Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1872,2,Mod(1,1872)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1872, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1872.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1872.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(14.9479952584\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 312) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 1872.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 4.00000 | 1.51186 | 0.755929 | − | 0.654654i | \(-0.227186\pi\) | ||||
0.755929 | + | 0.654654i | \(0.227186\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −2.00000 | −0.603023 | −0.301511 | − | 0.953463i | \(-0.597491\pi\) | ||||
−0.301511 | + | 0.953463i | \(0.597491\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −1.00000 | −0.277350 | ||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 6.00000 | 1.45521 | 0.727607 | − | 0.685994i | \(-0.240633\pi\) | ||||
0.727607 | + | 0.685994i | \(0.240633\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 4.00000 | 0.917663 | 0.458831 | − | 0.888523i | \(-0.348268\pi\) | ||||
0.458831 | + | 0.888523i | \(0.348268\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 4.00000 | 0.834058 | 0.417029 | − | 0.908893i | \(-0.363071\pi\) | ||||
0.417029 | + | 0.908893i | \(0.363071\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −5.00000 | −1.00000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −10.0000 | −1.85695 | −0.928477 | − | 0.371391i | \(-0.878881\pi\) | ||||
−0.928477 | + | 0.371391i | \(0.878881\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 8.00000 | 1.43684 | 0.718421 | − | 0.695608i | \(-0.244865\pi\) | ||||
0.718421 | + | 0.695608i | \(0.244865\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −2.00000 | −0.328798 | −0.164399 | − | 0.986394i | \(-0.552568\pi\) | ||||
−0.164399 | + | 0.986394i | \(0.552568\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 4.00000 | 0.609994 | 0.304997 | − | 0.952353i | \(-0.401344\pi\) | ||||
0.304997 | + | 0.952353i | \(0.401344\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 2.00000 | 0.291730 | 0.145865 | − | 0.989305i | \(-0.453403\pi\) | ||||
0.145865 | + | 0.989305i | \(0.453403\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 9.00000 | 1.28571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 2.00000 | 0.274721 | 0.137361 | − | 0.990521i | \(-0.456138\pi\) | ||||
0.137361 | + | 0.990521i | \(0.456138\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 10.0000 | 1.30189 | 0.650945 | − | 0.759125i | \(-0.274373\pi\) | ||||
0.650945 | + | 0.759125i | \(0.274373\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 10.0000 | 1.28037 | 0.640184 | − | 0.768221i | \(-0.278858\pi\) | ||||
0.640184 | + | 0.768221i | \(0.278858\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −8.00000 | −0.977356 | −0.488678 | − | 0.872464i | \(-0.662521\pi\) | ||||
−0.488678 | + | 0.872464i | \(0.662521\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 2.00000 | 0.237356 | 0.118678 | − | 0.992933i | \(-0.462134\pi\) | ||||
0.118678 | + | 0.992933i | \(0.462134\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −10.0000 | −1.17041 | −0.585206 | − | 0.810885i | \(-0.698986\pi\) | ||||
−0.585206 | + | 0.810885i | \(0.698986\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | −8.00000 | −0.911685 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −8.00000 | −0.900070 | −0.450035 | − | 0.893011i | \(-0.648589\pi\) | ||||
−0.450035 | + | 0.893011i | \(0.648589\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 6.00000 | 0.658586 | 0.329293 | − | 0.944228i | \(-0.393190\pi\) | ||||
0.329293 | + | 0.944228i | \(0.393190\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 12.0000 | 1.27200 | 0.635999 | − | 0.771690i | \(-0.280588\pi\) | ||||
0.635999 | + | 0.771690i | \(0.280588\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −4.00000 | −0.419314 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −2.00000 | −0.203069 | −0.101535 | − | 0.994832i | \(-0.532375\pi\) | ||||
−0.101535 | + | 0.994832i | \(0.532375\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −2.00000 | −0.199007 | −0.0995037 | − | 0.995037i | \(-0.531726\pi\) | ||||
−0.0995037 | + | 0.995037i | \(0.531726\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 16.0000 | 1.57653 | 0.788263 | − | 0.615338i | \(-0.210980\pi\) | ||||
