231 + 0.911982i \(0.634552\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 8.00000 0.297113
\(726\) 0 0
\(727\) 14.0000 0.519231 0.259616 0.965712i \(-0.416404\pi\)
0.259616 + 0.965712i \(0.416404\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 15.0000 0.554795
\(732\) 0 0
\(733\) −43.0000 −1.58824 −0.794121 0.607760i \(-0.792068\pi\)
−0.794121 + 0.607760i \(0.792068\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.00000 −0.147342
\(738\) 0 0
\(739\) −12.0000 −0.441427 −0.220714 0.975339i \(-0.570839\pi\)
−0.220714 + 0.975339i \(0.570839\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −47.0000 −1.72426 −0.862131 0.506685i \(-0.830871\pi\)
−0.862131 + 0.506685i \(0.830871\pi\)
\(744\) 0 0
\(745\) 18.0000 0.659469
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.00000 0.146157
\(750\) 0 0
\(751\) −24.0000 −0.875772 −0.437886 0.899030i \(-0.644273\pi\)
−0.437886 + 0.899030i \(0.644273\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 9.00000 0.327544
\(756\) 0 0
\(757\) −12.0000 −0.436147 −0.218074 0.975932i \(-0.569977\pi\)
−0.218074 + 0.975932i \(0.569977\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 0 0
\(763\) −19.0000 −0.687846
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 10.0000 0.361079
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −11.0000 −0.395643 −0.197821 0.980238i \(-0.563387\pi\)
−0.197821 + 0.980238i \(0.563387\pi\)
\(774\) 0 0
\(775\) 16.0000 0.574737
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 10.0000 0.357828
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −10.0000 −0.356915
\(786\) 0 0
\(787\) −32.0000 −1.14068 −0.570338 0.821410i \(-0.693188\pi\)
−0.570338 + 0.821410i \(0.693188\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.00000 0.0711118
\(792\) 0 0
\(793\) 8.00000 0.284088
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 42.0000 1.48772 0.743858 0.668338i \(-0.232994\pi\)
0.743858 + 0.668338i \(0.232994\pi\)
\(798\) 0 0
\(799\) 39.0000 1.37972
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 20.0000 0.705785
\(804\) 0 0
\(805\) 4.00000 0.140981
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 9.00000 0.316423 0.158212 0.987405i \(-0.449427\pi\)
0.158212 + 0.987405i \(0.449427\pi\)
\(810\) 0 0
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 4.00000 0.140114
\(816\) 0 0
\(817\) −30.0000 −1.04957
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 25.0000 0.872506 0.436253 0.899824i \(-0.356305\pi\)
0.436253 + 0.899824i \(0.356305\pi\)
\(822\) 0 0
\(823\) −54.0000 −1.88232 −0.941161 0.337959i \(-0.890263\pi\)
−0.941161 + 0.337959i \(0.890263\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 30.0000 1.04320 0.521601 0.853189i \(-0.325335\pi\)
0.521601 + 0.853189i \(0.325335\pi\)
\(828\) 0 0
\(829\) −38.0000 −1.31979 −0.659897 0.751356i \(-0.729400\pi\)
−0.659897 + 0.751356i \(0.729400\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −18.0000 −0.623663
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 56.0000 1.93333 0.966667 0.256036i \(-0.0824164\pi\)
0.966667 + 0.256036i \(0.0824164\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.00000 0.0344010
\(846\) 0 0
\(847\) 7.00000 0.240523
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −12.0000 −0.411355
\(852\) 0 0
\(853\) 49.0000 1.67773 0.838864 0.544341i \(-0.183220\pi\)
0.838864 + 0.544341i \(0.183220\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −46.0000 −1.57133 −0.785665 0.618652i \(-0.787679\pi\)