0.788263 | + | 0.615338i | \(0.210980\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | −16.0000 | −1.54678 | −0.773389 | − | 0.633932i | \(-0.781440\pi\) | ||||
−0.773389 | + | 0.633932i | \(0.781440\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −6.00000 | −0.574696 | −0.287348 | − | 0.957826i | \(-0.592774\pi\) | ||||
−0.287348 | + | 0.957826i | \(0.592774\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 18.0000 | 1.69330 | 0.846649 | − | 0.532152i | \(-0.178617\pi\) | ||||
0.846649 | + | 0.532152i | \(0.178617\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 24.0000 | 2.20008 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −7.00000 | −0.636364 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −16.0000 | −1.41977 | −0.709885 | − | 0.704317i | \(-0.751253\pi\) | ||||
−0.709885 | + | 0.704317i | \(0.751253\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 8.00000 | 0.698963 | 0.349482 | − | 0.936943i | \(-0.386358\pi\) | ||||
0.349482 | + | 0.936943i | \(0.386358\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 16.0000 | 1.38738 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 12.0000 | 1.01783 | 0.508913 | − | 0.860818i | \(-0.330047\pi\) | ||||
0.508913 | + | 0.860818i | \(0.330047\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 2.00000 | 0.167248 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 12.0000 | 0.983078 | 0.491539 | − | 0.870855i | \(-0.336434\pi\) | ||||
0.491539 | + | 0.870855i | \(0.336434\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 24.0000 | 1.95309 | 0.976546 | − | 0.215308i | \(-0.0690756\pi\) | ||||
0.976546 | + | 0.215308i | \(0.0690756\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 14.0000 | 1.11732 | 0.558661 | − | 0.829396i | \(-0.311315\pi\) | ||||
0.558661 | + | 0.829396i | \(0.311315\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 16.0000 | 1.26098 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −4.00000 | −0.313304 | −0.156652 | − | 0.987654i | \(-0.550070\pi\) | ||||
−0.156652 | + | 0.987654i | \(0.550070\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −6.00000 | −0.464294 | −0.232147 | − | 0.972681i | \(-0.574575\pi\) | ||||
−0.232147 | + | 0.972681i | \(0.574575\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 1.00000 | 0.0769231 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 22.0000 | 1.67263 | 0.836315 | − | 0.548250i | \(-0.184706\pi\) | ||||
0.836315 | + | 0.548250i | \(0.184706\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | −20.0000 | −1.51186 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 4.00000 | 0.298974 | 0.149487 | − | 0.988764i | \(-0.452238\pi\) | ||||
0.149487 | + | 0.988764i | \(0.452238\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −10.0000 | −0.743294 | −0.371647 | − | 0.928374i | \(-0.621207\pi\) | ||||
−0.371647 | + | 0.928374i | \(0.621207\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | −12.0000 | −0.877527 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 16.0000 | 1.15772 | 0.578860 | − | 0.815427i | \(-0.303498\pi\) | ||||
0.578860 | + | 0.815427i | \(0.303498\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −22.0000 | −1.58359 | −0.791797 | − | 0.610784i | \(-0.790854\pi\) | ||||
−0.791797 | + | 0.610784i | \(0.790854\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 8.00000 | 0.569976 | 0.284988 | − | 0.958531i | \(-0.408010\pi\) | ||||
0.284988 | + | 0.958531i | \(0.408010\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −16.0000 | −1.13421 | −0.567105 | − | 0.823646i | \(-0.691937\pi\) | ||||
−0.567105 | + | 0.823646i | \(0.691937\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | −40.0000 | −2.80745 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −8.00000 | −0.553372 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −12.0000 | −0.826114 | −0.413057 | − | 0.910705i | \(-0.635539\pi\) | ||||
−0.413057 | + | 0.910705i | \(0.635539\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 32.0000 | 2.17230 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −6.00000 | −0.403604 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −8.00000 | −0.535720 | −0.267860 | − | 0.963458i | \(-0.586316\pi\) | ||||
−0.267860 | + | 0.963458i | \(0.586316\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | −22.0000 | −1.46019 | −0.730096 | − | 0.683345i | \(-0.760525\pi\) | ||||
−0.730096 | + | 0.683345i | \(0.760525\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 26.0000 | 1.71813 | 0.859064 | − | 0.511868i | \(-0.171046\pi\) | ||||
0.859064 | + | 0.511868i | \(0.171046\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −22.0000 | −1.44127 | −0.720634 | − | 0.693316i | \(-0.756149\pi\) | ||||
−0.720634 | + | 0.693316i | \(0.756149\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 2.00000 | 0.129369 | 0.0646846 | − | 0.997906i | \(-0.479396\pi\) | ||||
0.0646846 | + | 0.997906i | \(0.479396\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −26.0000 | −1.67481 | −0.837404 | − | 0.546585i | \(-0.815928\pi\) | ||||
−0.837404 | + | 0.546585i | \(0.815928\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −4.00000 | −0.254514 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −24.0000 | −1.51487 | −0.757433 | − | 0.652913i | \(-0.773547\pi\) | ||||
−0.757433 | + | 0.652913i | \(0.773547\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | −8.00000 | −0.502956 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −22.0000 | −1.37232 | −0.686161 | − | 0.727450i | \(-0.740706\pi\) | ||||
−0.686161 | + | 0.727450i | \(0.740706\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −8.00000 | −0.497096 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 12.0000 | 0.739952 | 0.369976 | − | 0.929041i | \(-0.379366\pi\) | ||||
0.369976 | + | 0.929041i | \(0.379366\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −10.0000 | −0.609711 | −0.304855 | − | 0.952399i | \(-0.598608\pi\) | ||||
−0.304855 | + | 0.952399i | \(0.598608\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 28.0000 | 1.70088 | 0.850439 | − | 0.526073i | \(-0.176336\pi\) | ||||
0.850439 | + | 0.526073i | \(0.176336\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 10.0000 | 0.603023 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −2.00000 | −0.120168 | −0.0600842 | − | 0.998193i | \(-0.519137\pi\) | ||||
−0.0600842 | + | 0.998193i | \(0.519137\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −32.0000 | −1.90896 | −0.954480 | − | 0.298275i | \(-0.903589\pi\) | ||||
−0.954480 | + | 0.298275i | \(0.903589\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 4.00000 | 0.237775 | 0.118888 | − | 0.992908i | \(-0.462067\pi\) | ||||
0.118888 | + | 0.992908i | \(0.462067\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 19.0000 | 1.11765 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 12.0000 | 0.701047 | 0.350524 | − | 0.936554i | \(-0.386004\pi\) | ||||
0.350524 | + | 0.936554i | \(0.386004\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −4.00000 | −0.231326 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 16.0000 | 0.922225 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −8.00000 | −0.456584 | −0.228292 | − | 0.973593i | \(-0.573314\pi\) | ||||
−0.228292 | + | 0.973593i | \(0.573314\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −12.0000 | −0.680458 | −0.340229 | − | 0.940343i | \(-0.610505\pi\) | ||||
−0.340229 | + | 0.940343i | \(0.610505\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 6.00000 | 0.339140 | 0.169570 | − | 0.985518i | \(-0.445762\pi\) | ||||
0.169570 | + | 0.985518i | \(0.445762\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −32.0000 | −1.79730 | −0.898650 | − | 0.438667i | \(-0.855451\pi\) | ||||
−0.898650 | + | 0.438667i | \(0.855451\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 20.0000 | 1.11979 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 24.0000 | 1.33540 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 5.00000 | 0.277350 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 8.00000 | 0.441054 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −32.0000 | −1.75888 | −0.879440 | − | 0.476011i | \(-0.842082\pi\) | ||||
−0.879440 | + | 0.476011i | \(0.842082\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 14.0000 | 0.762629 | 0.381314 | − | 0.924445i | \(-0.375472\pi\) | ||||
0.381314 | + | 0.924445i | \(0.375472\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −16.0000 | −0.866449 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 8.00000 | 0.431959 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −28.0000 | −1.50312 | −0.751559 | − | 0.659665i | \(-0.770698\pi\) | ||||
−0.751559 | + | 0.659665i | \(0.770698\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −18.0000 | −0.963518 | −0.481759 | − | 0.876304i | \(-0.660002\pi\) | ||||