−0.785665 + 0.618652i \(0.787679\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −11.0000 −0.374444 −0.187222 0.982318i \(-0.559948\pi\)
−0.187222 + 0.982318i \(0.559948\pi\)
\(864\) 0 0
\(865\) −20.0000 −0.680020
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −8.00000 −0.271381
\(870\) 0 0
\(871\) −2.00000 −0.0677674
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 9.00000 0.304256
\(876\) 0 0
\(877\) −39.0000 −1.31694 −0.658468 0.752609i \(-0.728795\pi\)
−0.658468 + 0.752609i \(0.728795\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −21.0000 −0.707508 −0.353754 0.935339i \(-0.615095\pi\)
−0.353754 + 0.935339i \(0.615095\pi\)
\(882\) 0 0
\(883\) 47.0000 1.58168 0.790838 0.612026i \(-0.209645\pi\)
0.790838 + 0.612026i \(0.209645\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −8.00000 −0.268614 −0.134307 0.990940i \(-0.542881\pi\)
−0.134307 + 0.990940i \(0.542881\pi\)
\(888\) 0 0
\(889\) 16.0000 0.536623
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −78.0000 −2.61017
\(894\) 0 0
\(895\) −9.00000 −0.300837
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 8.00000 0.266815
\(900\) 0 0
\(901\) −36.0000 −1.19933
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 9.00000 0.298840 0.149420 0.988774i \(-0.452259\pi\)
0.149420 + 0.988774i \(0.452259\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −54.0000 −1.78910 −0.894550 0.446968i \(-0.852504\pi\)
−0.894550 + 0.446968i \(0.852504\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.00000 0.0330229
\(918\) 0 0
\(919\) −24.0000 −0.791687 −0.395843 0.918318i \(-0.629548\pi\)
−0.395843 + 0.918318i \(0.629548\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 5.00000 0.164577
\(924\) 0 0
\(925\) −12.0000 −0.394558
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 36.0000 1.18112 0.590561 0.806993i \(-0.298907\pi\)
0.590561 + 0.806993i \(0.298907\pi\)
\(930\) 0 0
\(931\) 36.0000 1.17985
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −6.00000 −0.196221
\(936\) 0 0
\(937\) −42.0000 −1.37208 −0.686040 0.727564i \(-0.740653\pi\)
−0.686040 + 0.727564i \(0.740653\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −25.0000 −0.814977 −0.407488 0.913210i \(-0.633595\pi\)
−0.407488 + 0.913210i \(0.633595\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −18.0000 −0.584921 −0.292461 0.956278i \(-0.594474\pi\)
−0.292461 + 0.956278i \(0.594474\pi\)
\(948\) 0 0
\(949\) 10.0000 0.324614
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −23.0000 −0.745043 −0.372522 0.928024i \(-0.621507\pi\)
−0.372522 + 0.928024i \(0.621507\pi\)
\(954\) 0 0
\(955\) 10.0000 0.323592
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 12.0000 0.387500
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −16.0000 −0.515058
\(966\) 0 0
\(967\) −23.0000 −0.739630 −0.369815 0.929105i \(-0.620579\pi\)
−0.369815 + 0.929105i \(0.620579\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −15.0000 −0.481373 −0.240686 0.970603i \(-0.577373\pi\)
−0.240686 + 0.970603i \(0.577373\pi\)
\(972\) 0 0
\(973\) 7.00000 0.224410
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 30.0000 0.959785 0.479893 0.877327i \(-0.340676\pi\)
0.479893 + 0.877327i \(0.340676\pi\)
\(978\) 0 0
\(979\) 12.0000 0.383522
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −31.0000 −0.988746 −0.494373 0.869250i \(-0.664602\pi\)
−0.494373 + 0.869250i \(0.664602\pi\)
\(984\) 0 0
\(985\) −9.00000 −0.286764