−0.481759 | + | 0.876304i | \(0.660002\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 16.0000 | 0.851594 | 0.425797 | − | 0.904819i | \(-0.359994\pi\) | ||||
0.425797 | + | 0.904819i | \(0.359994\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −22.0000 | −1.16112 | −0.580558 | − | 0.814219i | \(-0.697165\pi\) | ||||
−0.580558 | + | 0.814219i | \(0.697165\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −3.00000 | −0.157895 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −8.00000 | −0.417597 | −0.208798 | − | 0.977959i | \(-0.566955\pi\) | ||||
−0.208798 | + | 0.977959i | \(0.566955\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 8.00000 | 0.415339 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −6.00000 | −0.310668 | −0.155334 | − | 0.987862i | \(-0.549645\pi\) | ||||
−0.155334 | + | 0.987862i | \(0.549645\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 10.0000 | 0.515026 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 12.0000 | 0.616399 | 0.308199 | − | 0.951322i | \(-0.400274\pi\) | ||||
0.308199 | + | 0.951322i | \(0.400274\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 6.00000 | 0.306586 | 0.153293 | − | 0.988181i | \(-0.451012\pi\) | ||||
0.153293 | + | 0.988181i | \(0.451012\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −30.0000 | −1.52106 | −0.760530 | − | 0.649303i | \(-0.775061\pi\) | ||||
−0.760530 | + | 0.649303i | \(0.775061\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 24.0000 | 1.21373 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −18.0000 | −0.903394 | −0.451697 | − | 0.892171i | \(-0.649181\pi\) | ||||
−0.451697 | + | 0.892171i | \(0.649181\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −4.00000 | −0.199750 | −0.0998752 | − | 0.995000i | \(-0.531844\pi\) | ||||
−0.0998752 | + | 0.995000i | \(0.531844\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | −8.00000 | −0.398508 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 4.00000 | 0.198273 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 14.0000 | 0.692255 | 0.346128 | − | 0.938187i | \(-0.387496\pi\) | ||||
0.346128 | + | 0.938187i | \(0.387496\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 40.0000 | 1.96827 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −24.0000 | −1.17248 | −0.586238 | − | 0.810139i | \(-0.699392\pi\) | ||||
−0.586238 | + | 0.810139i | \(0.699392\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −22.0000 | −1.07221 | −0.536107 | − | 0.844150i | \(-0.680106\pi\) | ||||
−0.536107 | + | 0.844150i | \(0.680106\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | −30.0000 | −1.45521 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 40.0000 | 1.93574 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −10.0000 | −0.481683 | −0.240842 | − | 0.970564i | \(-0.577423\pi\) | ||||
−0.240842 | + | 0.970564i | \(0.577423\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −2.00000 | −0.0961139 | −0.0480569 | − | 0.998845i | \(-0.515303\pi\) | ||||
−0.0480569 | + | 0.998845i | \(0.515303\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 16.0000 | 0.765384 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 8.00000 | 0.381819 | 0.190910 | − | 0.981608i | \(-0.438856\pi\) | ||||
0.190910 | + | 0.981608i | \(0.438856\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 24.0000 | 1.14027 | 0.570137 | − | 0.821549i | \(-0.306890\pi\) | ||||
0.570137 | + | 0.821549i | \(0.306890\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −12.0000 | −0.566315 | −0.283158 | − | 0.959073i | \(-0.591382\pi\) | ||||
−0.283158 | + | 0.959073i | \(0.591382\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −18.0000 | −0.842004 | −0.421002 | − | 0.907060i | \(-0.638322\pi\) | ||||
−0.421002 | + | 0.907060i | \(0.638322\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 8.00000 | 0.372597 | 0.186299 | − | 0.982493i | \(-0.440351\pi\) | ||||
0.186299 | + | 0.982493i | \(0.440351\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 4.00000 | 0.185896 | 0.0929479 | − | 0.995671i | \(-0.470371\pi\) | ||||
0.0929479 | + | 0.995671i | \(0.470371\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −32.0000 | −1.48078 | −0.740392 | − | 0.672176i | \(-0.765360\pi\) | ||||
−0.740392 | + | 0.672176i | \(0.765360\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −32.0000 | −1.47762 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | −8.00000 | −0.367840 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | −20.0000 | −0.917663 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 30.0000 | 1.37073 | 0.685367 | − | 0.728197i | \(-0.259642\pi\) | ||||
0.685367 | + | 0.728197i | \(0.259642\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 2.00000 | 0.0911922 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 8.00000 | 0.362515 | 0.181257 | − | 0.983436i | \(-0.441983\pi\) | ||||
0.181257 | + | 0.983436i | \(0.441983\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −60.0000 | −2.70226 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 8.00000 | 0.358849 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −12.0000 | −0.535054 | −0.267527 | − | 0.963550i | \(-0.586206\pi\) | ||||
−0.267527 | + | 0.963550i | \(0.586206\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −40.0000 | −1.77297 | −0.886484 | − | 0.462758i | \(-0.846860\pi\) | ||||
−0.886484 | + | 0.462758i | \(0.846860\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −40.0000 | −1.76950 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | −4.00000 | −0.175920 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 42.0000 | 1.84005 | 0.920027 | − | 0.391856i | \(-0.128167\pi\) | ||||
0.920027 | + | 0.391856i | \(0.128167\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 20.0000 | 0.874539 | 0.437269 | − | 0.899331i | \(-0.355946\pi\) | ||||
0.437269 | + | 0.899331i | \(0.355946\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 48.0000 | 2.09091 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −7.00000 | −0.304348 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −18.0000 | −0.775315 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −6.00000 | −0.257960 | −0.128980 | − | 0.991647i | \(-0.541170\pi\) | ||||
−0.128980 | + | 0.991647i | \(0.541170\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 4.00000 | 0.171028 | 0.0855138 | − | 0.996337i | \(-0.472747\pi\) | ||||
0.0855138 | + | 0.996337i | \(0.472747\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −40.0000 | −1.70406 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | −32.0000 | −1.36078 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 4.00000 | 0.169485 | 0.0847427 | − | 0.996403i | \(-0.472993\pi\) | ||||
0.0847427 | + | 0.996403i | \(0.472993\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −4.00000 | −0.169182 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 36.0000 | 1.51722 | 0.758610 | − | 0.651546i | \(-0.225879\pi\) | ||||
0.758610 | + | 0.651546i | \(0.225879\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −38.0000 | −1.59304 | −0.796521 | − | 0.604610i | \(-0.793329\pi\) | ||||
−0.796521 | + | 0.604610i | \(0.793329\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 28.0000 | 1.17176 | 0.585882 | − | 0.810397i | \(-0.300748\pi\) | ||||
0.585882 | + | 0.810397i | \(0.300748\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | −20.0000 | −0.834058 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 18.0000 | 0.749350 | 0.374675 | − | 0.927156i | \(-0.377754\pi\) | ||||
0.374675 | + | 0.927156i | \(0.377754\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 24.0000 | 0.995688 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −4.00000 | −0.165663 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −18.0000 | −0.742940 | −0.371470 | − | 0.928445i | \(-0.621146\pi\) | ||||
−0.371470 | + | 0.928445i | \(0.621146\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 32.0000 | 1.31854 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −28.0000 | −1.14982 | −0.574911 | − | 0.818216i | \(-0.694963\pi\) | ||||
−0.574911 | + | 0.818216i | \(0.694963\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 36.0000 | 1.47092 | 0.735460 | − | 0.677568i | \(-0.236966\pi\) | ||||
0.735460 | + | 0.677568i | \(0.236966\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −10.0000 | −0.407909 | −0.203954 | − | 0.978980i | \(-0.565379\pi\) | ||||
−0.203954 | + | 0.978980i | \(0.565379\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 8.00000 | 0.324710 | 0.162355 | − | 0.986732i | \(-0.448091\pi\) | ||||
0.162355 | + | 0.986732i | \(0.448091\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −2.00000 | −0.0809113 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −26.0000 | −1.05013 | −0.525065 | − | 0.851062i | \(-0.675959\pi\) | ||||
−0.525065 | + | 0.851062i | \(0.675959\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −24.0000 | −0.966204 | −0.483102 | − | 0.875564i | \(-0.660490\pi\) | ||||