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −20.0000 −0.635963
\(990\) 0 0
\(991\) 30.0000 0.952981 0.476491 0.879180i \(-0.341909\pi\)
0.476491 + 0.879180i \(0.341909\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 10.0000 0.317021
\(996\) 0 0
\(997\) −10.0000 −0.316703 −0.158352 0.987383i \(-0.550618\pi\)
−0.158352 + 0.987383i \(0.550618\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1872.2.a.m.1.1 1
3.2 odd 2 208.2.a.d.1.1 1
4.3 odd 2 234.2.a.b.1.1 1
8.3 odd 2 7488.2.a.w.1.1 1
8.5 even 2 7488.2.a.v.1.1 1
12.11 even 2 26.2.a.b.1.1 1
15.14 odd 2 5200.2.a.c.1.1 1
20.3 even 4 5850.2.e.v.5149.2 2
20.7 even 4 5850.2.e.v.5149.1 2
20.19 odd 2 5850.2.a.bn.1.1 1
24.5 odd 2 832.2.a.a.1.1 1
24.11 even 2 832.2.a.j.1.1 1
36.7 odd 6 2106.2.e.t.1405.1 2
36.11 even 6 2106.2.e.h.1405.1 2
36.23 even 6 2106.2.e.h.703.1 2
36.31 odd 6 2106.2.e.t.703.1 2
39.5 even 4 2704.2.f.j.337.2 2
39.8 even 4 2704.2.f.j.337.1 2
39.38 odd 2 2704.2.a.n.1.1 1
48.5 odd 4 3328.2.b.k.1665.1 2
48.11 even 4 3328.2.b.g.1665.2 2
48.29 odd 4 3328.2.b.k.1665.2 2
48.35 even 4 3328.2.b.g.1665.1 2
52.31 even 4 3042.2.b.f.1351.2 2
52.47 even 4 3042.2.b.f.1351.1 2
52.51 odd 2 3042.2.a.l.1.1 1
60.23 odd 4 650.2.b.a.599.1 2
60.47 odd 4 650.2.b.a.599.2 2
60.59 even 2 650.2.a.g.1.1 1
84.11 even 6 1274.2.f.l.79.1 2
84.23 even 6 1274.2.f.l.1145.1 2
84.47 odd 6 1274.2.f.a.1145.1 2
84.59 odd 6 1274.2.f.a.79.1 2
84.83 odd 2 1274.2.a.o.1.1 1
132.131 odd 2 3146.2.a.a.1.1 1
156.11 odd 12 338.2.e.d.147.1 4
156.23 even 6 338.2.c.g.191.1 2
156.35 even 6 338.2.c.c.315.1 2
156.47 odd 4 338.2.b.a.337.2 2
156.59 odd 12 338.2.e.d.23.2 4
156.71 odd 12 338.2.e.d.23.1 4
156.83 odd 4 338.2.b.a.337.1 2
156.95 even 6 338.2.c.g.315.1 2
156.107 even 6 338.2.c.c.191.1 2
156.119 odd 12 338.2.e.d.147.2 4
156.155 even 2 338.2.a.a.1.1 1
204.203 even 2 7514.2.a.i.1.1 1
228.227 odd 2 9386.2.a.f.1.1 1
780.779 even 2 8450.2.a.y.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.2.a.b.1.1 1 12.11 even 2
208.2.a.d.1.1 1 3.2 odd 2
234.2.a.b.1.1 1 4.3 odd 2
338.2.a.a.1.1 1 156.155 even 2
338.2.b.a.337.1 2 156.83 odd 4
338.2.b.a.337.2 2 156.47 odd 4
338.2.c.c.191.1 2 156.107 even 6
338.2.c.c.315.1 2 156.35 even 6
338.2.c.g.191.1 2 156.23 even 6
338.2.c.g.315.1 2 156.95 even 6
338.2.e.d.23.1 4 156.71 odd 12
338.2.e.d.23.2 4 156.59 odd 12
338.2.e.d.147.1 4 156.11 odd 12
338.2.e.d.147.2 4 156.119 odd 12
650.2.a.g.1.1 1 60.59 even 2
650.2.b.a.599.1 2 60.23 odd 4
650.2.b.a.599.2 2 60.47 odd 4
832.2.a.a.1.1 1 24.5 odd 2
832.2.a.j.1.1 1 24.11 even 2
1274.2.a.o.1.1 1 84.83 odd 2
1274.2.f.a.79.1 2 84.59 odd 6
1274.2.f.a.1145.1 2 84.47 odd 6
1274.2.f.l.79.1 2 84.11 even 6
1274.2.f.l.1145.1 2 84.23 even 6
1872.2.a.m.1.1 1 1.1 even 1 trivial
2106.2.e.h.703.1 2 36.23 even 6
2106.2.e.h.1405.1 2 36.11 even 6
2106.2.e.t.703.1 2 36.31 odd 6
2106.2.e.t.1405.1 2 36.7 odd 6
2704.2.a.n.1.1 1 39.38 odd 2
2704.2.f.j.337.1 2 39.8 even 4
2704.2.f.j.337.2 2 39.5 even 4
3042.2.a.l.1.1 1 52.51 odd 2
3042.2.b.f.1351.1 2 52.47 even 4
3042.2.b.f.1351.2 2 52.31 even 4
3146.2.a.a.1.1 1 132.131 odd 2
3328.2.b.g.1665.1 2 48.35 even 4
3328.2.b.g.1665.2 2 48.11 even 4
3328.2.b.k.1665.1 2 48.5 odd 4
3328.2.b.k.1665.2 2 48.29 odd 4
5200.2.a.c.1.1 1 15.14 odd 2
5850.2.a.bn.1.1 1 20.19 odd 2
5850.2.e.v.5149.1 2 20.7 even 4
5850.2.e.v.5149.2 2 20.3 even 4
7488.2.a.v.1.1 1 8.5 even 2
7488.2.a.w.1.1 1 8.3 odd 2
7514.2.a.i.1.1 1 204.203 even 2
8450.2.a.y.1.1 1 780.779 even 2
9386.2.a.f.1.1 1 228.227 odd 2