−0.483102 | + | 0.875564i | \(0.660490\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −16.0000 | −0.643094 | −0.321547 | − | 0.946894i | \(-0.604203\pi\) | ||||
−0.321547 | + | 0.946894i | \(0.604203\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 48.0000 | 1.92308 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 25.0000 | 1.00000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −12.0000 | −0.478471 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −9.00000 | −0.356593 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 22.0000 | 0.868948 | 0.434474 | − | 0.900684i | \(-0.356934\pi\) | ||||
0.434474 | + | 0.900684i | \(0.356934\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −40.0000 | −1.57745 | −0.788723 | − | 0.614749i | \(-0.789257\pi\) | ||||
−0.788723 | + | 0.614749i | \(0.789257\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −16.0000 | −0.629025 | −0.314512 | − | 0.949253i | \(-0.601841\pi\) | ||||
−0.314512 | + | 0.949253i | \(0.601841\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −20.0000 | −0.785069 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 6.00000 | 0.234798 | 0.117399 | − | 0.993085i | \(-0.462544\pi\) | ||||
0.117399 | + | 0.993085i | \(0.462544\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 4.00000 | 0.155818 | 0.0779089 | − | 0.996960i | \(-0.475176\pi\) | ||||
0.0779089 | + | 0.996960i | \(0.475176\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 46.0000 | 1.78919 | 0.894596 | − | 0.446875i | \(-0.147463\pi\) | ||||
0.894596 | + | 0.446875i | \(0.147463\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | −40.0000 | −1.54881 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −20.0000 | −0.772091 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 34.0000 | 1.31060 | 0.655302 | − | 0.755367i | \(-0.272541\pi\) | ||||
0.655302 | + | 0.755367i | \(0.272541\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 10.0000 | 0.384331 | 0.192166 | − | 0.981363i | \(-0.438449\pi\) | ||||
0.192166 | + | 0.981363i | \(0.438449\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −8.00000 | −0.307012 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −18.0000 | −0.688751 | −0.344375 | − | 0.938832i | \(-0.611909\pi\) | ||||
−0.344375 | + | 0.938832i | \(0.611909\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −2.00000 | −0.0761939 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −16.0000 | −0.608669 | −0.304334 | − | 0.952565i | \(-0.598434\pi\) | ||||
−0.304334 | + | 0.952565i | \(0.598434\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 2.00000 | 0.0755390 | 0.0377695 | − | 0.999286i | \(-0.487975\pi\) | ||||
0.0377695 | + | 0.999286i | \(0.487975\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −8.00000 | −0.301726 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | −8.00000 | −0.300871 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −30.0000 | −1.12667 | −0.563337 | − | 0.826227i | \(-0.690483\pi\) | ||||
−0.563337 | + | 0.826227i | \(0.690483\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 32.0000 | 1.19841 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 28.0000 | 1.04422 | 0.522112 | − | 0.852877i | \(-0.325144\pi\) | ||||
0.522112 | + | 0.852877i | \(0.325144\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 64.0000 | 2.38348 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 50.0000 | 1.85695 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 32.0000 | 1.18681 | 0.593407 | − | 0.804902i | \(-0.297782\pi\) | ||||
0.593407 | + | 0.804902i | \(0.297782\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 24.0000 | 0.887672 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 2.00000 | 0.0738717 | 0.0369358 | − | 0.999318i | \(-0.488240\pi\) | ||||
0.0369358 | + | 0.999318i | \(0.488240\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 16.0000 | 0.589368 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −8.00000 | −0.294285 | −0.147142 | − | 0.989115i | \(-0.547008\pi\) | ||||
−0.147142 | + | 0.989115i | \(0.547008\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 2.00000 | 0.0733729 | 0.0366864 | − | 0.999327i | \(-0.488320\pi\) | ||||
0.0366864 | + | 0.999327i | \(0.488320\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −64.0000 | −2.33851 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 40.0000 | 1.45962 | 0.729810 | − | 0.683650i | \(-0.239608\pi\) | ||||
0.729810 | + | 0.683650i | \(0.239608\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 42.0000 | 1.52652 | 0.763258 | − | 0.646094i | \(-0.223599\pi\) | ||||
0.763258 | + | 0.646094i | \(0.223599\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −48.0000 | −1.74000 | −0.869999 | − | 0.493053i | \(-0.835881\pi\) | ||||
−0.869999 | + | 0.493053i | \(0.835881\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | −24.0000 | −0.868858 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | −10.0000 | −0.361079 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −38.0000 | −1.37032 | −0.685158 | − | 0.728395i | \(-0.740267\pi\) | ||||
−0.685158 | + | 0.728395i | \(0.740267\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 28.0000 | 1.00709 | 0.503545 | − | 0.863969i | \(-0.332029\pi\) | ||||
0.503545 | + | 0.863969i | \(0.332029\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −40.0000 | −1.43684 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −4.00000 | −0.143131 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 8.00000 | 0.285169 | 0.142585 | − | 0.989783i | \(-0.454459\pi\) | ||||
0.142585 | + | 0.989783i | \(0.454459\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 72.0000 | 2.56003 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −10.0000 | −0.355110 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −6.00000 | −0.212531 | −0.106265 | − | 0.994338i | \(-0.533889\pi\) | ||||
−0.106265 | + | 0.994338i | \(0.533889\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 12.0000 | 0.424529 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 20.0000 | 0.705785 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 42.0000 | 1.47664 | 0.738321 | − | 0.674450i | \(-0.235619\pi\) | ||||
0.738321 | + | 0.674450i | \(0.235619\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 36.0000 | 1.26413 | 0.632065 | − | 0.774915i | \(-0.282207\pi\) | ||||
0.632065 | + | 0.774915i | \(0.282207\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 16.0000 | 0.559769 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 36.0000 | 1.25641 | 0.628204 | − | 0.778048i | \(-0.283790\pi\) | ||||
0.628204 | + | 0.778048i | \(0.283790\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 8.00000 | 0.278862 | 0.139431 | − | 0.990232i | \(-0.455473\pi\) | ||||
0.139431 | + | 0.990232i | \(0.455473\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 54.0000 | 1.87776 | 0.938882 | − | 0.344239i | \(-0.111863\pi\) | ||||
0.938882 | + | 0.344239i | \(0.111863\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 2.00000 | 0.0694629 | 0.0347314 | − | 0.999397i | \(-0.488942\pi\) | ||||
0.0347314 | + | 0.999397i | \(0.488942\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 54.0000 | 1.87099 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −34.0000 | −1.17381 | −0.586905 | − | 0.809656i | \(-0.699654\pi\) | ||||
−0.586905 | + | 0.809656i | \(0.699654\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 71.0000 | 2.44828 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | −28.0000 | −0.962091 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −8.00000 | −0.274236 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 46.0000 | 1.57501 | 0.787505 | − | 0.616308i | \(-0.211372\pi\) | ||||
0.787505 | + | 0.616308i | \(0.211372\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −6.00000 | −0.204956 | −0.102478 | − | 0.994735i | \(-0.532677\pi\) | ||||
−0.102478 | + | 0.994735i | \(0.532677\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 20.0000 | 0.682391 | 0.341196 | − | 0.939992i | \(-0.389168\pi\) | ||||
0.341196 | + | 0.939992i | \(0.389168\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −10.0000 | −0.340404 | −0.170202 | − | 0.985409i | \(-0.554442\pi\) | ||||
−0.170202 | + | 0.985409i | \(0.554442\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 16.0000 | 0.542763 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 8.00000 | 0.271070 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −34.0000 | −1.14810 | −0.574049 | − | 0.818821i | \(-0.694628\pi\) | ||||
−0.574049 | + | 0.818821i | \(0.694628\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 18.0000 | 0.606435 | 0.303218 | − | 0.952921i | \(-0.401939\pi\) | ||||
0.303218 | + | 0.952921i | \(0.401939\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 44.0000 | 1.48072 | 0.740359 | − | 0.672212i | \(-0.234656\pi\) | ||||
0.740359 | + | 0.672212i | \(0.234656\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −32.0000 | −1.07445 | −0.537227 | − | 0.843437i | \(-0.680528\pi\) | ||||
−0.537227 | + | 0.843437i | \(0.680528\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | −64.0000 | −2.14649 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 8.00000 | 0.267710 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −80.0000 | −2.66815 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 12.0000 | 0.399778 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −4.00000 | −0.132818 | −0.0664089 | − | 0.997792i | \(-0.521154\pi\) | ||||
−0.0664089 | + | 0.997792i | \(0.521154\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −48.0000 | −1.59031 | −0.795155 | − | 0.606406i | \(-0.792611\pi\) | ||||
−0.795155 | + | 0.606406i | \(0.792611\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | −12.0000 | −0.397142 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 32.0000 | 1.05673 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −2.00000 | −0.0658308 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 10.0000 | 0.328798 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −32.0000 | −1.04989 | −0.524943 | − | 0.851137i | \(-0.675913\pi\) | ||||
−0.524943 | + | 0.851137i | \(0.675913\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 36.0000 | 1.17985 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 14.0000 | 0.457360 | 0.228680 | − | 0.973502i | \(-0.426559\pi\) | ||||
0.228680 | + | 0.973502i | \(0.426559\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −36.0000 | −1.17357 | −0.586783 | − | 0.809744i | \(-0.699606\pi\) | ||||
−0.586783 | + | 0.809744i | \(0.699606\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 18.0000 | 0.584921 | 0.292461 | − | 0.956278i | \(-0.405526\pi\) | ||||
0.292461 | + | 0.956278i | \(0.405526\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 10.0000 | 0.324614 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −30.0000 | −0.971795 | −0.485898 | − | 0.874016i | \(-0.661507\pi\) | ||||
−0.485898 | + | 0.874016i | \(0.661507\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 33.0000 | 1.06452 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −48.0000 | −1.54358 | −0.771788 | − | 0.635880i | \(-0.780637\pi\) | ||||
−0.771788 | + | 0.635880i | \(0.780637\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −12.0000 | −0.385098 | −0.192549 | − | 0.981287i | \(-0.561675\pi\) | ||||
−0.192549 | + | 0.981287i | \(0.561675\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 48.0000 | 1.53881 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −4.00000 | −0.127971 | −0.0639857 | − | 0.997951i | \(-0.520381\pi\) | ||||
−0.0639857 | + | 0.997951i | \(0.520381\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −24.0000 | −0.767043 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −18.0000 | −0.574111 | −0.287055 | − | 0.957914i | \(-0.592676\pi\) | ||||
−0.287055 | + | 0.957914i | \(0.592676\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 16.0000 | 0.508770 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 38.0000 | 1.20347 | 0.601736 | − | 0.798695i | \(-0.294476\pi\) | ||||
0.601736 | + | 0.798695i | \(0.294476\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1872.2.a.k.1.1 | 1 | ||
3.2 | odd | 2 | 624.2.a.g.1.1 | 1 | |||
4.3 | odd | 2 | 936.2.a.d.1.1 | 1 | |||
8.3 | odd | 2 | 7488.2.a.y.1.1 | 1 | |||
8.5 | even | 2 | 7488.2.a.bh.1.1 | 1 | |||
12.11 | even | 2 | 312.2.a.b.1.1 | ✓ | 1 | ||
24.5 | odd | 2 | 2496.2.a.j.1.1 | 1 | |||
24.11 | even | 2 | 2496.2.a.u.1.1 | 1 | |||
39.38 | odd | 2 | 8112.2.a.y.1.1 | 1 | |||
60.59 | even | 2 | 7800.2.a.w.1.1 | 1 | |||
156.47 | odd | 4 | 4056.2.c.f.337.2 | 2 | |||
156.83 | odd | 4 | 4056.2.c.f.337.1 | 2 | |||
156.155 | even | 2 | 4056.2.a.f.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
312.2.a.b.1.1 | ✓ | 1 | 12.11 | even | 2 | ||
624.2.a.g.1.1 | 1 | 3.2 | odd | 2 | |||
936.2.a.d.1.1 | 1 | 4.3 | odd | 2 | |||
1872.2.a.k.1.1 | 1 | 1.1 | even | 1 | trivial | ||
2496.2.a.j.1.1 | 1 | 24.5 | odd | 2 | |||
2496.2.a.u.1.1 | 1 | 24.11 | even | 2 | |||
4056.2.a.f.1.1 | 1 | 156.155 | even | 2 | |||
4056.2.c.f.337.1 | 2 | 156.83 | odd | 4 | |||
4056.2.c.f.337.2 | 2 | 156.47 | odd | 4 | |||
7488.2.a.y.1.1 | 1 | 8.3 | odd | 2 | |||
7488.2.a.bh.1.1 | 1 | 8.5 | even | 2 | |||
7800.2.a.w.1.1 | 1 | 60.59 | even | 2 | |||
8112.2.a.y.1.1 | 1 | 39.38 | odd | 2 |